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Abstract: Marine cyanobacteria have been considered a rich source of secondary 

metabolites with potential biotechnological applications, namely in the pharmacological 

field. Chemically diverse compounds were found to induce cytoxicity, anti-inflammatory 

and antibacterial activities. The potential of marine cyanobacteria as anticancer agents has 

however been the most explored and, besides cytotoxicity in tumor cell lines, several 

compounds have emerged as templates for the development of new anticancer drugs. The 

mechanisms implicated in the cytotoxicity of marine cyanobacteria compounds in tumor 

cell lines are still largely overlooked but several studies point to an implication in 

apoptosis. This association has been related to several apoptotic indicators such as cell 

cycle arrest, mitochondrial dysfunctions and oxidative damage, alterations in caspase 

cascade, alterations in specific proteins levels and alterations in the membrane sodium 

dynamics. In the present paper a compilation of the described marine cyanobacterial 
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compounds with potential anticancer properties is presented and a review on the 

implication of apoptosis as the mechanism of cell death is discussed.  

Keywords: cancer; apoptosis; marine cyanobacteria; natural compounds 

 

1. Introduction 

Cyanobacteria are a diverse group of prokaryotic organisms that can exist in a wide range of 

ecosystems. Capable to develop photosynthesis, cyanobacteria constitute one of the components of the 

primary first level organisms in water food chains. These organisms have also important roles in 

nutrient cycles such as nitrogen cycle, by converting atmospheric nitrogen into an organic form, in a 

process that releases some residual hydrogen [1]. 

The first studies concerning cyanobacteria were focused on their ecological and public heath 

impact, due to their capacity to produce toxins with deleterious effects on plants, invertebrates and 

vertebrates, including humans [2,3]. In humans, toxins such as microcystins, nodularins and 

cylindrospermopsin were found to induce liver and kidney damage, cytotoxicity, neurotoxicity, dermal 

toxicity, gastrointestinal disturbances among others [4]. More recently, several studies have 

demonstrated that cyanobacteria also produce compounds with biotechnological and pharmaceutical 

interest. Important biological properties such as anticancer, anti-inflammatory and antibiotic activities 

have been described [5]. 

Marine cyanobacteria in particular have been considered a prominent source of structurally diverse 

and biologically active natural products [6]. The diversity in secondary metabolites is a result of the 

cyanobacterial capacity to integrate both Non-Ribosomal Peptide Synthethases with Polyketide 

Synthases. Cyanobacteria have a wide range of enzymes responsible for methylations, oxidations, 

tailoring and other alterations [7], resulting in chemically diverse natural products such as linear 

peptides [8], cyclic peptides [9], linear lipopeptides [10], depsipeptides [11], cyclic depsipeptides [12], 

fatty acid amides [13], swinholides [14], glicomacrolides [15] or macrolactones [16]. 

A large diversity of biological interactions is described between marine cyanobacteria compounds 

and several groups of organisms, such as bacteria [17], fungi [18,19] parasites [20] and invertebrates [21]. 

The role of the compounds in marine environment has been rarely elucidated but a possible 

explanation is that they represent a defensive handling to the surrounding predators [22]. In what 

concerns to humans, anti-inflammatory [23] neurotoxic [12] and anticancerigenous [24] are common 

bioactive properties. The cytotoxic effects of marine cyanobacteria compounds on human tumor cell 

lines are the most studied, with some compounds producing effects at the nanomolar range [25]. As 

examples, apratoxin D, produced by species of Lyngbya is potently cytotoxic to human lung cancer 

cells [26] and likewise, symplocamide A, isolated from Symploca sp. showed also potent cytotoxicity 

to lung cancer cells and neuroblastoma cells [27].  
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Cell death is crucial in cancer therapy. Comparing cell death mechanisms in neoplastic cells, 

apoptosis reveals its importance when compared with necrosis since it occurs as a physiological 

process to any mild cell injury or simply when cell function is finished or disturbed, occurs via a 

predictable and coordinated pathway, and cellular deletion does not involve inflammation [28]. In 

contrast, necrosis is difficult to prevent and always develops an inflammatory response and death of 

the surrounding cells [29]. Autophagy, also described as a mechanism of cell death, is likewise 

indicated as a cancer therapeutic target. However, it has a dual effect since maintaining cell survival 

can promote the growth of established tumors [30]. Several anticancer drugs work as apoptotic 

modulators, in order to eliminate silent and cleanly the unwanted cells [31,32]. Marine cyanobacteria 

were found to produce a wide range of compounds that revealed apoptotic properties. Apoptosis can be 

induced by both intrinsic and extrinsic signals, by multiple agents, as the natural flavonoid  

quercetin [33], the representative reactive oxygen species H2O2 [34] or even the UV radiation [35]. 

Apoptotic cells develop typical morphological alterations that allow its identification. During an early 

stage of apoptosis, called cell shrinkage, cells have a smaller size, showing a dense cytoplasm with 

thinner organelles [36]. Martins and co-workers demonstrated that HL-60 cells exposed to aqueous 

extracts of Synechocystis sp. and Synechococcus sp. strains, presented cell shrinkage showing that cells 

were developing apoptosis, and membrane budding, that occurs when cell is fragmented into apoptotic 

bodies [37]. Apoptotic cells also develop nuclear alterations, visible as nuclear fragmentation and 

chromatin condensation [36]. Biselyngbyaside, a macrolide glycoside produced by Lyngbya sp., was 

found to induce apoptosis in mature osteoclasts, revealed by nuclear condensation [38]. Marine benthic 

Anabaena sp. extracts were found to induce apoptosis in acute myeloid leukemia cell line, with cells 

showing several described typical morphological markers, such as chromatin condensation, nuclear 

fragmentation, surface budding and release of apoptotic bodies [39].  

