
Mar. Drugs 2015, 13, 4197-4216; doi:10.3390/md13074197 
 

marine drugs  
ISSN 1660-3397 

www.mdpi.com/journal/marinedrugs 

Article 

Red Algae (Rhodophyta) from the Coast of Madagascar: 
Preliminary Bioactivity Studies and Isolation of  
Natural Products 

Marie Pascaline Rahelivao 1, Margit Gruner 1, Hanta Andriamanantoanina 2,  

Bakolinirina Andriamihaja 3, Ingmar Bauer 1 and Hans-Joachim Knölker 1,* 

1 Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany;  

E-Mails: mariepsa@yahoo.fr (M.P.R.); margit.Gruner@tu-dresden.de (M.G.); 

ingmar.bauer@chemie.tu-dresden.de (I.B.) 
2 Centre National de Recherche sur l’Environnement, MESupRes, BP 1739,  

Antananarivo 101, Madagascar; E-Mail: andriamanantoanina@yahoo.fr 
3 Laboratoire de Chimie Appliquée aux Substances Naturelles, Faculté des Sciences,  

Université d’Antananarivo, BP 566, Antananarivo 101, Madagascar;  

E-Mail: b.andriamihaja@moov.mg 

* Author to whom correspondence should be addressed;  

E-Mail: hans-joachim.knoelker@tu-dresden.de; Tel.: +49-351-463-34659;  

Fax: +49-351-463-37030. 

Academic Editor: Anake Kijjoa 

Received: 25 March 2015 / Accepted: 25 June 2015 / Published: 7 July 2015 

 

Abstract: Several species of red algae (Rhodophyta) from the coastal regions of Madagascar 

have been investigated for their natural products. The most abundant compound was 

cholesterol (5) in combination with a series of oxidized congeners. The brominated indoles 

1–3 along with the sesquiterpene debilone (4) have been isolated from Laurencia complanata. 

For the first time, debilone (4) has been obtained from a marine plant. From the methanol 

extract of Calloseris sp., we have achieved the second isolation of the unusual A-ring 

contracted steroids (−)-2-ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one (9) and 

phorbasterone B (10). The crude extracts of Laurencia complanata exhibited antimicrobial 

activity against Bacillus cereus, Staphylococcus aureus, Streptococcus pneumoniae, and 

Candida albicans. 
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1. Introduction 

Marine organisms may comprise over 80% of the world’s plant and animal species and thus offer an 

enormous source of novel and potentially biologically active compounds [1]. Among them, algae are 

one of the richest and most promising sources of bioactive primary and secondary metabolites [2,3]. At 

present, about 9% of biomedical compounds from marine sources are found in algae [1]. Madagascar, 

the fourth largest island in the world with a coastline of almost 5000 km, accommodates a wealth of 

marine organisms in its coastal region. Currently, only few representatives of red algae from Madagascar 

have been studied for their bioactive compounds. For the red alga Gelidium madagascariense, Mollion 

identified an agar polymer in which the methylated fraction contains predominantly 6-O-methyl 

galactose and traces of 4-O-methyl galactose [4]. Gerwick and coworkers isolated halogenated 

monoterpenes from the Madagascan marine red alga Portieria hornemannii [5]. Two of them proved to 

be inhibitors of DNA methyl transferase-1 with low-micromolar activity. Recently, the polysaccharide 

fraction of Gelidium sp. was investigated and a gel-forming agar has been identified that is composed of 

3,6-anhydro-L-galactopyranose and D-galactopyranose linked via α-(1→4)- and β-(1→3)-glycosidic 

bonds [6]. The present study aims at the identification of the non-polar natural products of red algae 

collected in the intertidal zones at the coast of Madagascar. 

2. Results and Discussion 

2.1. Laurencia complanata 

Dried samples of Laurencia complanata were extracted with methanol. Subsequently, the methanol 

extract was adsorbed at silica gel and subjected to flash chromatography with varying solvents of 

increasing polarity to provide three fractions. The first fraction, eluting with hexane, gave a mixture of 

two compounds identified as the brominated indole alkaloids 2,3,5-tribromo-1-methylindole (1) and 

2,3,5,6-tetrabromo-1-methylindole (2) (Figure 1). A ratio of about 3:1 for the two alkaloids was 

determined by GC-MS and 1H NMR spectroscopy. The EI-MS of 1 shows the characteristic pattern for 

the molecular ions at m/z = 365, 367, 369, and 371 in the ratio of 1:3:3:1, indicating the presence of three 

bromine atoms. The molecular formula of 1 was assigned as C9H6Br3N based on EI-MS,  
1H NMR, and 13C NMR data. The EI-MS of compound 2 shows molecular ions at m/z = 443, 445, 447, 

449, and 451 in the ratio of 1:4:6:4:1 indicating the presence of four bromine atoms. The molecular 

formula C9H5Br4N could be derived from the odd molecular mass and the number of signals in the  
1H NMR and 13C NMR spectra. The spectra of both compounds display a peak for the fragment resulting 

from the loss of a methyl group. The simple pattern of NMR signals led directly to the assignment of the 

structures 1 and 2. The second elution of the methanol extract of Laurencia complanata with  

hexane-ethyl acetate (9:1) afforded a third brominated indole alkaloid: 2,3,5,6-tetrabromoindole (3). 
  



Mar. Drugs 2015, 13 4199 

 

 

 

Figure 1. Chemical structures of the bromoindoles 1–3 and debilone (4). 

Similar to compound 2, the molecular ions for 3 at m/z = 429, 431, 433, 435, and 437 in the ratio of 

1:4:6:4:1 indicated the presence of four bromine atoms. The molecular formula of 3 was found to be 

C8H3Br4N based on the GC-MS in combination with 1H and 13C NMR data. In contrast to 1 and 2, 

compound 3 does not show the loss of a methyl group in the mass spectrum. The similarity of the  
1H and 13C NMR spectra of 3 to those of 2 led us to assign compound 3 as 2,3,5,6-tetrabromoindole. 

Finally, the identity of compounds 1–3 was confirmed by the good agreement of their NMR data with 

those reported in the literature [7,8]. 

The bromoindoles 1–3 were originally isolated by Rinehart and coworkers from Laurencia brongniartii 

collected in the Caribbean Sea [7,9]. Subsequently, the same species collected at Komesu, Itoman, 

Okinawa, Japan in August was also reported as source for 1–3 by Higa and Jefford et al. [10]. Faulkner et al. 

found the brominated indoles 1 and 2 in the digestive glands of the mollusk Aplysia dactylomela, 

probably originating from the algal diet of this animal [11]. Further reports include the isolation of 1 and 

3 from Laurencia similis (Rhodomelaceae) collected at the coast of Hainan island, China [12], and of 1 

and 2 from Laurencia decumbens (Rhodomelaceae) at the coast of Weizhou island, China [13]. In our 

present work, we describe the first isolation of these natural products from the red alga Laurencia complanata 

found at the coast of Madagascar. 

