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Abstract: The ability of organisms and organic compounds to reduce metal ions and stabilize them
into nanoparticles (NPs) forms the basis of green synthesis. To date, synthesis of NPs from various
metal ions using a diverse array of plant extracts has been reported. However, a clear understanding
of the mechanism of green synthesis of NPs is lacking. Although most studies have neglected to
analyze the green-synthesized NPs (GNPs) for the presence of compounds derived from the extract,
several studies have demonstrated the conjugation of sugars, secondary metabolites, and proteins
in these biogenic NPs. Despite several reports on the bioactivities (antimicrobial, antioxidant,
cytotoxic, catalytic, etc.) of GNPs, only a handful of studies have compared these activities with
their chemically synthesized counterparts. These comparisons have demonstrated that GNPs possess
better bioactivities than NPs synthesized by other methods, which might be attributed to the presence
of plant-derived compounds in these NPs. The ability of NPs to bind with organic compounds to form
a stable complex has huge potential in the harvesting of precious molecules and for drug discovery,
if harnessed meticulously. A thorough understanding of the mechanisms of green synthesis and
high-throughput screening of stabilizing/capping agents on the physico-chemical properties of GNPs
is warranted to realize the full potential of green nanotechnology.

Keywords: nanoparticles; green synthesis; secondary metabolites; flavonoids; bioactivities;
nano-harvesting; drug discovery

1. Introduction

Nanoparticles (NPs) are particles that range 1–100 nm in size. Owing to the large surface area
to volume ratio, NPs exhibit enhanced catalytic reactivity, biological activities, thermal conductivity,
non-linear optical performance, and chemical steadiness in comparison to their bulk form. As a result
of these properties, NPs are used in health, food, feed, space, chemical, cosmetic industries,
and in agriculture [1–3]. NPs can be synthesized by several methods, including physical and chemical
processes (Figure 1). However, as a result of the difficulties in scaling-up the physical processes and
the usage of toxic synthetic chemicals that could be carried over by the NPs in chemical processes,
alternative methods, such as green synthesis, have been developed. Although green chemistry methods
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have been practiced in agriculture, consumer products, and medicines for many years, the application
of green chemistry to synthesize nanoparticles (NPs) is relatively recent.Materials 2018, 11, x FOR PEER REVIEW  2 of 24 

 

 

Figure 1. Schematic presentation of various methods used in the synthesis of metal NPs. 

Green synthesis is based on redox reaction, in which metal ions are reduced to stable NPs by the 

components of an organism or its extract. Although living organisms, such as algae, fungi, bacteria 

and plants, could synthesize NPs in vivo [4–12], plant extract-mediated, in vitro green synthesis of 

NPs has gained popularity due to its simplicity, low cost, eco-friendly nature, and easiness to scale-

up [13,14]. Although plant extract-mediated green synthesis is a recent technology, a contrasting 

process has been used for the preparation of Bhasma (ash of metal) in Ayurveda, a traditional Indian 

medicine practiced for more than 2000 years. In the former, metal ions are reduced and stabilized as 

NPs by the components of the extract (bottom-up approach); by contrast, in the latter, NPs are 

produced by the calcination of metal sheets (top-down approach), which are macerated with 

medicinal plant extracts to obtain therapeutic potential. 

Currently, the number of reports on green-synthesized nanoparticles (GNPs) is increasing 

exponentially. Extracts derived from diverse plant species, their organs, and isolated compounds 

are being successfully used in the green synthesis of NPs. In addition to being eco-friendly, NPs 

can be synthesized using agricultural and industrial waste to make the process more sustainable 

[15,16]. GNPs often possess better bioactivities [17–20] and catalytic characteristics compared to 

their counterparts, which are synthesized by other methods [21,22]; this is probably a result of the 

compounds attached to their surface [14]. The ability of plant secondary metabolites to bind or 

conjugate with NPs upon green synthesis could be exploited for the purification of compounds and 

drug discovery. Although the widespread occurrence of phenolic compounds in the plant kingdom 

could explain the ability of plant extracts to reduce metal ions, the mechanism of green synthesis 

is not fully understood. In this article, the current status and potential applications of the green 

synthesis of NPs with special emphasize on secondary metabolites participating in this process are 

discussed. 

2. Mechanism of Green Synthesis of NPs by Plants 

A process known as bioaccumulation, which provides plants with the ability to detoxify metal 

ions, can explain the mechanism of NP synthesis by plants. When plants absorb metal ions at a rate 

faster than that of their removal by catabolism, the excess metal ions accumulate in the plant tissues. 

The presence of metals at toxic levels can induce excessive reactive oxygen species (ROS) production 

in the cells and damage cellular macromolecules resulting in serious morphological, metabolic, and 

physiological irregularities in plants. To counteract the metal toxicity, plants are equipped with 

sophisticated chelation mechanisms to detoxify metals [23]. Cysteine-rich oligopeptides, 

phytochelatins, and low molecular weight proteins named metallothioneins can form complexes with 

metals and eventually remove the metal ions via vacuolar sequestration [24]. 