Besides morphological markers that allow the direct identification of an apoptotic cell, some other 

cellular and molecular alterations associated to apoptosis can be identified. Since several marine 

cyanobacteria compounds interact with important molecular targets involved in anticancer activity 

leading to a controlled death of tumor cells, this review aims to resume the marine cyanobacterial 

products that were found to inhibit the proliferation of cancer cell lines, namely by inducing apoptotic 

cell death. Effects of compounds on cell cycle arrest, mitochondrial dysfunctions and oxidative 

damage, alterations in caspase cascade, non-caspases proteases involvement, alterations in the Bcl-2 

protein family and alterations in membrane sodium channel dynamics are reviewed. In order to 

summarize the data available in the literature, in Table 1 we present the described cyanobacterial 

compounds that were found to induce cytotoxic effects on a wide range of cancer cell line, and in 

Table 2 we describe the most relevant effects related to anticancer activity induced by marine 

cyanobacteria compounds. 
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Table 1. Marine cyanobacteria compounds with potential anticancer properties. 

Compound Source Class of compound Cytoxicity assay Human cell line tested Reference 

Ankaraholide A Geitlerinema Glycosilated swinholide
MTT NCI-H460 lung tumor [14] 
SRB MDA-MB-435 breast carcinoma [14] 

Apratoxin A Lyngbya majuscula Cyclic depsipeptide 
SRB 

KB oral epidermoid cancer and LoVo colon 
cancer 

[40,41] 

MTT 
U2OS osteosarcoma, HT29 colon 

adenocarcinoma and HeLa cervical carcinoma 
[42] 

Apratoxins B–C Lyngbya sp. Cyclic depsipeptides MTT 
KB oral epidermoid cancer and LoVo colon 

cancer 
[40] 

Apratoxin D 
Lyngbya majuscula 

and Lyngbya sordida 
Cyclic depsipeptide MTT H-460 lung cancer [26] 

Apratoxin E Lyngbya bouilloni Cyclic depsipeptide MTT 
U2OS osteosarcoma, HT29 colon 

adenocarcinoma and HeLa epithelial carcinoma 
[42] 

Apratoxins F and G Lyngbya bouilloni Cyclic depsipeptides 
MTT H-460 lung cancer [43] 

Hemocytometer 
counting 

HCT-116 colorectal cancer cells [43] 

Aurilide B Lyngbya majuscula Cyclic depsipeptide MTT H-460 lung tumor [24] 
Aurilide C Lyngbya majuscula Cyclic depsipeptide MTT NCI-H460 lung tumor [24] 

Belamide A Symploca sp. Linear tetrapeptide Non-specified HCT-116 colon cancer [8] 
Bisebromoamide Lyngbya sp. Peptide SRB HeLa S3 epithelial carcinoma [44] 

Biselyngbyaside Lyngbya sp. Glicomacrolide SRB 
HeLa S3 epithelial carcinoma, SNB-78 central 

nervous system cancer and NCI H522 lung cancer
[15] 

Calothrixin A Calothrix 
Pentacyclic 

indolophenanthridine 

3H-thymidine 
incorporation 

HeLa epithelial carcinoma [45] 

MTT Leukemia CEM [46] 

Calothrixin B Calothrix 
Pentacyclic 

indolophenanthridine 
MTT 

 
HeLa epithelial carcinoma [47] 

Leukemia CEM [46] 
Caylobolide A Lyngbya majuscula Macrolactone Non-specified HCT-116 colon tumor [48] 
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Caylobolide B Phormidium spp. Macrolactone MTT 
HT29 colorectal adenocarcinoma and HeLa 

cervical carcinoma 
[16] 

Coibamide A Leptolyngbya sp. Cyclic depsipeptide MTT 
Lung cancer NCI-H460, breast cancer  

MDA-MB-231, melanoma LOX IMVI, 
leukemia HL-60 and astrocytoma SNB75 

[49] 

Cryptophycin 1 Nostoc spp. Cyclic depsipeptide

Cell morphology 
examination 

MDA-MB-435 mammary adenocarcinoma and 
SKOV3 ovarian carcinoma 

[50] 

AlamarBlue dye 
reduction 

Leukemia U937, CCRF-CEM and HL-60, colon 
carcinoma HT-29, GC3 and Caco-2, mammary 

carcinoma MCF-7 and MDA-MB-231 and 
cervical carcinoma HeLa 

[51] 

Dolastatin 10 Symploca sp. Linear Pentapeptide
MTT 

Lung A549 carcinoma [52] 
Human lung cancer cells: NCI-H69, -H82,  

-H446 and -H510 
[53] 

Human DU-145 prostate cancer cell line [54] 
[3H] Thymidine Several lymphoma cell lines [55] 
Trypan blue dye Reh lymphoblastic leukemia [56] 

Dolastatin 12 Leptolyngbya sp. Cyclic depsipeptide MTT A549 lung carcinoma [52] 

Dragonamide Lyngbya majuscula Lipopeptide Non-specified 
A-549 lung epithelial adenocarcinoma, HT-29 
colon adenocarcinoma and MEL-28 melanoma

[57] 

Ethyl Tumonoate A 
Oscillatoria 

margaritifera 
Peptide MTT H-460 lung cancer [58] 

Hoiamide A 
Assemblage of Lyngbya 

majuscule and 
Phormidium gracile 

Cyclic depsipeptide Non-specified H-460 lung cancer [59] 

Hoiamide B Cyanobacterial sample Cyclic depsipeptide Non-specified H-460 lung cancer [59] 
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Homodolastatin 16 Lyngbya majuscula Cyclic depsipeptide MTT 
WHCO1 and WHCO6 esophageal cancer and 

ME180 cervical cancer 
[60] 

Isomalyngamide A and A-1 Lyngbya majuscula Fatty acid amides MTT Breast cancer MCF-7 and MDA-MB-231 [13] 
Jamaicamides A–C Lyngbya majuscula Polyketide-Peptides MTT H-460 lung cancer [61] 

Kalkitoxin Lyngbya majuscula Lipopeptide Trypan blue dye HCT-116 colon [62] 

