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Abstract: This study aims to investigate the microwave properties of coplanar waveguide (CPW)-based
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conducting polymer line in
an ethanol gas atmosphere, with the frequency range of 0.5–2 GHz. For an ethanol-exposed
PEDOT:PSS line (test sample), the transmission coefficient (S21) decreased immediately; moreover, the
microwave effective conductivity (σm/w) decreased simultaneously, compared with the ethanol-free
PEDOT:PSS line (reference sample). The immediate variations in ∆S21 (= S21,ethanol −S21,free) and ∆σm/w
(= σm/w,ethanol − σm/w,free) were approximately 10.2 dB and 2.7 × 104 S/m, respectively. Furthermore, in
the analysis of the circuit model of the PEDOT:PSS line, the characteristic impedance and distributed
elements, i.e., resistance (R) and inductance (L) per length, of the test sample increased, compared
with the reference sample. However, upon stopping the exposure to ethanol gas, the microwave
properties of the test sample instantaneously recovered to those of the reference sample. According
to these critical observations, we could confirm that the coplanar waveguide with a PEDOT:PSS line
shows a significant difference in the diverse microwave properties, through rapid response to the
ethanol gas at room temperature.

Keywords: coplanar waveguide; poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS);
conducting polymer; gas sensor; ethanol gas

1. Introduction

Polymers have typically been used as insulating materials, but with the discovery of conducting
polymers (CPs), they have been used as conductive materials as well. Since then, CP materials
have received tremendous attention from researchers to explore their fundamental properties
and applications because of the similarity of their electrical properties to those of metals and
semiconductors [1]. In particular, the presence of conjugated π-electrons in CPs confers unique electrical
and optical properties, including low ionization potential, high electron affinity, and low energy optical
transition [2,3]. First of all, these properties were used to enhance the performance of sensors relaying
on various transducers [4–7], e.g., potentiometric, amperometric, piezoelectric, calorimetric, thermal,
and optical mode. The new CP sensor applications [8–10], including electrochemical and biosensors,
exhibited excellent characteristics in terms of sensitivity.

Owing to the CPs processability and metallicity, some researchers conducted studies on microwave
conductivity-based technology and its applications, such as electromagnetic interference shielding [11],
electrostatic charge dissipation or antistatic [12], microwave absorption [13], and radar cross-section
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reduction [14]. However, the existing CPs, used for microwave applications, were limited by their low
electrical conductivity.

In recent years, the usage of gas [15,16] and humidity [17] sensors has become more feasible in
microwave applications because of the techniques [18,19] that have been developed to enhance the
electrical conductivity of CPs. However, the basic mechanism of interaction between a specific gas and
an active material has not been adequately researched; it is necessary to address this gap to improve the
performance of microwave sensors. In addition, there is still room to improve sensitivity in terms of
the microwave properties, which include S-parameter, characteristic impedance, microwave effective
conductivity, and others.

In this work, ethanol gas will be used as an interacting gas to the active material, PEDOT:PSS
line, because this gas is closely related to food, e.g., fruits ripening [20] and plant growth [21], as
well as public health, e.g., sterilization [22]. Thus, we investigate the microwave properties of the
coplanar waveguide (CPW) based on the PEDOT:PSS CP line in an ethanol atmosphere. Furthermore,
we undertake an in-depth analysis of the interaction mechanism between the ethanol gas and the
PEDOT:PSS line in the frequency region of 0.5–2 GHz. Finally, we demonstrate that a coplanar
waveguide with a PEDOT:PSS line can produce significant differences in the diverse microwave
properties of an ethanol gas atmosphere at room temperature.

2. Experiment

2.1. Design and Simulation

To examine the microwave properties of a PEDOT:PSS film (line) with and without ethanol
gaseous exposure, a CPW device with a ground (G)-signal (S)-ground (G) electrode was employed, as
shown in Figure 1a.
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Here, the CPW device was used as a type of transmission line that can generate a quasi-
transverse electromagnetic (TEM) mode between the ground and signal electrodes. Firstly, the CPW 
without a PEDOT:PSS line (a bare CPW) was designed with a 50 Ω-impedance for transporting 
maximum power from the microwave source. Subsequently, to verify the power transport on the 
bare CPW, this was simulated with a 2.5D full-wave electromagnetic solver, based on the method of 
moments (MoM).  