After separation of the first two fractions as described above, the crude extract of Laurencia complanata 

was eluted with methanol to provide a third fraction. The aristolane-type sesquiterpene debilone (4) was 

isolated after two further purification steps by column chromatography using a mixture of CH2Cl2-EtOAc 

with increasing polarity (Figure 1). The molecular mass of 234 obtained from EI- and ESI-MS in 

combination with the number and intensity of the 1H NMR and 13C NMR signals suggested a molecular 

formula of C15H22O2. The 1H NMR spectrum displayed signals for 22 protons, which, according to the 

DEPT spectrum, include 4 methyl, 2 methylene, and 5 methine groups. In the 13C NMR spectrum, signals 

for 15 carbon atoms, including one carbonyl group at δ = 200.2 ppm (C-2), one oxygenated carbon atom 

at δ = 72.7 ppm (C-9), and three quaternary carbon atoms at δ = 19.2 (C-11), 37.4 (C-5), and 170.5 ppm 

(C-10), were identified. Various 2D NMR methods (COSY, HMBC, HSQC, and NOESY) led to the 

complete assignment of the 1H NMR and 13C NMR signals and to the elucidation of the relative 

stereochemistry. Thus, compound 4 was identified as debilone. Comparison of our spectroscopic data with 

those reported for debilone (4) in the literature [14] confirmed the assignment for our compound. 

Debilone (4) was isolated first by Křepinský et al. [15] from Aristolochia debilis and immediately 

afterwards by Rücker from Nardostachys chinensis [16]. More recently, the tricyclic sesquiterpene has 

been obtained several times from the same source [14,17,18]. Our present study describes the first 

isolation of debilone (4) from a marine organism. 
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The crude methanol extract of Laurencia complanata was tested for its antimicrobial activity. In an 

agar diffusion assay at a level of 10 μL of the extract (1 mg/mL) per 6 mm disc, the crude extract 

produced, after 24 h of growth, inhibition zones of 19.5 mm for Bacillus cereus, 20 mm for 

Staphylococcus aureus, 20 mm for Streptococcus pneumoniae, and 11.5 mm for Candida albicans, 

which corresponds to a strong inhibiting activity against these microbes (Table 1). A low activity was 

found against Klebsiella oxytoca (7 mm) and Escherichia coli (7 mm), whereas no activity was detected 

against Enterobacter cloacae and Salmonella enteridis. We showed that at least to some extent the 

antimicrobial activity can be ascribed to the tetrabromoindole 3 (Table 1), as reported previously by 

Vairappan and coworkers [19] and Rinehart et al. [7]. In addition, Rinehart et al. reported for the 

tetrabromoindole 3 an ID50 value of 3.6 μg/mL against L-1210 tumor cells in tissue culture [7].  

The brominated indoles 1 and 2 and the methanol fraction containing debilone (4) did not contribute 

significantly to the antimicrobial activity in the agar diffusion test (Table 1). 

Table 1. Antimicrobial activities of the crude extracts of red algae by agar diffusion test. a 

Microbes 

Zone of inhibition (Ø in mm) b 

Laurencia complanata 
Grateloupia 

sp. 

Gracilaria 

corticata

Halymenia 

sp. 

Spyridia 

sp. 

Meta-

mastophora 

sp. 

Calloseris 

sp. 

Neurymenia 

fraxinifolia

Crude 

extract 

Mixture of 

1 and 2 

Compound 

3 

MeOH 

fraction 

(4) 

     
 

 
 

Enterobacter 

cloacae  

ATCC 700323 

6.5 nt nt nt 6 6.5 6 6.5 6 6 6.5 

Klebsiella oxytoca 

ATCC 8724 
7 nt nt nt 6 6.5 6 6.5 6 6 6.5 

Escherichia coli 7 nt nt nt 6 6.5 6 6 6 6 6.5 

Salmonella 

enteridis 
6 nt nt nt 6 6 6 6 6 6 6 

Bacillus cereus 

ATCC 13061 
19.5 6.5 11 7.5 7 6.5 8 6.5 6.5 6 6.5 

Staphylococcus 

aureus  

ATCC 11632 

20 6 12 6 6.5 8 9 6.5 6 6 6.5 

Streptococcus 

pneumoniae 

ATCC 6301 

20 6.5 12 6 6 6 12 6 8 6 6 

Candida albicans 11.5 6.5 8.5 6 6 6 6 6 6 6 6 

a Each test was run in triplicate and the mean values are given; b Concentration of crude methanol extract and isolated compounds:  

1 mg/mL, 10 µL solution/6 mm disc; Ø < 7 mm: inactive, 7 mm ≤ Ø < 8 mm: slightly active, 8 mm ≤ Ø < 9 mm: significantly active, Ø ≥ 

9 mm: very active; nt = not tested. 
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2.2. Grateloupia sp. 

The dried and crushed sample of Grateloupia sp. was exhaustively extracted with methanol.  

The methanol extract was evaporated and the residual solid was extracted with dichloromethane.  

The dried dichloromethane extract (3.29 g) was subjected to flash chromatography on silica gel and 

eluted with diethyl ether. The diethyl ether fraction provided 30 mg of cholesterol (5) as the major 

component of Grateloupia sp. (Halymeniaceae). In the antimicrobial assay, the crude extract of 

Grateloupia sp. showed only minor activity against Bacillus cereus (Table 1). 

2.3. Gracilaria corticata (Gracilariaceae) 

After extraction of the dried and crushed sample of Gracilaria corticata (Gracilariaceae) with 

methanol and removal of the solvent, the residual solid was extracted with dichloromethane.  

The dichloromethane extract was subjected to flash chromatography on silica gel. A first elution with 

diethyl ether was followed by further elutions with dichloromethane and with ethyl acetate. From the 

diethyl ether, dichloromethane, and ethyl acetate fractions, we isolated the three known steroids 

cholesterol (5), cholest-5-ene-3β,7β-diol (7β-hydroxycholesterol) (6), and 3β-hydroxycholest-5- 

en-7-one (7) (Figure 2). The structures of 5–7 have been determined using one- and two-dimensional  
1H NMR and 13C NMR spectroscopy. 
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Figure 2. Chemical structures of cholesterol (5), cholest-5-ene-3β,7β-diol (6), and  

3β-hydroxycholest-5-en-7-one (7). 

The crude extract of Gracilaria corticata was found to be only slightly active against  

Staphylococcus aureus (Table 1). No activity was found against Enterobacter cloacae, Klebsiella 

oxytoca, Escherichia coli, Salmonella enteridis, Bacillus cereus, Streptococcus pneumoniae, and 

Candida albicans. 

2.4. Halymenia sp. (Halymeniaceae) 

After Soxhlet extraction of the dried and crushed sample of Halymenia sp. (Halymeniaceae) with 

diethyl ether, the residue was extracted repeatedly with dichloromethane, ethyl acetate, and methanol. 

All extracts were subjected to column chromatography on silica gel using a mixture of pentane-diethyl 

ether in a ratio of 4:1 or 3:2 as eluent. Cholesterol (5) was the only component isolable from all fractions, 

confirming it is the major sterol in most Rhodophyta, as mentioned earlier by Patterson [20]. 