Lagunamide C Lyngbya majuscula Cyclic depsipeptide MTT 
Lung adenocarcinoma A549, cancer prostate PC3, 
ileocecal colorectal cancer HCT8 and ovary cancer 

SK-OV 
[63] 

Largazole Symploca sp. Cyclic depsipeptide MTT 
MDA-MB-23I breast cancer and U2OS 

osteosarcoma 
[64] 

A549 lung cancer and HCT-116 colorectal carcinoma [65] 

Lyngbyabellin A Lyngbya majuscula Cyclic depsipeptide Non-specified 
KB nasopharyngeal carcinoma and LoVo colon 

adenocarcinoma 
[66] 

Lyngbyaloside Lyngbya sp. Glicomacrolide Non-specified 
KB nasopharyngeal carcinoma and LoVo colon 

adenocarcinoma 
[67] 

Majusculamide C Lyngbya majuscula Cyclic depsipeptide Non-specified 
Ovarian carcinoma OVCAR-3, kidney cancer A498, 
lung cancer NCI-H460, colorectal cancer KM20L2 

and glioblastoma SF-295 
[68] 

Malevamide D Symploca hydnoides Peptide ester Non-specified 
Lung cancer A-549, colon cancer HT-29 and 

melanoma MEL-28. 
[69] 

Malyngamide 2 Lyngbya sordida Fatty acid amine MTT H-460 lung cancer [23] 
Malyngamide C, J and K Lyngbya majuscula Fatty acid amines MTT H-460 lung cancer [70] 

Malyngolide dimmer Lyngbya majuscula Cyclodepside MTT H-460 lung cancer [71] 
Nostocyclopeptide A1 and A2 Nostoc sp. Cyclic heptapeptides Non-specified KB oral epidermoid cancer and LoVo colon cancer [72] 

Obyanamide Lyngbya confervoides Cyclic depsipeptide Non-specified KB oral epidermoid cancer and LoVo colon cancer [73] 
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Palauamide Lyngbya sp. Cyclic depsipeptide Non-specified 
Cervical carcinoma HeLa, lung adenocarcinoma A549 

and gastrocarcinoma BGC 
[74] 

KB oral epidermoid cancer [75] 
Palmyramide A Lyngbya majuscula Cyclic depsipeptide MTT H-460 lung cancer [76] 

Pitipeptolides A–B Lyngbya majuscula Cyclic depsipeptides
Non-specified LoVo colon cancer [77] 

MTT HT29 colon adenocarcinoma and MCF-7 breast cancer [17] 
Pitipeptolide C Lyngbya majuscula Cyclic depsipeptide MTT HT29 colon adenocarcinoma and MCF-7 breast cancer [17] 

Pitiprolamide Lyngbya majuscula Cyclic depsipeptide MTT 
HCT116 colorectal carcinoma and MCF7 breast 

adenocarcinoma 
[78] 

Pseudodysidenin Lyngbya majuscula Lipopeptide Non-specified 
A-549 lung adenocarcinoma, HT-29 colon 
adenocarcinoma and MEL-28 melanoma 

[57] 

Somocystinamide A Lyngbya majuscula Lipopeptide XTT 
Jurkat and CEM leukemia, A549 lung carcinoma,  

Molt4 T leukemia, M21 melanoma and U266 myeloma 
[79] 

Symplocamide Symploca sp. Cyclic peptide Non-specified H-460 lung cancer [27] 

Symplostatin 1 Symploca hydnoides Linear Pentapeptide SRB 
MDA-MB-435 breast carcinoma and  

NCI/ADR ovarian carcinoma 
[25] 

Epidermoid carcinoma cell line [80] 
Tasiamide Symploca sp. Cyclic peptide Non-specified KB oral epidermoid cancer and LoVo colon cancer [81] 

Tasiamide B Symploca sp. Peptide Non-specified KB oral epidermoid cancer [82] 
Tasipeptins A-B Symploca sp. Cyclic depsipeptides Non-specified KB oral epidermoid cancer [83] 

Ulongapeptin Lyngbya sp. Cyclic depsipeptide Non-specified KB oral epidermoid cancer [84] 
Veraguamides A-G Symploca cf. hydnoides Cyclic depsipeptides MTT H-460 lung cancer [85] 

Wewakazole Lyngbya sordida Cyclic dodecapeptide MTT H-460 lung cancer [23] 
Wewakpeptins Lyngbya semiplena Depsipeptides MTT H-460 lung cancer [11] 

MTT: 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide; XTT: 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide; SBR: Sulforhodamine B. 
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Table 2. Relevant anticancer cell effects induced by marine cyanobacteria compounds. 

Compound Source Class of compound Model tested Cell effect Reference 
Alotamide Lyngbya bouillonii Cyclic depsipeptide Murine cerebrocortical neurons Calcium influx promotion [12] 

Ankaraholide A Geitlerinema Glycosilated swinholide Rat aorta A-10 cells Loss of filamentous (F)-actin [14] 

Antillatoxin Lyngbya majuscula Lipopeptide 
Primary rat cerebellar granule cells Voltage-gated sodium channel 

activation 
[86] 

CHL 1610 Chinese hamster lung cells [87] 
Antillatoxin B Lyngbya majuscula Lipopeptide neuro-2a mouse neuroblastoma cells Sodium channel activation [10] 

Apratoxin A Lyngbya majuscula Cyclic depsipeptide 
Human HeLa cervical carcinoma cells Cell cycle inhibition [88] 

Human U2OS osteosarcoma cells Secretory pathway inhibition [89] 
Aurilide B Lyngbya majuscula Cyclic depsipeptide Rat aorta A-10 cells Microfilament disruption [24] 

Belamide A Symploca sp. Linear tetrapeptide Rat aorta A-10 cells Microtubule disruption [8] 

Bisebromoamide Lyngbya sp. Peptide 
Human HeLa epithelial carcinoma cells Actin filaments stabilization [90] 

