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Abstract: Depression has become the leading cause of disability worldwide and is a global health
burden. Quantitative assessment of depression-related neurotransmitter concentrations in human
fluids is highly desirable for diagnosis, monitoring disease, and therapeutic interventions of de-
pression. In this review, we focused on the latest strategies of CD-based electrochemical biosensors
for detecting a depression-related neurotransmitter. We began this review with an overview of the
microstructure, optical properties and cytotoxicity of CDs. Next, we introduced the development
of synthetic methods of CDs, including the “Top-down” route and “Bottom-up” route. Finally, we
highlighted detecting an application of CD-based electrochemical sensors in a depression-related
neurotransmitter. Moreover, challenges and future perspectives on the recent progress of CD-based
electrochemical sensors in depression-related neurotransmitter detection were discussed.

Keywords: carbon quantum dots; electrochemical biosensors; depression-related neurotransmitter;
synthesis; determination

1. Introduction

Neurotransmitters (NTs), as the endogenous chemical substances, are produced in
different glands and transmit specific signals via chemical synapses between neurons and
other cells, which help to communicate information between the brain and body [1,2].
Since the first neurotransmitter was discovered in 1921, lots of chemical messengers were
found in synaptic transmission. Neurotransmitters play an important role in the mediation
of behavior and cognition, such as the adjustment of muscle tone and heart rate, regula-
tion learning, sleeping, memory, consciousness and so on. Alterations in concentration
of neurotransmitters in the central nervous system are usually associated with various
physical and mental changes, which would lead to many diseases, such as Huntington’s,
Alzheimer’s, Parkinson’s, anxiety and depression [3,4].

Depression is a psychiatric disorder that is usually accompanied by low mood and
interferes with people’s lives which can change a person’s thoughts, interests, behaviors
and feelings. It is frightening that untreated depression may lead to a sustained state or
suicide attempts. During diagnosis and treatment, depression-related neurotransmitters,
such as the hypoactivity of monamines, especially serotonin (5-HT), noradrenaline (NA)
and dopamine (DA), are found in midbrain [5]. Other neurotransmitters, for example,
gamma aminobutyric acid (GABA) and glutamate, also participate in the pathogenesis
of major depression [6–8]. Usually, the concentration of neurotransmitters is very low;
for example, normal levels of DA and 5-HT in serum are less than 8.9 × 10−13 mol m−3
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and 4.5 − 12 × 10−10 mol m−3, respectively [9,10]. However, the lack and imbalance of
neurotransmitters would bring a significant risk of depression. Accordingly, for diagnosis,
monitoring and therapeutic interventions for depression, it is highly desirable to detect
NT concentrations in human fluids. To date there are many techniques using for detecting
NTs, including nanopore, chemiluminescence, capillary electrophoresis, mass spectrom-
etry, chromatography and electrophoresis [11–18]. However, laborious, expensive and
complicated pretreatments are the troubles that almost all methods must be able to solve.

An electrochemical biosensor, due to its cheap, simple, highly selective, sensitive,
and easy to miniaturize nature, is thought to be the most applicable detecting method for
NTs in clinical treatment and diagnosis [19–22]. Especially since the appearance of novel
carbon materials, significant progress has been obtained in detective research on selectivity,
sensitivity and on-site detection. Among them, carbon quantum dots (or carbon dots, CDs,
CQDs), due to their solubility, biocompatibility and lower toxicity, have been thought more
efficient functional materials in the construction of a biosensor, since it was recognized by
Sun et al., at first [23–33]. As semiconductor quantum dots, CDs are quasizero dimensional
materials with spherical shape, and their size in three dimensions is less than 10 nm, which
limited internal electrons to move in this space. The unique properties in the structure
made CDs exhibit excellent features in physicochemicals and photoelectrics, which provide
the possibility for the preparation of a high-quantity electrochemical sensor for use in
detecting a depression-related neurotransmitter.