The methanol extract of Halymenia sp. was found to be very active against Staphylococcus aureus 

and Streptococcus pneumoniae, but less active against Bacillus cereus, and inactive against Enterobacter 

cloacae, Klebsiella oxytoca, Escherichia coli, Salmonella enteridis, and Candida albicans (Table 1). 
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2.5. Spyridia sp. (Spyridiaceae) 

The plant material of Spyridia sp. (Spyridiaceae) was minced, exhaustively extracted with methanol, 

dried, and then extracted with dichloromethane. Purification of the dichloromethane extract by column 

chromatography using pentane-diethyl ether (7:3) as eluent led to the isolation of a mixture of cholesterol (5) 

and 24-methyl-25-homocholesterol (8) (Figure 3). Compound 8 has been mentioned several times in the 

literature but to the best of our knowledge only as a hit during a library search from a GC-MS  

database [21–25]. In the present work, we describe the NMR data of 8 by complete assignment of all  
1H NMR and 13C NMR signals of the mixture with cholesterol (5) using COSY, NOESY, HMBC, and 

HSQC measurements. The configuration of the methyl group at C-24 remains unclear. 

 

Figure 3. Chemical structure of 24-methyl-25-homocholesterol (8). 

The methanol extract of Spyridia sp. exhibited no activity in the agar diffusion assay against several 

microbes, as outlined in Table 1. A moderate activity against the drug-resistant FCM29 strain of 

Plasmodium falciparum with an FCM29 IC50 value of 28.53 ± 9.20 µg/mL was observed in the  

anti-malaria test. 

2.6. Metamastophora sp. (Corallinaceae) 

The methanol extract of Metamastophora sp. (Corallinaceae) was evaporated under reduced pressure, 

leaving a residue that was subjected to flash chromatography on silica gel with various solvents of 

increasing polarity. The fraction eluting with ethyl acetate was purified by an additional column 

chromatography on silica gel to give cholest-5-ene-3β,7β-diol (7β-hydroxycholesterol) (6) (Figure 2). 

The crude extract of Metamastophora sp. displayed a low antimicrobial activity against  

Streptococcus pneumoniae, whereas no activity was observed against Enterobacter cloacae,  

Klebsiella oxytoca, Escherichia coli, Salmonella enteridis, Bacillus cereus, Staphylococcus aureus, and 

Candida albicans (Table 1). 

2.7. Calloseris sp. (Delesseriaceae) 

After extraction of a sample of Calloseris sp. (Delesseriaceae) with methanol, the solvent  

was removed under reduced pressure and the residue was extracted with dichloromethane.  

The dichloromethane extract was subjected to flash chromatography on silica gel with diethyl ether, 

dichloromethane, and ethyl acetate. In addition to a mixture of cholesterol (5) and 24-methyl- 

25-homocholesterol (8), as isolated from Spyridia sp. (see above), the two A-ring contracted steroids,  

(−)-2-ethoxycarbonyl-2β-hydroxy-A-norcholest-5-en-4-one (9) [26] and (−)-2-methoxycarbonyl-2-
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hydroxy-A-nor-cholest-5-en-4-one [phorbasterone B (10)] [27], and cholest-4-ene-3,6-dione (11) were 

isolated from the diethyl ether fraction of Calloseris sp. (Figure 4). 
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Figure 4. Chemical structures of (−)-2-ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5- 

en-4-one (9), phorbasterone B (10), and cholest-4-ene-3,6-dione (11). 

Compound 9 was isolated as colorless oil. The molecular mass of 458 was deduced from the ESI-MS by 

the masses of the protonated molecule and the ammonium adduct (m/z = 459 [M + H]+ and 476  

[M + NH4]+). Infrared absorptions at ν = 3440 and 1740 cm−1 revealed the presence of hydroxyl and 

ester groups, respectively. A second absorption for a carbonyl group at 1721 cm−1 was assigned to the 

ketone moiety. The absorption at 1648 cm−1 results from a C=C double bond. The 1H NMR and 13C 

NMR spectra displayed a close resemblance to cholestane steroids. Obvious differences are the two 

carbonyl signals at δ = 172.90 (C-3) and 201.05 (C-4) ppm and the signals for an ethoxy group in the  
1H NMR spectrum at δ = 4.25 ppm (q, J = 7.2 Hz, 2 H, H2-1′) and δ = 1.27 ppm (t, J = 7.2 Hz, 3 H, H3-2′).  

The separated 1H NMR signals for the geminal protons at δ = 2.10 ppm (d, J = 13.5 Hz, 1 H, H-1b) and 

2.18 (d, J = 13.6 Hz, 1 H, H-1a) indicated the presence of a contracted ring system. The olefinic proton 

at δ = 6.74 ppm (t, J = 3.5 Hz, 1 H, H-6) displays a downfield shift as compared to cholesterol (5), which 

can be explained by the conjugated electron-withdrawing group. Extensive 2D NMR measurements 

(COSY, HMBC, HSQC, and NOESY) allowed the assignment of all 1H NMR and 13C NMR signals for 

(−)-2-ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one (9). With respect to the stereochemistry  

at C-2, the presence of a NOESY correlation between the hydroxyl proton and the protons of the methyl 

group (C-19) was in agreement with the β-orientation of the hydroxyl group. Compound 9 has been 

isolated only once before by Lin and coworkers from the soft coral Dendronephthya sp.  

(Hainan island, China) [26]. Our 1H NMR and 13C NMR data of 9 were in good agreement with those 

reported previously (see [26], Table 2, and Section 3.3. Spectroscopic Characterization). The present 

work on the red alga Calloseris sp. constitutes only the second isolation of (−)-2-ethoxycarbonyl-2β-

hydroxy-A-nor-cholest-5-en-4-one (9). 
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Table 2. 13C NMR spectroscopic data of 9 and 10.a 

Position 
9 from Calloseris sp. 

δC (150 MHz, CDCl3) 

9 from Dendronephthya sp. [26] 

δC (125 MHz, CDCl3) 

10 from Calloseris sp.

δC (150 MHz, CDCl3)

10 from Phorbas amaranthus [27]

δC (100 MHz, CDCl3) 

1 46.67 46.7 46.66 nr 

2 79.79 79.8 79.88 79.9 

3 172.90 172.9 173.35 173.4 

4 201.05 201.0 200.89 200.9 

5 145.17 145.2 145.09 145.1 

6 136.00 135.9 136.26 136.3 

7 32.17 32.2 32.19 nr 

8 32.32 32.4 32.31 nr 

9 49.65 49.7 49.64 nr 

10 39.89 39.9 39.91 nr 

11 21.78 21.8 21.77 nr 

12 39.34 39.5 39.33 nr 

13 42.90 42.9 42.89 nr 

14 56.25 56.1 56.25 nr 

15 24.32 24.3 24.32 nr 

16 28.12 28.1 28.12 nr 

17 56.09 56.3 56.07 nr 

18 12.01 12.0 12.00 nr 

19 22.08 22.1 22.07 nr 

20 35.73 35.7 35.72 35.7 

21 18.73 18.7 18.72 18.7 

22 36.15 36.2 36.14 36.1 

23 23.83 23.9 23.83 23.8 

24 39.47 39.3 39.47 39.5 

25 28.00 28.0 28.00 28.0 

26 22.81 22.8 22.54 22.5 

27 22.55 22.5 22.80 22.8 

1′ 62.66 62.7 53.37 53.4 

2′ 14.08 14.2 − − 

a Numbering of the steroidal framework, see Figure 4; nr = not reported. 