Normal rat kidney cells extracellular 
signal regulated protein kinase 

Protein kinase inhibition [44] 

Bouillomides A–B Lyngbya bouillonii Depsipeptides Elastase and chymotrypsin Serine proteases inhibition [91] 

Calothrixin A Calothrix 
Pentacyclic 

indolophenanthridine 
Human leukemia CEM cells Cell cycle inhibition [46] 

Calothrixin B Calothrix 
Pentacyclic 

indolophenanthridine 
Human HeLa epithelial carcinoma cells Cell cycle inhibition [45] 
Human HeLa epithelial carcinoma cells Oxidative stress induction [45] 

Coibamide A Leptolyngbya sp. Cyclic depsipeptide Human NCI-H460 lung cancer cell line Cell cycle inhibition [49] 

Cryptophycin 1 Nostoc spp. Cyclic depsipeptide 

Human MDA-MB-435 mammary 
adenocarcinoma and SKOV3 ovarian 

carcinoma cells 
Cell cycle inhibition 

[50] 
 

Human MDA-MB-435 mammary 
adenocarcinoma 

Caspase-3 protein activation 
[50] 

 

Curacin A Lyngbya majuscula Lipopeptide 

Tubulin Tubulin polymerization inhibition [92] 
Human A549 lung carcinoma cells Bad protein levels increase [52] 
Human A549 lung carcinoma cells Caspase-3 protein activation [52] 

Bovine β-tubulin Tubulin polymerization inhibition [93] 
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Dolastatin 10 Symploca sp. Linear Pentapeptide 

Human Reh lymphoblastic leukemia cells Bcl-2 protein reduction [56] 
Human lung cancer cells: NCI-H69 and -H510 Bcl-2 protein phosphorylation [53] 

Human A549 lung carcinoma cells Bad protein levels increase [52] 
Human A549 lung carcinoma cells Caspase-3 protein activation [52] 

Dolastatin 12 Leptolyngbya sp. Cyclic depsipeptide Rat aorta A-10 cells Microfilament disruptor [94] 
Grassystatin A–B Lyngbya confervoides Linear depsipeptides Cathepsins D and E Proteases inhibition [95] 

Hectochlorin Lyngbya majuscula Lipopeptide Human CA46 Burkitt lymphoma cells Cell cycle inhibition [18] 

Hermitamides A–B Lyngbya majuscula Lipopeptide Human HEK embryonic kidney cells 
Voltage-gated sodium 

channel inhibition 
[96] 

Hoiamide A 
Assemblage of Lyngbya 

majuscule and 
Phormidium gracile 

Cyclic depsipeptide 
Primary cultures of neocortical neurons from 

embryonic mice 
Sodium channel activation [59,97] 

Hoiamide B Cyanobacterial sample Cyclic depsipeptide 
Primary cultures of neocortical neurons from 

embryonic mice 
Sodium influx stimulation [59] 

Kalkitoxin Lyngbya majuscula Lipopeptide Primary rat cerebellar granule neuron cultures Calcium influx inhibition [98] 

Kempopeptin A Lyngbya sp. Cyclic depsipeptide 
Bovine pancreatic α-chymotrypsin, porcine 

pancreatic elastase 
Serine Protease Inhibition [99] 

Kempopeptin B Lyngbya sp. Cyclic depsipeptide Trypsin Serine Protease Inhibition [99] 
Largamides A–C Lyngbya confervoides Cyclic depsipeptides Porcine pancreatic elastase Serine protease inhibition [100] 
Largamides D–G Oscillatoria sp. Cyclic depsipeptides α-chymotrypsin Serine protease inhibition [101] 

Lyngbyabellin A Lyngbya majuscula Cyclic depsipeptide 
Human CA46 Burkitt lymphoma cells Cell cycle inhibition [18] 

Rat aorta A-10 cells Microfilament disruption [66] 
Lyngbyabellin B Lyngbya majuscula Cyclic depsipeptide Human CA46 Burkitt lymphoma cells Cell cycle inhibition [18] 
Lyngbyastatin 1 Lyngbya majuscula Cyclic depsipeptide Rat aorta A-10 cells Microfilament disruption [94] 

Lyngbyastatin 4 Lyngbya confervoides Cyclic depsipeptide 
Bovine pancreatic α-chymotrypsin and porcine 

pancreatic elastase 
Serine protease inhibition [102] 

Lyngbyastatin 5–7 Lyngbya spp. Cyclic depsipeptides Porcine pancreatic elastase Serine protease inhibition [103] 
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Lyngbyastatin 8–10 Lyngbya semiplena Cyclic depsipeptides Porcine pancreatic elastase Serine protease inhibition [104] 
Malevamide E Symploca laete-viridis Depsipeptide Human HEK embryonic kidney cells Calcium influx inhibition [105] 

Molassamide Dichothrix utahensis Depsipeptide 
Bovine pancreatic α-chymotrypsin and 

porcine pancreatic elastase 
Serine protease inhibition [106] 

Palmyramide A Lyngbya majuscula Cyclic depsipeptide Mouse neuroblastoma neuro-2a cells Sodium channel inhibition [76] 

Palmyrolide 
Assemblage of 

Leptolyngbya cf. and 
Oscillatoria spp. 