As shown in Scheme 1, in this review, we summarized the progress made in the
past years in the field of CDs, based electrochemical biosensors for detecting depression-
related neurotransmitters. We introduced the significant role of the microstructure, optical
properties and cytotoxicity of CDs. The next main section covered the development of
synthetic methods of CDs; that is, the “Top-down” route and “Bottom-up” route. In the
concluding section, we discussed detecting the application of CD-based electrochemical
sensors in depression-related neurotransmitters including dopamine, epinephrine and
serotonin. Future perspectives and current challenges on the recent progress of CD-based
electrochemical sensors in depression-related neurotransmitter detection were discussed
as well.
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Scheme 1. Illustration of carbon quantum dots: from synthesis toward applications in electrochemical biosensors for
determination of depression-related neurotransmitters.

2. Microstructure, Properties, Synthetic Methods and Biocompatibility
2.1. Microstructure and Properties of CDs

Usually, CDs were thought of as quasi-spherical nanoparticles with a distinct structure
and composed of amorphous and sp2 carbon crystalline morphology [34,35]. Furthermore,
some researchers thought that the diamond-like structure existed in CDs due to sp3 car-
bons [36]. CDs owned both core structures and complex surface groups which influenced
the optical properties of CDs and water solubility [37,38]. Dopant of heteroatoms, for
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example, nitrogen, sulfur, changed the electronic structures and enhanced the electrical
conductivity of CDs [37,39–42]. Surface modification and functionalization of CDs was
performed to obtain desirable surface features and optical properties. Kundelev et al. [43]
proposed a theoretical analysis on surface emission centers of CDs, which determined
efficiency of photoluminescence of CDs by the verification of molecule-like subunits of
polycyclic aromatic hydrocarbons (PAHs) on the CDs’ surface. They demonstrated that the
PL of CDs’ decreased by about two orders of magnitude when the free monomers were
replaced by the covalently bridged centers. This method provided an efficient approach to
get their efficient red PL. Therefore, emissions of CDs were tunable and could cover a wide
range from the visible to the near-infrared region, after the surfaces of CDs were passivated
by organic or polymeric materials [24] as in Figure 1.

Materials 2021, 14, x FOR PEER REVIEW 3 of 17 
 

 

2. Microstructure, Properties, Synthetic Methods and Biocompatibility 

2.1. Microstructure and Properties of CDs 

Usually, CDs were thought of as quasi-spherical nanoparticles with a distinct 

structure and composed of amorphous and sp2 carbon crystalline morphology [34,35]. 

Furthermore, some researchers thought that the diamond-like structure existed in CDs 

due to sp3 carbons [36]. CDs owned both core structures and complex surface groups 

which influenced the optical properties of CDs and water solubility [37,38]. Dopant of 

heteroatoms, for example, nitrogen, sulfur, changed the electronic structures and en-

hanced the electrical conductivity of CDs [37,39–42]. Surface modification and function-

alization of CDs was performed to obtain desirable surface features and optical proper-

ties. Kundelev et al. [43] proposed a theoretical analysis on surface emission centers of 

CDs, which determined efficiency of photoluminescence of CDs by the verification of 

molecule-like subunits of polycyclic aromatic hydrocarbons (PAHs) on the CDs’ surface. 

They demonstrated that the PL of CDs’ decreased by about two orders of magnitude 

when the free monomers were replaced by the covalently bridged centers. This method 

provided an efficient approach to get their efficient red PL. Therefore, emissions of CDs 

were tunable and could cover a wide range from the visible to the near-infrared region, 

after the surfaces of CDs were passivated by organic or polymeric materials [24] as in 

Figure 1. 