Compound 10 was obtained as a colorless oil. Its molecular mass of 444 was deduced from the  

ESI-MS peaks at: m/z = 445 [M + H]+, 462 [M + NH4]+, and 911 [2M + Na]+. The 1H NMR and  
13C NMR spectra of compound 10 proved to be almost identical to those of compound 9 but differ by 

the presence of signals for a methyl ester instead of those for the ethyl ester, which is matching the 

difference in the molecular mass of both compounds. Thus, compound 10 could be identified as  

(−)-2-methoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one. All 1H NMR and 13C NMR signals 

could be unambiguously assigned by 2D NMR measurements (COSY, HMBC, HSQC, and NOESY). 

Previously, compound 10 was isolated from the sponge Phorbas amaranthus by Molinski et al. and 

named phorbasterone B [27]. Our 1H NMR and 13C NMR data are in full agreement with those  

reported in the literature ([27], Table 2, and Section 3.3. Spectroscopic Characterization). This report 

represents only the second isolation of phorbasterone B (10). The unusual five-membered A-ring  



Mar. Drugs 2015, 13 4205 

 

 

with its characteristic substitution pattern as displayed in the compounds 9 [26], 10, and other  

phorbasterones [27] has been described before only for anthosterones A and B, isolated by Andersen 

and Clardy et al. from the sponge Anthoracuata graceae [28]. 

Cholest-4-ene-3,6-dione (11) was isolated previously from several sources, first from the sponge 

Geodia cydonium [29]. Synthetically, it can be easily obtained by oxidation of cholesterol (5) with 

chromium (VI) reagents [30,31]. Our NMR, IR, and UV data of compound 11 were in full agreement 

with those reported in the literature [29]. 

The crude extract of Calloseris sp. was tested for its antimicrobial activity and found to be inactive 

against all microbes of our assay (Table 1). 

2.8. Neurymenia fraxinifolia (Rhodomelaceae) 

After extraction of the dried and crushed plant material of Neurymenia fraxinifolia (Rhodomelaceae) 

with methanol, the solution was evaporated. The residue was separated by flash chromatography on 

silica gel using a range of solvents (pentane, diethyl ether, dichloromethane, ethyl acetate, and  

n-butanol). The diethyl ether fraction was further purified by column chromatography on silica gel to 

afford two fractions. The first fraction provided an amorphous solid, which in the ESI-MS showed signals 

for at least three components with molecular masses of 298 (m/z = 281 [M − H2O + H]+, 316 [M + NH4]+), 

312 (m/z = 295 [M − H2O + H]+, 330 [M + NH4]+), and 326 (m/z = 309 [M − H2O + H]+, 344 [M + NH4]+). 

In the 1H NMR and 13C NMR spectra, the mixture appeared almost like a pure substance with the 

exception of the presence of a methoxy and an ethoxy group in a ratio of about 2:1 that belong to different 

compounds. Signals are observed for two methyl and three methine groups. Two signals at δ = 5.45  

(dd, J = 15.4, 7.1 Hz) and 5.59–5.67 (m) showed a shift characteristic of olefinic protons. The 13C NMR 

spectrum displayed signals for one carbonyl group at δ = 174.0 ppm, one oxygenated carbon atom at  

δ = 73.2 ppm, and two olefinic carbon atoms at δ = 132.3 and 133.2 ppm. The E-configuration of the 

double bond was established by the large coupling constant of J = 15.4 Hz between the two olefinic 

protons and only a weak NOESY correlation between their corresponding signals. Extensive COSY, 

HSQC, and HMBC experiments led to the assignment for most of the signals of the respective protons 

and carbon atoms and indicated the presence of an allylic alcohol fragment. However, the position of 

several of the methylene groups could not be assigned unambiguously to one or the other side of the 

allylic alcohol moiety within the long alkyl chain. Thus, the position as well as the orientation of the 

allylic alcohol in the alkyl chain of the fatty acid ester remains unclear. Therefore, several structures 

appear possible that all would account for the three molecular masses identified in the ESI-MS (Figure 5). 

The molecular mass of 298 could be represented by the six structures shown for 12. The molecular mass 

of 312 leads to 10 possible structures for the methyl ester 13. Finally, the molecular mass of 326 also 

provides 10 possible structures for compound 14. 
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Figure 5. Chemical structures of the allylic alcohols 12–14. 

It is noteworthy that no report in the literature is known for structures 12a–f. Most probably, 

compound 12 derives from autoxidation of palmitoleic acid. Thus, only those structures appear 

reasonable that have the hydroxy group at position 8–10 (12a–c, 12f (n = 3, m = 1)). Much more 

information is available in the literature for some of the compounds described by structure 13  

(see, for example, [32–35]). In particular, the compounds 13c (n = 3, m = 3), 13d (n = 4, m = 2), 13h  

(n = 3, m = 3), and 13i (n = 4, m = 2) have been reported several times. They are described as oxidation 

products of oleic acid formed via hydroperoxide intermediates [36]. No reports are available for the 

compounds 13f (n = 1, m = 5) and 13g (n = 2, m = 4), which may be explained by the fact that allylic 

oxidation of the Δ9 double bond in oleic acid does not lead to compounds with a hydroxyl group at 

position 6 or 7. Examples for the occurrence of structure 13 in natural sources include compounds 13a 

and 13i, which have been isolated from the phytopathogenic fungus Epichloe typhina [37]. Compared to 

13, the corresponding ethyl esters 14 have been much less investigated. Only reports for the most likely 

oxidation products 14c (n = 3, m = 3) and 14i (n = 4, m = 2) are available (see, for example, [38–40]). In 

summary, from the first fraction of Neurymenia fraxinifolia we have isolated at least three oxidation 

products of palmitoleic and oleic esters. The precise structures of the isomers could not be determined. 

The second fraction of Neurymenia fraxinifolia was subjected to preparative thin-layer 

chromatography. The isolated fraction showed only one single spot on the TLC plate, but according to 

the NMR spectra exhibited a mixture of the three known sterols: 24-methylenecholesterol,  

cholesterol (5), and campesterol. 

The methanol extract of Neurymenia fraxinifolia showed no inhibiting activity against the microbes 

tested in our assay (Table 1). 
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3. Experimental Section  

3.1. Plant Material 

Samples of the red alga Laurencia complanata were collected in May in Italy, located at the southwest 

coast tip of Madagascar (BOL 169753). Collections were made during the low-tide period, in which the 

algae are emerging at the surface and can be easily torn from the supporting rocks. 