Macrolide 
Mouse neuroblastoma neuro-2a cells Sodium influx inhibition [107] 

Murine cerebrocortical neurons 
Inhibition of calcium 

oscillations 
[107] 

Pitipeptolides A and B Lyngbya majuscula Cyclic depsipeptides Elastase Serine protease stimulation [77] 
Pompanopeptin A Lyngbya confervoides Cyclic peptide Porcine pancreatic trypsin Serine protease inhibition [108] 

Symplocamide Symploca sp. Cyclic peptide Chymotrypsin Serine protease inhibition [27] 

Symplostatin 1 Symploca hydnoides Linear Pentapeptide 

Rat aorta A-10 and human HeLa 
cervical carcinoma cells 

Cell cycle inhibition [25] 

Rat aorta A-10 cells 
Microtubule 

depolymerization 
[109] 

Human MDA-MB-435 breast carcinoma 
cells 

Bcl-2 phosphorylation [25] 

Human MDA-MB-435 breast carcinoma 
cells 

Caspase-3 protein activity 
stimulation 

[25] 

Symplostatin 3 Symploca sp.  Rat aorta A-10 cells 
Microtubule 

depolymerization 
[110] 

Tiglicamides A–C Lyngbya confervoides Cyclic depsipeptides Porcine pancreatic elastase Serine protease inhibition [111] 
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2. Cell Cycle Arrest 

Cell cycle is a delicate mechanism that comprises cell growth and its division into two daughter 

cells. Some substances are able to disturb the normal functioning of this mechanism compromising cell 

viability, a consequence that can be directly related with apoptosis. A common cellular damage 

induced by marine cyanobacteria compounds is the disruption of microtubules and actin  

proteins [112]. As these proteins are directly involved in mitosis, alterations in the normal functioning 

of the cell cycle occur. The most frequent consequence is G2/M phase arrest. Cryptophycin 52, a 

macrocyclic depsipeptide analogue of the naturally occurring cryptophycins isolated from the marine 

cyanobacteria Nostoc spp. [113], and calothrixin A, a indolophenanthridine isolated from Calothrix, 

are two examples of bioactive metabolites that induced, in different human cancer cell lines, a cell 

cycle arrest in G2/M phase [45]. Dolastatins are cytotoxic peptides that were initially isolated from the 

sea hare Dolabella auricularia and later found to be produced by marine cyanobacterial strains [109]. 

To explore their anticancer potential, several synthetic analogues were produced. Dolastatin 10, found 

in Symploca, and its non-cyanobacterial analogue, dolastatin 15, were both found to induce an arrest in 

the same cell cycle phase, G2/M phase, inducing apoptosis [52,114]. Symplostatin 1, another analogue 

of dolastatin 10 and cryptophycin 1, a dolastatin 52 analogue, were also responsible for a G2/M arrest 

in human cancer cells and for disturbances in the formation of mitotic spindles [25,113,114]. 

Calothrixin A, beyond an arrest in G2/M phase in a leukemia cell line at 1 μM and 10 μM, is also 

responsible for a cumulative arrest in S phase [46]. Hectochlorin and lyngbyabellins are structurally 

related lipopeptide and cyclic depsipeptides isolated from the genus Lyngbya. Both hectochlorin and 

lyngbyabellin B are described to induce an arrest in G2/M phase in a human Burkitt lymphoma cell 

line, accompanied with a related increase in binucleated cells and an apparent thickening of the 

microfilaments [18]. Nagarajan and co-workers [115] suggested that the inhibition of cell cycle 

proliferation by lyngbyabellins is assigned to a thiazole ring and dichlorinated components (Figure 1), 

once these compounds were all found to inhibit cell cycle proliferation [18,116].  

Figure 1. Chemical structures of the marine cyanobacterial secondary metabolites 

hectochlorin and lyngbyabellins A and B. 
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Figure 1. Cont. 

 

Besides G2/M phase arrest effects in G1 phase are also described. Khan and co-workers [46] 

reported a G1 phase arrest after treatment with a low concentration (0.1 μM) of calothrixin B. The 

same effect was demonstrated by Ma et al. [88] in a cervical carcinoma cell line treated with the cyclic 

depsipeptide apratoxin A (50 nM). Coibamide, a potent cytotoxic cyclic depsipeptide, founded in a 

Panamanian Leptolyngbya sp., was also described as capable to cause a significant dose dependent 

increase in the number of cells in G1 phase of the cell cycle [49]. 

3. Mitochondrial Dysfunctions and Oxidative Damage 

Mitochondria have essential functions in aerobic cells, and interferences in its normal behavior are 

crucial to determine cell fate [117]. A dysfunction in these organelles imbalances the cell redox 

potential, inducing damages in cell components that can lead, in the cases that pro-survival 

mechanisms fail, to apoptosis [118]. To the best of our knowledge, no study relating marine 

cyanobacterial natural products with mitochondrial dysfunctions has been done. However aurilide, a 

cyclodepsipeptide isolated from the sea hare Dolabella auricularia and related with the marine 

cyanobacterial aurilides A and B, is described to induce a dysfunction in mitochondria. HeLa cells, 

when treated with this metabolite exhibited mitochondria fragmentation, visible by MitoTracker Red 

staining [119].  

Oxidative stress is a cell condition that can be triggered by mitochondrial disorders. It can occur 

due to an overproduction of reactive oxygen species (ROS) or to a decrease in antioxidant levels [120]. 

Calothrixin A is described as an oxidative stress inducer in Jurkat human T cells, since they show an 

increase on intracellular ROS content after treatment with that molecule [45]. DNA damage is also a 

consequence directly associated to the oxidative stress, and it is commonly observed as a result of 

exposure to cyanobacterial secondary metabolites. As expected, besides an increase in ROS, 

calothrixin A foments DNA fragmentation [45]. DNA fragmentation is the most common DNA 

damage observed. Dolastatin 10 induced DNA damage on several human lymphoma cell lines [55] and 

on lung cancer cells [52]. Cryptophycins 1 and 52 are also metabolites that were found to induce DNA 

fragmentation [50,113].  

External nuclei alterations can be also a consequence of oxidative stress. Binucleated cells are 

frequently observed as a response to cyanobacterial products, as swinholide A, isolated from 
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cyanobacterial samples of Symploca cf. sp. [14] or lyngbyabellin [116]. Symplostatin 1 was found to 

induce an abnormal nuclear convolution in a rat aorta cell line, leading to the breakdown of nucleus 

and the formation of numerous micronuclei [25]. 

To counterbalance the deleterious effects of ROS, cells developed a complex antioxidant system. 