 
Figure 1. (A) Illustration of CDs capped with molecular-like (a) free, (b) loosely bound, and (c) tightly bound surface
emission centers. (B) Energy levels of molecular orbitals of perylene-based subunits in the ground state (blue) and excited
state (red). Numbers within the arrows are the energy gaps (in eV) between the HOMO and LUMO. (C) Absorption and PL
spectra of three types of perylene−based subunits (reproduced with permission from ref. [43]) (D) (a) Filters photograph of
PEG1500N− CDs was excited by 400 nm (b) PEG1500N− CDs was excited by different wavelengths directly (E) Absorption
and PL spectra of PPEI−EI−CDs. Inset: emission intensities normalized to quantum yields. (Reproduced with permission
from ref. [24]).
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Optical properties of CDs were widely studied since they were accidentally discovered,
because the PL of various CDs was cover from UV to visible light and even near the
infrared region [44–48]. However, the mechanisms of tunable PL properties were not clear
because inconsistent experimental observations and inaccuracy definition synthesis of
different approaches made the research of luminescence more complicated. For example,
the quantum confinement effect and the popular property of the semiconductor quantum
dot were not always observed in CDs [49,50]. To date, intrinsic (band-gap related) and
extrinsic (surface related) recombination routes were proposed to explain the luminescence
mechanism of CDs [44,51,52].

The properties of CDs are largely influenced by surface groups including carboxyl
and hydroxyl groups. For instance, reduction or oxidation of these groups may lead
the optical properties of CDs, such as wavelength and PL intensity, to change. Rogach
et al. [43] reported the synthesis of surface oxidation-related luminescence characteristics
of CDs via an electrochemical route. A high surface oxidation degree of CDs generated a
red-shifted emission resulting from the introduction of surface groups, which provided
different emission sites on the surface of CDs. Moreover, deprotonation and protonation
coming from pH adjusting, also demonstrated that surface groups were important for the
photoluminescence of CDs. For example, among the research of pH-dependent behavior,
the luminescence intensity decreases whenever it was at a high or low pH [53,54]. More-
over, Wen et al. [55] investigated the origin of fluorescence and carrier dynamics in CDs
by an ultrafast time-resolved fluorescence technique in order to explore the fluorescence
mechanism. The intrinsic and extrinsic bands, which originated from sp2 domains, associ-
ated with surface states to make up the fluorescence of CDs. They also demonstrated that
the excitation wavelength-dependent fluorescence came from the carboxyl groups on the
CDs’ surface.

In addition, for the unique band structure, controllable shape and quantum confine-
ment effect CDs have been integrated into the construction of both the electrode and the
device. Especially, for π bonds, functional moieties or dopants, CDs would be easy to react
with analytes via π–π or functional group/dopants, which could facilitate charge transfer
so as to increase electrochemical performance. As we know, CD-based electrochemical
biosensors showed excellent properties in sensitivity due to the increased electron transfer
rate. The sensitivity can be further enhanced through surface functionalization of CDs
with synergistic electrochemical performances. CDs can act as substrates for polymers,
enzymes and nanosheets to improve the electrochemical performance through conductivity
or anchoring sites. The target can be deposited or directly grown on the surface of CDs
through covalent or noncovalent interactions, which are based on the functional groups
of the CDs’ surface [56,57]. Therefore, CDs have exhibited the excellent properties which
would be suitable for electrochemical biosensors for use for detection of biomedicine, foods,
and the environment.

2.2. Synthetic Methods of CDs

Usually, the synthetic method of CQD is categorized into “top-down” and “bottom-up”
routes. Chemical, electrochemical, and physical methods are adopted in the “top-down”
route to cleave or break down carbonaceous materials, and in the “bottom-up” route,
small organic molecules [58] (or small aromatic molecules) are raw materials through the
methods, such as pyrolysis, carbonization and chemical fusion, to obtain CDs [59] as shown
in Table 1.

2.2.1. “Top-Down” Route

In the “top-down” route, carbon precursors including coffee, tea, grass, graphite,
carbon nanotubes and activated carbon are used to produce CDs by methods such as laser
ablation, electrochemical oxidation, arc discharge, ultrasonic treatment and so on.

Xu et al. reported fluorescent CDs at first in 2004, when they proposed a preparative
route to purify single-walled carbon nanotubes (SWNTs) by the eletrophoretic method.
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In this method, arc-discharge soot as acarbon source was oxidized by nitric acid and was
extracted through agarose gel electrophoresis [60]. Zhou’s firstly prepared blue lumi-
nescent CDs by the electrochemical method result from multiwalled carbon nanotubes
(MWCNTs). The electrochemical cell was composed of a carbon paper and a degassed
acetonitrile solution with 0.1 M tetrabutylammonium perchlorate (TBAP) as the supporting
electrolyte [61].