Red algae of the genus Grateloupia sp., family Halymeniaceae, were collected in May in Evatraha, a 

small village north of Fort-Dauphin, located in the southeast of Madagascar (BOL 169751). 

Marine algae of the genus Gracilaria corticata, family Gracilariaceae, were collected in October in 

Beravy Tuléar, located on the southwest coast of Madagascar (BOL169754). 

Samples of Halymenia sp., family Halymeniaceae, were collected in October in Beravy Tuléar on the 

east coast of Madagascar (BOL 169755). 

The red alga Spyridia sp., family Spyridiaceae, was collected in February near Fenerive, on the east 

coast of Madagascar (BOL 169756). 

The alga sample of Metamastophora sp., family Corallinaceae, was collected in May in Sainte Luce 

on the southeast coast of Madagascar (BOL 169757). 

Samples of the red algae species Calloseris sp., family Delesseriaceae, were collected in February in 

Fenerive at the eastern coastline of Madagascar (BOL 169758). 

The sample of the red alga Neurymenia fraxinifolia, family Rhodomelaceae, was collected in May in 

the southeast of Madagascar at Evatraha, a small village north of Fort-Dauphin (BOL 169759). 

The red algae have been identified by Dr. Lydiane Mattio and Professor Robert J. Anderson, 

Biological Sciences Department and Marine Research Institute, University of Cape Town, South Africa. 

Voucher specimens of the eight species of red algae investigated in this study have been deposited at the 

Bolus herbarium (BOL) of the University of Cape Town, South Africa. The corresponding BOL 

accession numbers are given in brackets after the name of the algae. 

3.2. Extraction and Isolation 

The fresh seaweed was washed under tap water, rinsed with distilled water, subsequently dried at  

48–50 °C using a universal Binder oven, and then finely powdered in a grinder. In all cases, we extracted 

the dried and crushed samples of the algae with methanol. Checking the methanol extract by TLC,  

we obtained different results concerning the polarity of the compounds. Depending on whether the 

compounds were less polar (best eluted with diethyl ether) or more polar (best eluted with 

dichloromethane), we performed another extraction with either diethyl ether or dichloromethane, 

respectively. Following this procedure, we obtained the non-polar compounds of the methanol extract 

that were purified by column chromatography. 

The crushed material of Laurencia complanata (15 g) was extracted with methanol at room 

temperature, the organic extract was evaporated to dryness, and a dark oily residue (methanol extract) 

was obtained. The methanol extract was subjected to flash chromatography on silica gel using a stepwise 

gradient of hexane, hexane-ethyl acetate (9:1), and methanol. The fraction eluting with hexane (28 mg) 

contained a mixture of two alkaloids: 2,3,5-tribromo-1-methylindole (1) and 2,3,5,6-tetrabromo-1-

methylindole (2) in a ratio of 3:1 (GC-MS, NMR). The fraction eluting with hexane-ethyl acetate (113 mg) 
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was further purified by column chromatography on silica gel and provided on elution with  

pentane-ether (9:1) 97 mg of pure 3. The fraction eluting with methanol (217 mg) was dissolved in 

butanol and the butanol extract (123 mg) was subjected to column chromatography on silica gel using 

dichloromethane-ethyl acetate (5:1) as eluent to get three fractions. The second fraction (13 mg) was 

further purified by column chromatography on silica gel and afforded on elution with dichloromethane-ethyl 

acetate (3:2) 1 mg of debilone (4). 

The dried and crushed Grateloupia sp. (400 g) was extracted with methanol. The methanol extract 

was concentrated to dryness and the residual solid (10 g) was extracted with dichloromethane. 

Subsequently, the dried dichloromethane extract (3.29 g) was subjected to flash chromatography on 

silica gel using diethyl ether as eluent. The diethyl ether fraction was further subjected to column 

chromatography on silica gel and provided on elution with pentane-diethyl ether (4:1) 30 mg  

of cholesterol (5). 

For the methanol extract of Gracilaria corticata, the algae powder (600 g) was added to methanol 

and suspended with a homogenizer. After filtration, the methanol was removed from the combined 

extracts by evaporation under reduced pressure, and the residue (15 g) was extracted with 

dichloromethane. The dichloromethane extract (3 g) was subjected to flash chromatography on silica gel. 

The column was eluted with diethyl ether, dichloromethane, and then with ethyl acetate. From the  

diethyl ether, dichloromethane, and ethyl acetate fractions, 60 mg of cholesterol (5), 5 mg of  

3β-hydroxycholest-5-en-7-one (7), and 4.5 mg of cholest-5-ene-3β,7β-diol (7β-hydroxycholesterol) (6) 

were isolated. 

The crushed Halymenia sp. (38 g) was extracted with four different solvents of increasing polarity, 

namely diethyl ether, dichloromethane, ethyl acetate, and methanol. The diethyl ether extract (180 mg) 

was purified by column chromatography on silica gel and afforded on elution with pentane-diethyl ether 

(4:1) 6 mg of cholesterol (5). The dichloromethane (63 mg) and the ethyl acetate (90 mg) extracts were 

treated in the same way to obtain 2.3 mg and 3 mg of 5. Compound 5 (1 mg) was also obtained by column 

chromatography of the methanol extract on silica gel and elution with pentane-diethyl ether (3:2). 

Crushed Spyridia sp. (2 kg) was extracted with methanol and the insoluble materials were removed 

by filtration. Evaporation of the methanol from the soluble extract gave a dark oily residue. The methanol 

extract (42 g) was extracted with dichloromethane at room temperature. Subsequently, the 

dichloromethane extract (7 g) was further separated by two column chromatographies on silica gel with 

pentane-diethyl ether (7:3) as eluent to afford 387 mg of a mixture (one TLC spot) of cholesterol (5) and  

24-methyl-25-homocholesterol (8). A ratio of about 5:4 for the two steroids was determined by GC-MS 

and 1H NMR. 

The crushed material of Metamastophora sp. (300 g) was extracted with methanol and the insoluble 

components were removed by filtration. Evaporation of the methanol from the extract gave 6 g of a dark 

oily residue. The crude extract was subjected to flash chromatography on silica gel and was eluted with 

different solvents of increasing polarity, namely pentane, diethyl ether, dichloromethane, ethyl acetate, 

and methanol. The ethyl acetate extract (52 mg) was fractionated by column chromatography on silica 

gel using ethyl acetate as eluent to afford 3 mg of cholest-5-ene-3β,7β-diol (7β-hydroxycholesterol) (6). 

The crushed material of Calloseris sp. (550 g) was extracted with methanol. The extract was filtered, 

evaporated, and the residual solid (13 g) was extracted with dichloromethane. The dichloromethane extract 

(4.6 g) was subjected to flash chromatography on silica gel and eluted first with pentane to remove the 
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non-polar fractions and then with diethyl ether. The diethyl ether fraction (2.9 g) was subjected to column 

chromatography on silica gel and provided on elution with pentane-diethyl ether (4:1) three fractions. 