Figure 1. Design, simulation, and fabrication of a bare coplanar waveguide (CPW) device; (a) Schematic
of the CPW device with a PEDOT:PSS line. The overall area of the CPW device is 10 mm × 10 mm;
(b) Average surface current distribution at 2 GHz; (c) Sample image of the bare CPW device.

Here, the CPW device was used as a type of transmission line that can generate a quasi-transverse
electromagnetic (TEM) mode between the ground and signal electrodes. Firstly, the CPW without a
PEDOT:PSS line (a bare CPW) was designed with a 50 Ω-impedance for transporting maximum power
from the microwave source. Subsequently, to verify the power transport on the bare CPW, this was
simulated with a 2.5D full-wave electromagnetic solver, based on the method of moments (MoM).
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Figure 1b shows the average surface current distribution as the degree of microwave power
transport, i.e., 50 Ω-impedance matching, in the bare CPW. As can be seen from the figure, the current
becomes concentrated in the region between the ground and signal electrodes when the quasi-TEM
mode is generated through the structure. Figure 1c depicts the sample image of the bare CPW through
a commercially printed circuit board technique [23].

2.2. Response Mechanism between PEDOT:PSS and Ethanol Gas Molecule

Gas molecules can be controlled by acid/base reactions. This reaction mechanism accounts for CPs
becoming acidic/basic analytes as their conductivity changes (doping/dedoping process). There are also
proposed sensing mechanisms for conductive polymer systems, including redox reactions between
polymers and analytes, charge transfer between polymers and analytes, and polymer swelling. The
resistance of PEDOT:PSS increases upon ethanol exposure and decreases to its initial baseline in pure
air. This resistance-changing behavior may be explained by ethanol sensing reactions.

O2 (gas)→ O2 (phys)→ O−2 (chem)

C2H5OH→ CH3CHO + H2

2CH3CHO (ad) + 5 O−2→ 4CO2 + 4 H2O + 5e−

It is known that O−2 is the predominant chemisorbed oxygen species on some active materials
at room temperature. The adsorbed oxygen is mainly in the form of O−2 below the temperature
of 100 ◦C. Therefore, when exposed to ethanol, C2H5OH molecules subsequently dissociate into
CH3CHO and interact with the adsorbed oxygen to form CO2 and H2O. When ethanol molecules
are adsorbed on the PEDOT:PSS surface by physisorption, the holes of the conductive PEDOT:PSS
interact with the electron-donating ethanol analyte. In the case of PEDOT:PSS sensing materials, they
act as conductive pathways that favor the hopping of electrons. The increase of PEDOT:PSS distance
pathways occurs simultaneously, leading to a significant increase of the PEDOT:PSS upon ethanol
exposure and, therefore, enhanced ethanol response.

2.3. Sample Preparation and Measurement System

In the present experiment, the CPW with a PEDOT:PSS line was prepared as follows. First of
all, for the PEDOT:PSS line, a PEDOT:PSS (Clevios PH 1000) and dimethyl sulfoxide (DMSO) (99%)
solution were purchased from Heraeus, (Hanau, Germany) and Sigma-Aldrich (St. Louis, MO, USA),
respectively. Here, all reagents were used without any treatment. Subsequently, the PEDOT:PSS
solution was doped with 5 wt.% DMSO solvent. The doped PEDOT:PSS can operate as a highly
sensitive material to ethanol gas because electron transfer easily occurs through π-orbital overlap. In
the case of PEDOT:PSS, electron transfer occurs through π-orbital overlap, when single and double
bonds of a typical carbon atom of a conductive polymer cross when treated with a solvent. Therefore,
the overlap of π-orbitals becomes stronger, so the electron movement is much faster. The topographical
difference in PEDOT:PSS, treated with and without DMSO, was observed using an atomic force
microscope (AFM) (Park systems, Suwon, South Korea), as shown in Figure 2a,b.
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Figure 2. AFM images of PEDOT:PSS films: (a) pristine PEDOT:PSS and (b) PEDOT:PSS with DMSO.