The antioxidant enzymes, like superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST) 

and several peroxidases, constitute the front line, with important scavenging functions. Some other 

molecules, with low molecular weight, have crucial roles, such as glutathione, ascorbate or phenolic 

compounds [121]. The capacity of marine cyanobacterial natural products to interfere with the 

antioxidant system of human cells is not well elucidated. Evidences indicate that pigments are the 

compounds with higher antioxidant activity. Carotenoids isolated from the marine Trichodesmium are 

responsible for an antioxidative protection, observed with ferric reducing/antioxidant power  

assay [122]. In the same study, extracts from marine strains of Anabaena, Cyanothece, Prochlorothrix 

and Synechococcus showed antioxidant properties, but mainly in the protein extract [122]. Also the 

major phycobiliprotein, c-phycocyanin, from both Lyngbya and Phormidium, is capable to scavenge 

ROS, in particular peroxyl and hydroxyl radicals [123]. It was also suggested that this antioxidant 

capacity is resultant from the covalent linked tetrapyrole chromophore with phycocyanobilin [123].  

4. Alterations in Caspase Cascade 

Caspases are a family of cysteine aspartate proteases that act as the central executers of apoptosis. 

They are synthesized as inactive zymogens, which are activated after proteolytic cleavage [124]. 

According to their point of entrance into apoptotic process, caspases can be classified as initiators or 

effectors. Initiator caspases, that include -8, -9, and -10, activate the downstream effectors caspases,  

-3, -6 and -7, in a cascade of events that triggers a controlled and programmed cell death [125]. 

Marine cyanobacteria produce several compounds that are capable to induce alterations on caspases 

as a pathway to induce cell death. Several marine benthic cyanobacterial extracts showed to induce 

apoptosis partially dependent of protein caspases. Cells overexpressing LEDGF/p75, an inhibitor of 

cell death dependent of caspases, showed an increase in just a few number of apoptotic cells after 

treatment, when compared with the control [39]. 

Caspase-3 is the most studied caspase concerning to apoptosis induced by natural products. The 

activity of caspase-3 protein is increased after exposure to symplostatin 1 [25] and to the glicomacrolide 

biselyngbyaside [38]. Also cryptophycin 1 is described to induce apoptosis in a human ovarian 

carcinoma cell line, initiating the caspases cascade through caspase-3 activation [50]. The cleavage, 

and therefore the activation, of caspase-3 were still previously observed as a response to dolastatins 10 

and 15 and to the lipopeptide curacin A [52]. 

Cryptophycin 52 induced an apoptosis dependent on both caspase-3 and caspase-1 activation [113]. 

Another study [79] also reported that apoptosis induced by somocystinamide A, a lipopeptide from 

Lyngbya majuscula, occurs in a caspase-8 dependent manner, since it was observed an inhibition of 

tumor growth selectively in the caspase-8-expressing neuroblastoma cells, when compared with cells 

lacking the protein. 
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5. Non-Caspases Proteases Involvement 

Although caspases have a central role in the apoptotic cell death developing, it is described that the 

process often continues after an inhibition of this proteins [126,127]. This finding suggests the 

implication of other executors, which promote apoptosis in the absence of caspases. It was already 

proposed that some other proteases, capable to support apoptosis, have caspases amplification and 

assistance functions [128].  

Proteases are involved in the irreversibly hydrolysis of the peptide bonds in proteins, an important 

post-translational modification. These proteolytic enzymes are important for the control of a large 

number of key physiological processes, including apoptosis [129]. Apoptotic cell death induced by 

intracellular proteolysis of some serine proteases is already described [130]. Several cyanobacterial 

compounds have been described to interfere with the normal functioning of serine proteases, mainly 

the pancreatic elastase, chymotrypsin and trypsin, as is resumed in Table 3. Symplocamide A was 

described to inhibit chymotrypsin with an IC50 of 0.38 μM, with trypsin being also affected but with an 

IC50 of 80.2 μM, a difference greater than 200-fold [27]. The authors suggested that, to inhibit trypsin 

under 10 μM, a basic aminoacid residue between treonine (Thr) and 3-amino-6-hydroxy-2-piperidone 

(Ahp) is needed. A hydrophobic and neutral residue in this position confers to the compound a 

preference for chymotrypsin. Kempopeptins A and B are other two cyclodepsipeptides isolated from a 

Floridian collection of a marine Lyngbya sp. that reveal a strong potency to inhibit proteases  

activity [99]. Kempopeptin B, with a leucine (Leu) residue between Thr and Ahp (Figure 2), only 

inhibit trypsin activity (IC50 = 8.4 μM), but kempopeptin A, with a lysine (Lys) in the same position, 

inhibit both elastase (IC50 = 0.32 μM) and chymotrypsin (IC50 = 2.6 μM). Bouillomides A and B, two 

depsipeptides isolated from Lyngbya bouillonii and molassamide, a depsipeptide from Dichothrix 

utahensis, all dolastatin 13 analogues, contain 2-aminobutyric acid (Abu) between Thr and Ahp. As 

expected, these metabolites are chymotrypsin inhibitors [91,106]. Largamides are another family of 

cyclic peptides isolated from Lyngbya confervoides. Largamides D and E, with a Leu residue between 

Thr and Ahp, and largamides F and G, with a tyrosine (Tyr) in the same position, also inhibited 

chymotrypsin with IC50 range from 4.0 to 25.0 μM [101].  

Pompanopeptin A, a cyclic peptide isolated from the Lyngbya confervoides and kempopeptin B, 

contain arginine (Arg) and lysine (Lys), respectively, between Thr and Ahp. These basic residues give 

to the compounds the capacity to inhibit trypsin, pompanopeptin with an IC50 of 2.4 μM and 

kempopeptin with 8.4 μM [99,108]. 

Ahp residue-containing natural products are responsible for the inhibition of elastase [99]. 

Lyngbyastatins 4–10, a group of compounds that contain the Ahp residue, were all described as elastase 

inhibitors [102–104] with an IC50 range from 0.03 (lyngbyastatin 4) to 210 μM (lyngbyastatin 9). 