Fraction 1 (100 mg) was further purified by column chromatography on silica gel using pentane-diethyl 

ether (9:1) as eluent and afforded 25 mg of (−)-2-ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one (9). 

Fraction 2 (200 mg) was also further purified by column chromatography on silica gel using  

pentane-diethyl ether (4:1) as eluent to provide fraction 2-1 and fraction 2-2. Fraction 2-1 gave  

45 mg of phorbasterone B (10) and fraction 2-2 gave 39 mg of cholest-4-ene-3,6-dione (11). Fraction 3 

(710 mg) showed only one single spot on TLC analysis but contained a mixture of cholesterol (5) and 

24-methyl-25-homocholesterol (8). 

The crushed material of Neurymenia fraxinifolia (500 g) was extracted with methanol. The methanol 

extract (11 g) was subjected to flash chromatography on silica gel using different solvents of increasing 

polarity (pentane, diethyl ether, dichloromethane, ethyl acetate, and n-butanol). The diethyl ether 

fraction was subjected to column chromatography on silica gel and elution with pentane-diethyl ether 

(4:1) afforded two fractions. The first fraction provided 2 mg of a mixture of the compounds 12–14.  

The second fraction (37 mg) was subjected to a further column chromatography on silica gel with 

pentane-diethyl ether (4:1) followed by a preparative TLC using pentane-diethyl ether (1:1).  

The product (6 mg) appeared as one spot on TLC analysis but contained a mixture of  

24-methylenecholesterol, cholesterol (5), and campesterol in a ratio of about 3:2:1 according to  

GC-MS and the 1H NMR spectrum. 

3.3. Spectroscopic Characterization  

General: Optical rotations were determined on a Perkin Elmer 341 polarimeter at a wavelength of  

589 nm (sodium D line) using a 1.0-decimeter cell with a total volume of 1.0 mL. UV spectra were 

measured on a Perkin Elmer Lambda 25 UV-Vis spectrometer. Fluorescence spectra were measured on 

a Varian Cary Eclipse. IR spectra were recorded on a Thermo Nicolet Avatar 360 E.S.P. FT-IR 

spectrometer using the ATR technique (attenuated total reflection). NMR spectra were recorded on Bruker 

AC 300-P and AVANCE III 600 spectrometers. The chemical shifts δ are reported in ppm using the  

non-deuterated solvent as internal standard. Assignment of the 1H NMR and 13C NMR signals was 

achieved using the 2D NMR methods COSY, HSQC, HMBC, and NOESY. The mass spectra were 

measured by GC-MS coupling with an Agilent Technologies 6890N GC system equipped with a 5973N 

Mass Selective Detector (electron impact, 70 eV). ESI-MS were recorded on a Bruker-Esquire mass 

spectrometer with an ion trap detector; positive and negative ions were detected. Thin layer 

chromatography was performed on aluminum plates coated with silica gel 60-F254 (Merck).  

Preparative TLC was carried out with glass plates (20×20 cm, Merck) coated with a 0.25 mm layer of 

silica gel (60-F254). For visualization, the plates were analyzed under UV light or treated with a solution 

of 0.5 g vanillin dissolved in 100 mL of 80/20 (v/v) sulfuric acid/ethanol and subsequently heated. 

2,3,5-Tribromo-1-methylindole (1) and 2,3,5,6-tetrabromo-1-methylindole (2), 3:1 mixture: 

amorphous solid. 

2,3,5-Tribromo-1-methylindole (1) (NMR data from the 3:1 mixture of 1 and 2): 1H NMR (300 MHz, 

CDCl3): δ (ppm) = 3.80 (s, 3 H, CH3), 7.17 (d, J = 8.7 Hz, 1 H, H-7), 7.34 (dd, J = 8.7 Hz, 1.8 Hz, 1 H, 

H-6), 7.66 (d, J = 1.8 Hz, 1 H, H-4); 13C NMR and DEPT (125 MHz, CDCl3): δ (ppm) = 32.52 (CH3), 
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91.93 (C-3), 111.10 (C-7), 114.16 (C-5), 116.25 (C-2), 121.39 (C-4), 125.79 (C-6), 128.37 (C-3a), 

134.99 (C-7a); GC-MS (EI, 70 eV): m/z (%) = 371/369/367/365 (31/96/100/35, M+), 356/354/352/350 

(3/9/9/3), 288 (7), 249/247/245 (2/5/2), 209/207 (8/9), 194/192 (11/11), 128 (15), 87 (9). 

2,3,5,6-Tetrabromo-1-methylindole (2) [7,41,42] (NMR data from the 3:1 mixture of 1 and 2):  
1H NMR (300 MHz, CDCl3): δ (ppm) = 3.77 (s, 3 H, CH3), 7.60 (s, 1 H, H-7), 7.78 (s, 1 H, H-4);  
13C NMR and DEPT (125 MHz, CDCl3): δ ppm = 32.66 (CH3), 91.98 (C-3), 114.48 (C-7), 116.39 (C-5), 

117.23 (C-2), 118.44 (C-6), 123.13 (C-4), 127.49 (C-3a), 135.77 (C-7a); GC-MS (EI, 70 eV):  

m/z (%) = 451/449/447/445/443 (15/60/100/66/17, M+), 434/432/430 (7/12/7), 368 (7), 366 (7), 

289/287/285 (9/19/10), 274/272/270 (6/11/5), 223 (7), 208/206 (5/5), 167/165 (5/5), 127 (7), 112 (11), 

86 (7). 

2,3,5,6-Tetrabromoindole (3): Amorphous solid; mp = 151–152 °C (decomposition) (lit. 153–154 °C [8]); 

UV (MeOH): λ (nm) = 234, 297, 305 (sh); fluorescence (MeOH): λmax (297 nm) = 317 nm; IR (ATR):  

ν (cm−1) = 3382, 2921, 1608, 1555, 1502, 1431, 1365, 1303, 1226, 1086, 995, 862; 1H NMR (600 MHz, 

CDCl3): δ (ppm) = 7.61 (s, 1 H, H-7), 7.77 (s, 1 H, H-4), 8.30 (br s, 1 H, NH); 13C NMR and DEPT  

(150 MHz, CDCl3): δ (ppm) = 93.75 (C-3), 112.15 (C-2), 115.39 (C-7), 116.69 (C-5), 119.00 (C-6), 

123.18 (C-4), 128.22 (C-3a), 134.93 (C-7a); GC-MS (EI, 70 eV): m/z (%) = 437/435/433/431/429 

(16/66/100/70/18, M+), 356/354/352/350 (8/26/26/8), 275/273/271 (13/26/13), 216 (9), 194/192 (9/10), 

167/165 (7/8), 136 (13), 112 (8), 86 (14); ESI-MS (−10 V): m/z = 428/430/432/434/436 [M − H]−;  

Anal. calcd for C8H3Br4N: C 22.20, H 0.70, N 3.24; found: C 23.10, H 0.62, N 3.22%. 