The surface roughness of the PEDOT:PSS films, treated with and without DMSO, was
approximately 3.882 and 2.871 root-mean-square (rms), respectively. Next, the bare CPW was
treated with oxygen plasma for 3 min to enhance the hydrophilicity of the surface. After that, a
PEDOT:PSS solution doped with DMSO was sprayed, as shown in Figure 3a.
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Here, the dimensions of the patterned PEDOT:PSS line were approximately 1.2 mm long, 0.14 mm
wide, and 8.0 µm thick. Subsequently, the CPW with a PEDOT:PSS line was annealed on a hot plate at
100 ◦C for 5 min at ambient conditions. Finally, Figure 3b shows the sample image of the CPW with a
PEDOT:PSS line.

Figure 3c depicts the experimental setup, consisting of a universal test fixture (UTF) (3680 Series,
Anritsu, Atsugi, Japan) and a two-port vector network analyzer (VNA) (MS46322A, Anritsu, Atsugi,
Japan) for sample measurement. The frequency range was set from 0.5 to 2 GHz, and the number
of points and input power were set to be 101 and −20 dB, respectively. After that, the measurement
system was calibrated by a short-open-load-through (SOLT) method with a calibration kit (36804B-15M,
Anritsu, Atsugi, Japan). Moreover, the CPW with a PEDOT:PSS line in the UTF system was tested in
an ethanol atmosphere of 100 ppm concentration at a temperature of 25 ◦C and relative humidity of
65%. Here, the ethanol gas was regularly exposed with a volumetric flow rate of 1000 cc/min through a
flow meter, and, simultaneously, nitrogen was used as a carrier gas.

3. Results and Discussion

3.1. Transmission Coefficient and Microwave Effective Conductivity

Figure 4a,b depicts the magnitude of the S-parameters of the simulated and measured samples at
three sample configurations—a bare CPW, a CPW with a PEDOT:PSS line (ethanol-free PEDOT:PSS
line), and a CPW with a PEDOT:PSS line exposed to ethanol gas (ethanol-exposed PEDOT:PSS line).
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The magnitude of the S11- and S21-parameters can be expressed as follows, Equation (1):

S11 = 20 log
(

V1,out

V1,in

)
, S21 = 20 log

(
V2,out

V1,in

)
(1)

where S11 and S21 are the reflection and transmission coefficients of voltage waves, respectively. Here,
V1,in and V1,out indicate the input- and output-voltage waves, respectively, at the first-port, and V2,ou

indicates the output-voltage wave at the second port of the microwave VNA source. As shown in
Figure 4a, the bare CPW exhibited the typical property of a microwave capacitor; this can be seen by
the increasing S21-level at higher frequencies, i.e., it shows the S21-level from −56 dB (at 0.5 GHz) to
−45 dB (at 2 GHz). For the ethanol-free PEDOT:PSS line, the S21-level indicated −2.8 dB uniformly,
which is much higher (approximately 130 times) than the level in the bare CPW in the observed
frequency range. Therefore, it is noticeable that the PEDOT:PSS film having a conductive property can
be regarded as the transmission line (TL) circuit between the signal electrodes. On the other hand, the
ethanol-exposed PEDOT:PSS line showed the S21-level from −15 dB (at 0.5 GHz) to −11 dB (at 2 GHz).
The ∆S21 responding difference between the ethanol-free and the ethanol-exposed PEDOT:PSS line
corresponds to 12.2 dB (at 0.5 GHz) and 8.2 dB (at 2 GHz), approximately. This response can be
regarded as a very significant variation when using ethanol gas of 100 ppm concentration.

Meanwhile, to evaluate the microwave effective conductivity (σm/w) of the PEDOT:PSS line itself,
the two kinds of samples—an ethanol-free PEDOT:PSS line (reference sample) and an ethanol-exposed
PEDOT:PSS line (test sample)—were measured with and without exposure to ethanol gas. Here, the
microwave effective conductivity (σm/w) is defined as 1/Rsδ, where Rs and δ are the sheet resistance and
penetration depth, respectively. The σm/w of each sample was estimated by the fitting method, based
on the results measured with electromagnetic simulation under the conductivity variable. Figure 4b
shows the fitted results obtained from the electromagnetic simulation. The σm/w, free of the ethanol-free
PEDOT:PSS line was approximately 3.0 × 104 S/m, which corresponds to the −2.8 dB result on the
S21-level. Further, the fitted σm/w,ethanol of the ethanol-exposed PEDOT:PSS line was 2.5 × 103