Lyngbyastatins are also strong chymotrypsin inhibitors, but with less potency than elastase,  

IC50 = 0.3 μM [99]. The same profile is verified with the depsipeptide molassamide witch contains the 

Ahp residue, which is capable to inhibit the elastase activity [106]. Largamides A–C and tiglicamides 

A–C, depsipeptides isolated from Lyngbya confervoides are non-containing Ahp natural compounds. 

However, these products were all responsible for an elastase enzyme inhibition [100,111]. 
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Table 3. Marine cyanobacteria natural products with an inhibitory effect in serine proteases. 

Compound Source Class of compound
Serine protease inhibition 

Reference 
Elastase Chymotripsin Thrypsin 

Bouillomide A Lyngbya bouillonii Depsipeptide IC50 = 1.9 μM IC50 = 0.17 μM No inhibition at 100 μM [91] 
Bouillomide B Lyngbya bouillonii Depsipeptide IC50 = 1.0 μM IC50 = 9.3 μM No inhibition at 100 μM [91] 

Kempopeptin A Lyngbya sp. Cyclic depsipeptide IC50 = 0.32 μM IC50 = 2.6 μM IC50 > 67 μM [99] 
Kempopeptin B Lyngbya sp. Cyclic depsipeptide IC50 > 67 μM IC50 > 67 μM IC50 = 8.4 μM [99] 

Largamide A Lyngbya confervoides Cyclic depsipeptide IC50 = 1.41 μM No inhibition at 50 μM No inhibition at 50 μM [100] 
Largamide B Lyngbya confervoides Cyclic depsipeptide IC50 = 0.53 μM No inhibition at 50 μM No inhibition at 50 μM [100] 
Largamide C Lyngbya confervoides Cyclic depsipeptide IC50 = 1.15 μM No inhibition at 50 μM No inhibition at 50 μM [100] 
Largamide D Oscillatoria sp. Cyclic depsipeptide Not described IC50 = 10.0 μM No inhibition [101] 
Largamide E Oscillatoria sp. Cyclic depsipeptide Not described IC50 = 10.0 μM No inhibition [101] 
Largamide F Oscillatoria sp. Cyclic depsipeptide Not described IC50 = 4.0 μM No inhibition [101] 
Largamide G Oscillatoria sp. Cyclic depsipeptide Not described IC50 = 25.0 μM No inhibition [101] 

Lyngbyastatin 4 Lyngbya confervoides Cyclic depsipeptide IC50 = 0.03 μM IC50 = 0.30 μM No inhibition at 30 μM [102] 
Lyngbyastatin 5 Lyngbya spp. Cyclic depsipeptide IC50 = 3.2 μM IC50 = 2.8 μM No inhibition at 30 μM [103] 
Lyngbyastatin 6 Lyngbya spp. Cyclic depsipeptide IC50 = 2.0 μM IC50 = 2.5 μM No inhibition at 30 μM [103] 

Lyngbyastatin 7 Lyngbya spp. Cyclic depsipeptide 
IC50 = 3.3 μM 

IC50 = 0.47 μM 
IC50 = 2.5 μM No inhibition at 30 μM [103,104] 

Lyngbyastatin 8 Lyngbya semiplena Cyclic depsipeptide IC50 = 0.12 μM Not described Not described [104] 
Lyngbyastatin 9 Lyngbya semiplena Cyclic depsipeptide IC50 = 0.21 μM Not described Not described [104] 

Lyngbyastatin 10 Lyngbya semiplena Cyclic depsipeptide IC50 = 0.12 μM Not described Not described [104] 
Molassamide Dichothrix utahensis Depsipeptide IC50 = 0.032 μM IC50 = 0.234 μM No inhibition at 10 μM [106] 

Pompanopeptin A Lyngbya confervoides Cyclic peptide Not described Not described IC50 = 2.4 μM [108] 
Symplocamide A Symploca sp. Cyclic peptide Not described IC50 = 0.38 μM IC50 = 80.2 μM [27] 

Somamide B 
Lyngbya majuscula and 
Schizothrix assemblage 

Depsipeptide IC50 = 9.5 μM IC50 = 4.2 μM No inhibition at 30 μM [103] 

Tiglicamide A Lyngbya confervoides Cyclic depsipeptide IC50 = 2.14 μM Not described Not described [111] 
Tiglicamide B Lyngbya confervoides Cyclic depsipeptide IC50 = 6.99 μM Not described Not described [111] 
Tiglicamide C Lyngbya confervoides Cyclic depsipeptide IC50 = 7.28 μM Not described Not described [111] 
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Figure 2. Chemical structures of the marine cyanobacterial secondary metabolites 

symplocamide and kempopeptins A and B. 

 

Pitipeptolides A and B, two cyclodepsipeptides isolated from the marine cyanobacteria  

Lyngbya majuscula collected at Guam, revealed a particular bioactivity. When in contact to elastase, 

these compounds induce a significant increase in activity: 2.76-fold and 2.55-fold, respectively, at  

50 μg/mL [77]. The authors suggested that this biological activity can be attributed to the presence of 

hydrophobic portions in the molecule [77]. 

Cathepsin D is a lysosomal protease that was described to have both anti-apoptotic [131] and  

pro-apoptotic functions [132]. Cathepsin E, besides its function being not well studied, it was 

described as a cathepsin D-like protein [133]. Grassystatins A and B, two linear depsipeptides isolated 

from Lyngbya confervoides were found to strongly inhibit cathepsins D (IC50 = 26.5 nM and 7.27 nM, 

respectively) and E (IC50 = 886 pM and 354 pM) [95]. 

6. Alterations in the Bcl-2 Protein Family 

The Bcl-2 protein family is one of the major apoptosis regulators, which functions in the 

modulation of the outer mitochondrial membrane. The antiapoptotic members Bcl-2 and Bcl-xL protect 

the membrane integrity and avoid the release of the cytochrome c, but their activity can be disturbed 

by the pro-apoptotic members Bax, Bad and Bid [28]. 