(1aR,3R,7R,7aR,7bS)-3-Hydroxy-1,1,7,7a-tetramethyl-1,1a,2,3,6,7,7a,7b-octahydro-5H-

cyclopropa[a]naphthalen-5-one (9-hydroxyaristol-1(10)-en-2-one, debilone) (4) [14,43,44]: Colorless 

needles; UV (MeOH): λ (nm) = 218; fluorescence (MeOH): λmax (218 nm) = 291 nm; 1H NMR  

(600 MHz, CDCl3): δ (ppm) = 0.77 (d, J = 9.0 Hz, 1 H, H-6), 0.93 (s, 3 H, H3-13), 0.95–0.97  

(m, 1 H, H-7), 1.08 (d, J = 6.4 Hz, 3 H, H3-15), 1.09 (s, 3 H, H3-12), 1.46 (s, 3 H, H3-14),  

1.76 (dt, J = 16.0, 3.9 Hz, 1 H, H-8b), 2.27–2.39 (m, 4 H, H-8a, H-4, H2-3), 4.23 (br s, 1 H, H-9), 5.82 

(s, 1 H, H-1); 13C NMR derived from HSQC and HMBC (150 MHz, CDCl3): δ (ppm) = 15.0 (C-15), 

16.4 (C-7), 17.5 (C-13), 19.2 (C-11), 23.9 (C-14), 28.0 (C-8), 29.2 (C-12), 31.9 (C-6), 37.1 (C-4), 37.4 

(C-5), 42.9 (C-3), 72.7 (C-9), 126.5 (C-1), 170.5 (C-10), 200.2 (C-2); GC-MS (EI, 70 eV):  

m/z (%) = 234 (8, M+), 216 (61), 201 (54), 192 (72), 173 (61), 159 (89), 145 (80), 131 (62), 121 (54), 

105 (87), 91 (89), 77 (62), 69 (51), 55 (60), 41 (100); ESI-MS (10 V): m/z = 235 [M + H]+, 469 [2M + H]+. 

24-Methyl-25-homocholesterol (8): Colorless solid; 1H NMR (600 MHz, CDCl3): δ (ppm) = 0.69  

(s, 3 H, H3-18), 0.82 (d, J = 6.8 Hz, 3 H, H3-27), 0.84 (d, J = 6.8 Hz, 3 H, H3-28), 0.87 (d, J = 7.5 Hz, 3 H, 

H3-24′), 0.92–0.95 (m, 2 H, H-9, H-24), 0.93 (d, J = 6.4 Hz, 3 H, H3-21), 0.96–1.00 (m, 1 H, H-22b),  

1.00–1.02 (m, 1 H, H-14), 1.02 (s, 3 H, H3-19), 1.03–1.20 (m, 6 H, H-1b, H12b, H-15b, H-17, H-23b, 

H-25b), 1.24–1.40 (m, 5 H, H-16b, H-20, H-22a, H-23a, H-25a), 1.44–1.62 (m, 6 H, H-2b, H-7b, H-8, 

H2-11, H-15a), 1.63–1.72 (m, 1 H, H-26), 1.80–1.89 (m, 3 H, H-1a, H-2a, H-16a), 1.95–1.99  

(m, 1 H, H-7a), 1.99–2.04 (m, 1 H, H-12a), 2.23–2.27 (m, 1 H, H-4b), 2.28–2.33 (m, 1 H, H-4a),  

3.50–3.57 (m, 1 H, H-3), 5.36 (br d, J = 5.3 Hz, 1 H, H-6); 13C NMR and DEPT (150 MHz, CDCl3):  

δ (ppm) = 11.84 (C-18), 12.31 (C-24′), 18.81 (C-21), 18.95 (C-27), 19.39 (C-28), 19.58 (C-19), 21.07 

(C-11), 22.99 (C-23), 24.30 (C-15), 26.34 (C-25), 28.23 (C-16), 28.91 (C-26), 31.66 (C-2), 31.89  

(C-7, C-8), 33.89 (C-22), 36.26 (C-20), 36.49 (C-10), 37.24 (C-1), 39.76 (C-12), 42.31 (C-4), 42.59  

(C-13), 46.04 (C-24), 50.11 (C-9), 56.01 (C-17), 56.75 (C-14), 71.81 (C-3), 121.72 (C-6), 140.75 (C-5);  
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GC-MS (EI, 70 eV): m/z (%) = 414 (100, M+), 399 (35), 396 (52), 381 (34), 329 (51), 303 (48), 273 (22), 

255 (29), 213 (40), 145 (41), 107 (38), 105 (40), 55 (44), 43 (67). 

(−)-2-Ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one (9): Colorless oil; ሾαሿୈ
ଶ଴  = −12.7  

(c = 0.11, MeOH) (lit. −20.8 (c = 0.8, CHCl3) [26]); CD Δε (MeOH): λ (nm): +0.42 (239), +0.25 (269); 

UV (MeOH): λ (nm) = 246; fluorescence (MeOH): λmax (246 nm) = 298 nm; IR (ATR):  

ν (cm−1) = 3441 (br), 2927, 2867, 2846, 1740, 1721, 1648, 1461, 1375, 1264, 1230, 1179, 1101, 1056, 

894; 1H NMR (600 MHz, CDCl3): δ (ppm) = 0.74 (s, 3 H, H3-18), 0.87 (d, J = 6.8 Hz, 3 H, H3-26), 0.88 

(d, J = 6.4 Hz, 3 H, H3-27), 0.94 (d, J = 6.4 Hz, 3 H, H3-21), 1.02–1.06 (m, 2 H, H-9, H-22b), 1.07–1.18 

(m, 6 H, H-14, H-15b, H-17, H-23b, H2-24), 1.21 (s, 3 H, H3-19), 1.20–1.25 (m, 1 H, H-12b), 1.27 (t,  

J = 7.2 Hz, 3 H, H3-2′), 1.29–1.40 (m, 4 H, H-16b, H-20, H-22a, H-23a), 1.47–1.59 (m, 3 H, H2-11,  

H-25), 1.59–1.66 (m, 1 H, H-15a), 1.67–1.72 (m, 1 H, H-8), 1.82–1.92 (m, 2 H, H-7b, H-16a), 2.05–

2.10 (m, 1 H, H-12a), 2.10 (d, J = 13.5 Hz, 1 H, H-1b), 2.18 (d, J = 13.6 Hz, 1 H, H-1a), 2.40 (dt,  

J = 21.8, 4.5 Hz, 1 H, H-7a), 3.84 (s, 1 H, OH), 4.25 (q, J = 7.2 Hz, 2 H, H2-1′), 6.74 (t, J = 3.6 Hz, 1 H, 

H-6); 13C NMR and DEPT (150 MHz, CDCl3): see Table 2; ESI-MS (25 V): m/z = 459 [M + H]+,  

476 [M + NH4]+. 