Table 1. Typical synthetic methods and properties of CDs.

Route Synthetic Method Precursor Diameter QY (%) Reference

Top-down
route

Microwave synthesis Reduced glutathione 3.8 nm 18.5 [62]
Solvothermal 1,2,4,5-Benzenetetracarboxylic acid 5–7 nm 22 [63]

Hydrothermal method Dry carnation petals and
polyethylenimine 2.69 ± 0.50 nm 13 [64]

Electrochemical methods MWCNTs 2.8 ± 0.5 nm 6.4 [61]
Magnetic hyperthermia method Ammonium citrate 2.4 nm 18.6 [65]

Laser ablation PEG1500N, PPEI-EI 5 nm 4–10 [24]
Chemical oxidation Activated carbon 3–4 nm >10 [66]

Bottom-up
route

One-pot, room temperature Cetylpyridinium chloride 3.3 nm 21 [67]
Template method Glycerol 5.5 ± 1.1 nm 32.0 [68]

Hydrothermal Sulfadiazine 3.5 nm 83.2 [69]
Reverse micelles Glucose 0.25–0.34 nm 35.0 [70]

Microwave-assisted pyrolysis Date palm fruit 0.02–0.63 µm – [71]
One-step ultrasonic reaction Glucose 5 nm 7.0 [72]

Acid oxidation Lignin 2.4 nm 13.0 [73]
Electrical discharge Octane 2–5 nm – [74]

Carbonization Waste frying oil 1.0–4.0 nm 23.2 [75]

Ultrasonic treatment is developed to synthesize CDs. As we know, ultrasonic treat-
ment could produce the powerful hydro-dynamic shear force through high or low pressure
wave which would generate and distribute little vacuum bubbles in the liquid, cutting
macroscopic carbon materials into nanoscale CDs [76,77]. Zhang et al. addressed the
synthesis of the new nitrogen carbon dots (N-CDs) using a simple ultrasonic-assisted
method and deposited them on the surface of BiOBr to build a photocatalyst consisting of
BiOBr/N-CDs nanocomposites. N. Arsalani et al. [78] prepared the polyethylene glycol
passivated fluorescent carbon dots (CDs-PEG) through a green and simple process under
microwave assistance [79].

Chemical oxidation is also a popular method of CD synthesis. Carbon atoms in organic
small molecules are easily inserted by acids due to their strong oxidization capability and
converts them into carbonaceous materials. This process would cut organic small molecules
into little sheets by controlled oxidation [80,81]. The chemical oxidation method is sensitive
to reaction conditions and processes; meanwhile, it can provide CDs with excellent water
solubility, fluorescence features and the possibility of large scale production. Qiao et al. [82]
employed commercially activated carbon to develop a simple and effective route to prepare
photoluminescent CDs facilely. The activated carbon was etched into individual CDs
by treatment and passivation with nitric acid and amine-terminated compounds, such
as 4,7,10-trioxa-1,13-tridecanediamine (TTDDA) or diamine-terminated oligomeric poly
(ethylene glycol) H2NCH2 (CH2CH2O)n CH2CH2CH2NH2 (nav = 35, PEG1500N). The
obtained CDs were high water-soluble, good biocompatibility and high quantum yield
with a diameter of about 4.5 nm.

2.2.2. “Bottom-Up” Route

On the other hand, the “bottom-up” route to synthesize CDs based on molecular
precursors such as materials based on various raw materials, including protein, glucose,
citric acid and chitosan, through the hydro-thermal/solvo-thermal method, the template
method, the microwave assisted technique and so on [83–85].
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Hydro-thermal/solvo-thermal methods have been considered to be simple, inexpen-
sive, environmental-friendly methods to synthesize CDs. Usually, the Hydro-thermal/solvo-
thermal system reacted by an organic precursor in a hydrothermal reactor under higher
temperatures [86]. Vaibhav Naik et al. [87] reported novel nitrogen-doped CDs via the
hydrothermal route. Carbon powder as a carbon source derived from acidic carbonization
of sucrose combined with ammonia solution was heated in a Teflon-lined stainless-steel
hydrothermal autoclave. The CDs distributed uniformly a with 10.72% QYs. Han et al. [88]
demonstrated a machine-learning based technique to synthesize CDs in a hydrothermal-
synthetic model which provided an insight into the successful prediction, optimization
and acceleration of CDs’ synthesis process. CDs showed a high QY up to 39.3% and strong
green emission.