− 3.0
× 103 S/m, which corresponds to the S21-level range from −15 dB (at 0.5 GHz) to −11 dB (at 2 GHz).
Here, the conductive range results from the discrepancy between the measured and the fitted results.
However, as shown in Figure 4, these results were in good agreement with the measured results.
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Notably, when the ethanol gas was removed entirely, the S21-level recovered immediately to the
initial S21-level of −2.8 dB, i.e., to the ethanol-free PEDOT:PSS line. According to these results, we
found that the S21-parameter of the PEDOT:PSS line exhibits the real-time response with and without
exposure to ethanol gas. Notably, the exposure of ethanol gas can result from the degradation of the
microwave effective conductivity of the PEDOT:PSS line, i.e., increasing the surface resistance. This is
because the carriers, including π-electrons of the PEDOT:PSS line, have low mobility [24] when the
ethanol gas, the hydroxyl radicals in the ethanol gas molecules, and the ethyl group linked to the
hydroxyl (–OH) group [8], selectively absorb the PEDOT:PSS line. This effect is instantaneously caused
by the high surface resistance.

3.2. Characteristic Impedance and Distributed Elements

Figure 5a depicts the CPW with a PEDOT:PSS line. As shown in Figure 5b, the PEDOT:PSS
line can be modeled as a TL circuit, including resistance (R), inductance (L), conductance (G), and
capacitance (C) per unit length (mm).
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Furthermore, the characteristic impedance (Zc) and propagation constant (γ) can be expressed as
the distributed elements, Equation (2):

Zc =
√
(R + jωL)/(G + jωC), γ =

√
(R + jωL)(G + jωC), (2)

where ω is the angular frequency. In Figure 5c, the magnitude of Zc (|Zc|) of the ethanol-exposed
PEDOT:PSS line was higher than that of the ethanol-free PEDOT:PSS line in the observed
frequency region.

However, the |Zc| of the ethanol-exposed sample dramatically decreased with increasing frequency.
In addition, these samples gradually converged near 2 GHz. Figure 6a–d shows the difference
of the distributed elements of the PEDOT:PSS line with and without ethanol gas in the observed
frequency region.
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From Equation (5), the distributed components to the ethanol-free and ethanol-exposed PEDOT:PSS
line were obtained. The series R and L components of the ethanol-exposed PEDOT:PSS line were
significantly reduced, as shown in Figure 6a,b. However, the corresponding components of the
ethanol-free PEDOT:PSS line were uniform in the observed frequency region. Moreover, the shunt G
and C components of the ethanol-exposed PEDOT:PSS line increased gradually compared with those
of the PEDOT:PSS line, as shown in Figure 6c,d. According to these results, we found that the R and L
components exhibit a considerable difference as sensing components with and without exposure to
ethanol gas.

4. Conclusions

In this study, we have observed a degradation of the S21-level and microwave effective conductivity
of the PEDOT:PSS line, with and without exposure to ethanol gas, in the observed frequency region
of 0.5–2 GHz. In particular, upon exposure to ethanol gas, the S21-level on the PEDOT:PSS line was
lowered by approximately 25% in comparison to that of the ethanol-free PEDOT:PSS line. Moreover,
this decreased the microwave effective conductivity by approximately 10 times, matching with that of
the ethanol-free PEDOT:PSS line. Using the TL circuit model of the CPW with a PEDOT:PSS line, we
have demonstrated a remarkable difference in the microwave properties, including the distributed
elements and characteristic impedance. In particular, the R and L components of the PEDOT:PSS
line, with and without exposure to ethanol gas, exhibited a considerable difference of less than 2
GHz. In the analysis of the microwave TL circuit, we demonstrated that a low carrier mobility also
exhibits the increase of R and L components because it binds ethanol gas molecules onto the surface
of the PEDOT:PSS line. Consequently, we could confirm that ethanol gas not only influences the
degradation of the microwave properties of the PEDOT:PSS line itself, but also causes this to occur very
rapidly. These properties can provide a new alternative for developing highly sensitive and robust
PEDOT:PSS-based microwave gas sensor platforms in the future.
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