Phorbasterone B (10): Colorless oil; CD Δε MeOH (λ nm): −0.24 (239), +0.29 (269); UV (MeOH): 

λ (nm) = 246; fluorescence (MeOH): λmax (246 nm) = 298 nm; IR (ATR): ν (cm−1) = 3456 (br), 2924, 

2852, 1743, 1718, 1649, 1459, 1376, 1267, 1232, 1175, 1102, 1054, 960, 886, 767, 716; 1H NMR  

(600 MHz, CDCl3): δ (ppm) = 0.73 (s, 3 H, H3-18), 0.87 (d, J = 6.4 Hz, 3 H, H3-27), 0.88 (d, J = 6.8 Hz, 

3 H, H3-26), 0.94 (d, J = 6.8 Hz, 3 H, H3-21), 0.99–1.12 (m, 3 H, H-9, H-14, H-22b), 1.12–1.20  

(m, 5 H, H-15b, H-17, H-23b, H2-24), 1.19–1.24 (m, 1 H, H-12b), 1.21 (s, 3 H, H3-19), 1.32–1.42  

(m, 4 H, H-16b, H-20, H-22a, H-23a), 1.48–1.55 (m, 2 H, H-11b, H-25), 1.58–1.64 (m, 2 H, H-11a,  

H-15a), 1.66–1.74 (m, 1 H, H-8), 1.82–1.92 (m, 2 H, H-7b, H-16a), 2.07 (dt, J = 12.4, 3.4 Hz, 1 H,  

H-12a), 2.11 (d, J = 13.5 Hz, 1 H, H-1b), 2.19 (d, J = 13.9 Hz, 1 H, H-1a), 2.41 (dt, J = 21.5, 4.9 Hz, 1 

H, H-7a), 3.79 (s, 3 H, H3-1′), 3.80 (s, 1 H, OH), 6.75 (t, J = 3.6 Hz, 1 H, H-6); 13C NMR and DEPT  

(150 MHz, CDCl3): see Table 2; ESI-MS (25 V): m/z = 445 [M + H] +, 462 [M + NH4] +, 911 [2M + Na] +. 

Mixture of allylic alcohols 12–14: Amorphous solid; 1H NMR (600 MHz, CDCl3): δ (ppm) = 0.83–

0.93 (m, 3 H), 1.23–1.35 (m, about 19 H), 1.43–1.58 (m, 2 H), 1.59–1.66 (m, 2 H), 2.03 (q, J = 7.4 Hz, 

2 H), 2.26–2.33 (m, 2 H), 3.68 (s, 3 H, OCH3), 4.04 (br q, J = 6.4 Hz, 1 H, OCH), 4.13 (q, J = 7.1 Hz, 2 

H, OCH2), 5.45 (dd, J = 15.4, 7.1 Hz, 1 H), 5.59–5.67 (m, 1 H); 13C NMR and DEPT (signals partially 

derived from HSQC and HMBC) (150 MHz, CDCl3): δ (ppm) = 14.1 (CH3), 14.3 (CH3), 22.6 (CH2), 

24.9 (CH2), 25.4 (CH2), 28.7–29.7 (several CH2), 31.8 (CH2), 32.1 (CH2), 34.4 (CH2), 37.3 (CH2), 60.2 

(CH2), 73.2 (CH), 132.3 (CH), 133.2 (CH), 174.0 (C); ESI-MS (10 V): m/z = 281 [M – H2O + H]+ (12), 

295 [M − H2O + H]+ (13), 309 [M − H2O + H]+ (14), 316 [M + NH4]+ (12), 330 [M + NH4]+ (13), 344  

[M + NH4]+ (14), 561 [2M − 2H2O + H]+ (12 + 12), 575 [2M − 2H2O + H]+ (12 + 13), 589  

[2M − 2H2O + H]+ (13 + 13) (12 + 14), 603 [2M − 2H2O + H]+ (13 + 14), 617 [2M − 2H2O + H]+  

(14 + 14). 
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3.4. Biological Testing  

Antimicrobial assay: The antimicrobial activities were determined using the agar diffusion technique 

in Petri dishes. The crude algal extracts and the three compounds 1, 2, and 3 were tested for their 

antimicrobial activity against four Gram-negative bacteria: Enterobacter cloacae (ATCC 700323), 

Klebsiella oxytoca (ATCC 8724), Escherichia coli, Salmonella enteridis; three Gram-positive bacteria: 

Bacillus cereus (ATCC 13061), Staphylococcus aureus (ATCC 11632), Streptococcus pneumoniae 

(ATCC 6301); and against one yeast strain: Candida albicans. The pathogens were supplied by the 

Laboratoire de Microbiologie de l’Environnement (LME), Centre National de Recherche sur 

l’Environnement (CNRE), Antananarivo, Madagascar. The crude extracts and the compounds 1–3 were 

dissolved in methanol at a concentration of 1 mg/mL. A sample (10 μL) of each solution was added via 

a pipette onto a sterile antibiotic filter disc of 6 mm diameter and oven dried at 40–50 °C. The discs were 

placed on Müller-Hinton agar plates that had been inoculated with the microorganisms mentioned above. 

The plates were incubated for 24 h at 37 °C for the bacteria and for 48 h at 25 °C for the yeast. The 

diameters of the inhibition zones generated around the discs were measured (Ø in mm). The tests were 

performed in triplicate and the mean values are given in Table 1. Methanol, used to dissolve the extracts 

and the compounds, was checked for the absence of antimicrobial activity. The diameters of the halos 

of inhibition can be rationalized on a qualitative basis as follows: Ø < 7 mm: inactive, 7 mm ≤ Ø <  

8 mm: slightly active, 8 mm ≤ Ø < 9 mm: significantly active, Ø ≥ 9 mm: very active. 

Antimalaria test: The antiplasmodial activity against the FCM29 strain of Plasmodium falciparum 

was determined by using the microfluorimetric assay previously reported [45]. The result is given as an 

IC50 value in µg/mL. 

4. Conclusions  

In his early work on the sterols of marine algae, Patterson reported that cholesterol (5) is the major 

sterol in most of the red algae (Rhodophyta) [20]. This finding was confirmed by the present study on 

various red algae collected at the coast of Madagascar. Our study represents one of the most extensive 

investigations of red algae from this region. Cholesterol (5) and oxygenated cholesterol derivatives have 

been identified as the major components of Grateloupia sp., Gracilaria corticata, Halymenia sp., 

Metamastophora sp., and Spyridia sp. From the extracts of Spyridia sp. and Calloseris sp. we obtained 

24-methyl-25-homocholesterol (8) and we achieved the first full assignment of its 1H and 13C NMR data. 

The three known brominated indoles 1–3 have been isolated from Laurencia complanata along with the 

sesquiterpene debilone (4). For the first time, we have isolated debilone (4) from a marine organism. 

From the extracts of Calloseris sp. we achieved the second isolation of the two A-ring contracted steroids 

(−)-2-ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one (9) and phorbasterone B (10). A mixture of  

the three fatty acid esters 12–14 with an internal allylic alcohol function has been obtained from  

Neurymenia fraxinifolia. These compounds probably derive from autoxidation of palmitoleates  

and oleates. We have screened the crude plant extracts for their antimicrobial activity. The extract of  

Laurencia complanata showed the highest antimicrobial activities against Bacillus cereus, 

Staphylococcus aureus, Streptococcus pneumoniae, and Candida albicans. 
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