The Template method is another popular synthesis of CDs. In this procedure, to
calcine and etch the mesoporous template or silicon spheres in order to remove the support
is the vital step for producing CDs. Lai et al. [68] produced CDs using mesoporous silica
to use as a reactor to control the size distribution. PEG-NH2 and glycerol were mixed
with mesoporous silica and then heated to 230 ◦C keeping for thirty minutes to achieve
nanocomposites of CDs. Subrata Pandit et al. [89] used positional isomers of diamino
benzene with citric acid under microwave to prepare CDs. Furthermore, the optical
properties depended on the isomer using the soft temptations in synthesis.

2.3. Characterization of CDs

Due to different synthesis methods, the chemical structure and surface functional
groups of each CDs will be diverse. Many methods can be exploited to characterize CQDs
including transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-
ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), photoluminescence,
the nuclear magnetic resonance (NMR), UV spectroscopy and Raman spectroscopy.

Morphology and microstructure of CDs are investigated by TEM and SEM. TEM is
usually utilized for identifying the morphology and microstructure of CDs and used to
understand their shapes, sizes, dispersion because TEM possesses a high-resolution as
much as 0.1–0.2 nm. XRD is also used to study particle size, phase purity and the crystal
structure of CDs. When a broad peak appeared at 23◦, it means a highly amorphous
carbon. If two broad peaks at 25◦ and 44◦, they are a low-graphitic carbon structure [90].
Raman spectroscopy is used to measure the lattice structure, electronic, optical and phonon
properties of CDs, found near what represents the D and G bands. The peaks’ intensity ratio
at 1360 and 1560 cm−1 under visible excitation indicated the atomic ratio between sp3 and
sp2 carbon hybridization. [91] In CDs, elemental composition and bonding structure are
studied by XPS and qualitative tests by FTIR and NMR. Optical properties and the electronic
transition of CDs are usually determined by the measurement of fluorescence emission
spectra at different excitation wavelengths and the UV−vis absorption spectrum [77]. Jing
et al. used TEM, XRD, XPS and so on to investigate the microstructure and properties of
CDs, which were synthesized using biomass via a hydrothermal route, as in Figure 2 [92].

2.4. Cytotoxicity of CDs

Assessing the cellular uptake and cytotoxicity of CDs is the first step in bio-application.
It is necessary to be evaluated to gauge their biocompatibility of CDs which prepared
from different carbon precursors to ensure biocompatibility. To date, amounts of research
demonstrated that CDs are highly biocompatible. Hu et al. [93] established the investigation
of cytotoxicity of biomass nitrogen-co-doped carbon dots (B-NCdots) prepared from the
pyrolysis of natural soybean as the starting material. An MTT test was employed in human
bladder carcinoma cell line (T24 cells), which indicated that the B-NCdot was low in toxicity.
Sun et al. [94] developed the synthesis of CDs with the surface passivated by oligomeric
PEG molecules. The toxicity of CDs in vitro was tested through the proliferation, mortality
and viability of human breast cancer MCF-7 and human colorectal adenocarcinoma HT-29
cells which showed few significant toxic effects in various nanoscale configurations. In
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the majority of the literature, cytotoxicity data demonstrated that CDs showed very low
toxicity and high intercellular transportation [95].
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3. Detecting Application of CDs-Based Electrochemical Sensors in
Depression-Related Neurotransmitter

Electrochemistry detection is a rapid, stable and low-cost technique. Usually, a bio-
logical recognition element and signal transducer system are the crucial parts in electrical
measurements [96,97]. CDs have been explored to use for the electrode modifiers and
carries a high signal conversion efficiency and a large surface loading rate, [98,99] using it
for detecting depression-related neurotransmitter as shown in Table 2.