Symplostatin 1 initiates the phosphorylation of Bcl-2, inhibiting its anti-apoptotic properties in 

human breast cancer cells and the total content of the protein appear also to be decreased [25]. 

Exposure to cryptophycin 52 was responsible for Bcl-2 and Bcl-xL phosphorylation in several prostate 
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cancer cell lines [113]. Dolastatin 10 was associated to a Bcl-2 protein content reduction [56] and 

suggested to induce phosphorylation of the protein [53]. These are the common defensive mechanisms, 

the anti-apoptotic members are downregulated by phosphorylation, to allow the mechanisms of cell 

survival. However, cells can develop different ways of protection and, surprisingly, the synthetic 

analogue of dolastatin 10, dolastatin 15, promotes the overexpression of Bcl-2 protein in four different 

lung cancer cell lines [134]. 

Catassi and co-workers studied the response of non-small cell lung cancer cells when treated with 

curacin and dolastatins 10 and 15 and observed that these compounds inhibit Bad phosphorylation at 

serine136 [52]. The authors propose that the complex allow Bad to move into the mitochondria and 

promotes cytochrome c release, to trigger apoptosis [52]. Apart from the cell mechanism developed, 

the Bcl-2 protein family seems to play a crucial role in apoptosis induced by marine cyanobacterial 

natural compounds. 

7. Alterations in Membrane Sodium Channel Dynamics 

In mammal cells, a concentration gradient is necessary to keep the high levels of intracellular 

potassium and the low levels of sodium. This gradient is held by several ionic transporters and 

channels and by the capacity of cells to adapt to non-isotonic conditions, by volume regulatory 

mechanisms [135]. In apoptosis, a disordered volume regulation that leads to cell shrinkage during 

regular osmotic conditions occurs [136] leading to an early increase in the intracellular sodium 

concentration [137]. 

Marine cyanobacterial natural compounds seem to be involved in both induction and inhibition of 

sodium channels in neural cells. Antillatoxin, a lipopeptide isolated from Lyngbya majuscule was 

responsible for a rapid increase in sodium concentration inside of the cell in primary rat cerebellar 

granule cells [86]. Although the mechanism of interaction is not well described, the authors excluded 

an interaction of antillatoxin with channel neurotoxin sites 1–3, 5 and 7. Hoiamides are a class of 

cyclic depsipeptides with sodium channel bioactivity [59,97]. Hoiamides A and B were described to 

activate sodium channels in primary cultures of neocortical neurons from embryonic mice, with an 

IC50 of 1.7 μM and 3.9 μM, respectively [59]. In another work it was suggested that hoiamide A acts as 

a partial agonist at neurotoxin site 2 [97]. 

Palmyramide A, a cyclic depsipeptide from Lyngbya majuscule, showed to inhibit a veratridine and 

ouabain induced sodium overload with an IC50 value of 17.2 μM. The authors suggested that the 

inhibition may occur by blocking the voltage-gated sodium channel [76]. Palmyrolide, a macrolide 

isolated from an assemblage of Leptolyngbya cf. and Oscillatoria spp., is a stronger inhibitor of 

veratridine and ouabain induced sodium overload with an IC50 value of 3.70 μM [107]. 

Hermitamides A and B are two lipopeptides, isolated from the marine cyanobacteria Lyngbya 

majuscula from a Papua New Guinea collection. Hermitamide A is a sodium channel blocker that 

inhibits it near to 50% at 1 μM. Hermitamide B is a more potent blocker, inhibiting near to 80% at  

1 μM [96]. It was proposed that the aromatic region of these compounds is important for the channel 

inhibition, being the indole group of hermitamide B an advantage over the phenyl ring of hermitamide 

A. A bioinformatic approach reveals that the connection between hermitamide B and human  

voltage-gated sodium channel is driven mainly by a hydrophobic interaction with residue K1237, and 
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H-bonds between the amide group of hermitamide B with N434 and Y1586. Hydrophobic interactions 

between hermitamide B and F1283, F1579, L1582, V1583, Y1586, L1280, L788, F791, L792, I433, 

and L437 residues are also predicted [96].  

Alterations in intracellular sodium levels and the interaction between cyanobacterial natural 

products and the sodium channels are important keys to understand the toxic mechanism and to 

develop possible pharmacological applications.  

8. Conclusions  

Marine cyanobacteria have been identified as one of the most promising groups of organisms from 

which novel biochemically active natural products, with potential benefits against cancer, can be 

isolated. Although several compounds were found to inhibit cell growth in a large variety of cancer 

cell lines, the pathways by which cancer cells are inhibited are still poorly elucidated. In some cases, 

compounds were found to induce cell death by activation of the apoptotic process; nevertheless the 

mechanisms underlying the apoptosis still need more investigations. Some compounds were found to 

create an imbalance in cellular redox potential, with mitochondria representing a central role in the 

process. However, more studies are needed in order to clarify if mitochondria and oxidative stress are 

the direct targets, or if they are just a consequence of upstream damage. Cell cycle is another disturbed 

process, mainly due to disruption of the microtubules and actin filaments; however there are only a 

few studies connecting marine cyanobacterial compounds with alterations in cell cycle and more 

studies are needed in order to clarify the involvement of these compounds in the process. Not 

surprisingly, the proteins directly involved in apoptosis, caspases, non-caspases proteases and the  

Bcl-2 protein family, also seem to be associated with the cyanobacterial compounds activity. Even 

membrane sodium channels can establish interactions with the compounds, revealing its potentially 

important role in the observed effects. 

In summary, marine cyanobacteria seems to be clearly an important source of anticancer drugs. 

However, more investigations are needed in order to clarify the specific targets and the mechanisms 

that are behind cancer cell cytotoxicity, namely the involvement of the apoptotic process.  
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