Table 2. A list of CDs-based sensing platforms in the detection of neurotransmitters.

Neuro-Transmitters Electrochemical
Method Linear Range(µM) LOD (µM) Reference

EP
CV 1.0 × 10−6–1.0 ×

10−3 3.0 × 10−7 [100]

DPV 5.0–20.0 1.0 [101]
CV 1.0–100 0.24 [102]

DA
Serotonin
(or 5-HT)

DPV 0.1–30 11.2 [103]
CV 0.19–11.81 1.3 [104]
CV 5–2250 7 × 10−4 [105]
CV 1–7 0.099 [106]

DPV 0.01–1 0.004 [107]
CV 0.8 × 103–100 × 103 0.8 × 103 [2]

DPV 40–750 0.7 [108]

Dopamine (DA) is a kind of phenethylamine, which participated in all kinds of life
process [109,110]. Algarra et al. [104] synthesized CDs via a green chemistry route to
use for functionalization of a glassy carbon electrode (GCE). Based on these CDs-GCEs,
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the biosensor for determining dopamine was obtained with lower limits of detection
(1.3 µM) and a wider linear range (0.19–11.81 µM). Compared with bare GC electrodes, the
CDs-GCE showed almost 10 times better sensitivity. Notwithstanding, a higher fouling
on the surface of the electrode was inevitable. Devi et al. [106] developed a route to
detect dopamine by CDs’ modified electrode. CDs were synthesized by an electrochemical
method which exhibited a green fluorescence. Moreover, the CDs modified screen-printed
carbon electrode (SPCE) was used to construct electrochemical biosensor which showed
a lower limit of detection (0.099 µM) as shown in Figure 3. Muhammad Asad et al. [105]
proposed a CDs-CuO nanorod modified lead pencil electrode in which CDs came from
orange peel, and detected DA with a high sensitivity. CuO nanorods provided more
catalytic active sites, large surface area and short diffusion pathways, which owned highly
sensitive (7 × 10−4 µM) and wide linear range (5–2250 µM), and was proposed to the
detection of DA in deboned chicken.
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Figure 3. (A) CVs of DA with different concentration (B) The corresponding calibration plot for [DA]
vs. Ipa. (C) Mechanism of electrochemical oxidation of DA on screen−printed carbon electrode/CQD
film modified electrode. (Reproduced with permission from ref. [106]).

Epinephrine (EP or Adrenaline) was secreted by the adrenal medulla to adjust the
central nervous system in response to stress, anger or fear, and increased heart rate, blood
pressure, cardiac output and carbohydrate metabolism. Yola et al. [100] reported an elec-
trochemical biosensor based on graphitic carbon nitride/N-doped carbon dots composite
(g-C3N4/NCDs) for epinephrine detection. The imprinted electrode was composed of
g-C3N4/NCDs with 100.0 mM pyrrole and 25.0 mM epinephrine, and a cyclic voltamme-
try route was adopted which exhibited a lower LOD (3.0 × 10−13 M) and a wide linear
range (1.0 × 10−12–1.0 × 10−9 M) as shown in Figure 4. Mohammad Mazloum-Ardakani
et al. [101] developed an electrocatalytic biosensor for detecting epinephrine based on
a carbon paste electrode resulting from derivative of hydroquinone. Differential pulse
voltammetry (DPV) showed two linear dynamic ranges of 5.0 to 20.0 µM and 20.0 to
600.0 µM for EP with a lower detection limit (with 1.0 µM).
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Figure 4. SEM image of (A) g-C3N4 (B) graphitic carbon nitride/N-doped carbon dots composite (g-
C3N4/NCDS) (x) (x: 8.0% NCDS (C) TEM image of g-C3N4/NCDS(x) (x: 8.0% NCDS (D) Detection
of EPI with different concentration on the current signals with DPVs: Inset: Calibration curve
of EPI concentrations at MIP/g-C3N4/NCDS (8.0%)/GCE in pH 7.5 of PBS (from 1.0 × 10−12 to
1.0 × 10−9 M). (Reproduced with permission from ref. [100]).

Serotonin (or 5-hydroxytryptamine, 5-HT) presented in the human brain and central
nervous system which could act as a peripheral biochemical marker for depression [111].
Magdalena Kundys et al. [2] proposed an electrocatalytic oxidation route to detect neu-
rotransmitters including dopamine, epinephrine and serotonin using a CDs modified
electrodes. These CDs were deposited on the surface of electrode through a layer-by-layer
approach. The electrocatalytic response was evaluated by cyclic voltammetry, differential
pulse voltammetry and chronoamperometry. The electrochemical biosensor showed good
electrocatalytic properties, high selectivity and high sensitivity with a lower detection
limits for dopamine (0.4 mM), epinephrine (1.0 mM) and serotonin (0.8 mM) in liner range
of 0.4–350 mM, 1–49 mM and 0.8–100 mM, respectively. Prasad et al. [112] introduced a
simple procedure to synthesize CDs from castor oil soot using to modify the electrode.
Through the voltammetry studies, they achieved a highly sensitive detection of serotonin.
The improved electro-oxidation potentials was due directly to the presence of edge plane
sites resulted from acid treatment of the soot. S. Sharath Shankar et al. [107] synthesized
CDs from styrene and constructed biosensor to detect adrenaline (or epinephrine) and
serotonin, with low detection limit of 0.004 µM as shown in Figure 5.
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Figure 5. (A) Orange Peel Derived C-dots Decorated CuO Nanorods for the Selective Monitoring of Dopamine from Deboned
Chicken (Reproduced with permission from ref. [105]. (B) Carbon dots and chitosan composite film based biosensor for
the sensitive and selective determination of dopamine (Reproduced with permission from ref. [103] (C), Carbon Quantum
Dot-Modified Carbon Paste Electrode-Based Sensor for Selective and Sensitive Determination of Adrenaline (Reproduced
with permission from ref. [107]).

4. Conclusions and Perspectives

It played an important role to accurately detect a depression-related neurotransmitter
in diagnosis, monitoring disease and therapeutic interventions of depression in clinic.
Many techniques were developed to detect neurotransmitters in real samples. Electro-
chemical sensors were thought of as the most applicable detecting approach in clinics for
its advantages including cheapness, simplicity and the fact that they are highly selective
and sensitive and easy to miniaturize as shown in Figure 6 [113]. Herein, in this review,
we focused on the latest strategies of CDs based electrochemical biosensors for detecting
depression-related neurotransmitters. We reviewed the development of depression-related
neurotransmitters, CDs and electrochemical sensors. Meanwhile, the character of CDs
including their microstructure, optical properties and synthetic routes were introduced.
Among them, in synthetic methods of CDs, we summarized the development of the “Top-
down” route and “Bottom-up” route. Finally, we highlighted the detecting application of
CD-based electrochemical sensors in a depression-related neurotransmitter including DA,
EP, 5-HT and so on.

Although there are a large number of studies on CD-based electrochemical sensors
in depression-related neurotransmitters, the research and application of CDs is still at
the initial stage. On the synthesis of CDs, the urgent need was for high-quality. Two
approaches would benefit CDs to reach large scale utilization and commercialization. One
is a chemical doping way which would improve the electronic and thermal properties and
electrocatalytic characteristics of CDs; the other is to combine other types of nanomaterials
providing diverse properties and features.

However, it is a great surprise that CDs can be used to reduce the substantial cost of
biosensors by replacing noble metal substrates in electrode materials. For the excellent
properties of CDs, there is still huge space for using them as a low cost, perfect and
ideal sensor material. Future research of CDs could be focused on the choice of carbon
source selection and condition optimization to enhance electrochemical characteristics.
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Furthermore, CDs can be synthesized with other functional groups, so that on the high
sensitivity of the detecting of depression-related neurotransmitters based on CD-based
electrochemical sensors would be reached.
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