To maintain the ROS homeostasis upon metal toxicity, cellular enzymatic antioxidant systems 

are activated [25]. In addition to the enzymatic antioxidant mechanisms, plant secondary metabolites, 

such as phenolic compounds, can assist the cells in the maintenance of ROS homeostasis [26,27]. 

Induction of plant secondary metabolism in response to metal stress has been frequently reported. 

Figure 1. Schematic presentation of various methods used in the synthesis of metal NPs.

Green synthesis is based on redox reaction, in which metal ions are reduced to stable NPs by the
components of an organism or its extract. Although living organisms, such as algae, fungi, bacteria and
plants, could synthesize NPs in vivo [4–12], plant extract-mediated, in vitro green synthesis of NPs has
gained popularity due to its simplicity, low cost, eco-friendly nature, and easiness to scale-up [13,14].
Although plant extract-mediated green synthesis is a recent technology, a contrasting process has
been used for the preparation of Bhasma (ash of metal) in Ayurveda, a traditional Indian medicine
practiced for more than 2000 years. In the former, metal ions are reduced and stabilized as NPs by the
components of the extract (bottom-up approach); by contrast, in the latter, NPs are produced by the
calcination of metal sheets (top-down approach), which are macerated with medicinal plant extracts to
obtain therapeutic potential.

Currently, the number of reports on green-synthesized nanoparticles (GNPs) is increasing
exponentially. Extracts derived from diverse plant species, their organs, and isolated compounds are
being successfully used in the green synthesis of NPs. In addition to being eco-friendly, NPs can be
synthesized using agricultural and industrial waste to make the process more sustainable [15,16].
GNPs often possess better bioactivities [17–20] and catalytic characteristics compared to their
counterparts, which are synthesized by other methods [21,22]; this is probably a result of the
compounds attached to their surface [14]. The ability of plant secondary metabolites to bind or
conjugate with NPs upon green synthesis could be exploited for the purification of compounds and
drug discovery. Although the widespread occurrence of phenolic compounds in the plant kingdom
could explain the ability of plant extracts to reduce metal ions, the mechanism of green synthesis is not
fully understood. In this article, the current status and potential applications of the green synthesis of
NPs with special emphasize on secondary metabolites participating in this process are discussed.

2. Mechanism of Green Synthesis of NPs by Plants

A process known as bioaccumulation, which provides plants with the ability to detoxify metal
ions, can explain the mechanism of NP synthesis by plants. When plants absorb metal ions at
a rate faster than that of their removal by catabolism, the excess metal ions accumulate in the plant
tissues. The presence of metals at toxic levels can induce excessive reactive oxygen species (ROS)
production in the cells and damage cellular macromolecules resulting in serious morphological,
metabolic, and physiological irregularities in plants. To counteract the metal toxicity, plants are
equipped with sophisticated chelation mechanisms to detoxify metals [23]. Cysteine-rich oligopeptides,
phytochelatins, and low molecular weight proteins named metallothioneins can form complexes with
metals and eventually remove the metal ions via vacuolar sequestration [24].
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To maintain the ROS homeostasis upon metal toxicity, cellular enzymatic antioxidant systems
are activated [25]. In addition to the enzymatic antioxidant mechanisms, plant secondary metabolites,
such as phenolic compounds, can assist the cells in the maintenance of ROS homeostasis [26,27].
Induction of plant secondary metabolism in response to metal stress has been frequently reported.
Stimulation of key enzymes of the phenylpropanoid pathway, such as phenylalanine ammonia-lyase
(PAL) and chalcone synthase (CHS), has been observed in plants upon exposure to Cu, Cd, Al, Pb,
and Ni [28]. Pteris vittata, a hyperaccumulator, produces high concentrations of chlorogenic acid
derivatives and a-type procyanidin upon Cu stress [29]. Similarly, elevation of phenolic content in
maize exposed to Al [30] and Phaseolus vulgaris exposed to Cu [31] has been reported. The enhanced
biosynthesis of phenolic compounds by the plants under metal stress might be due to the high tendency
of these compounds to chelate metals [32]. Several flavonoids are capable of chelating metal ions
by forming stable complex through their multiple hydroxyl (–OH) groups and the carbonyl moiety.
For instance, quercetin, a flavonoid that possesses three potential bidentate binding sites, namely
α-hydroxy-carbonyl, β-hydroxy-carbonyl or catechol having two –OH groups in ortho positions,
can form stable complex with metal cations such as Mo(VI), Fe(II)/Fe(III), Cu(II), Zn(II), Al(III), Tb(III),
Pb(II), Co(II) by quercetin has also been reported [33].

When serving as antioxidants in a concentration-dependent manner to scavenge ROS, phenolic
compounds are toxic to the cell due to their high chemical reactivity and protein-denaturing
properties [34]. Hence, plants transfer these compounds to compartments with lower biosynthetic
activity, such as the extracellular space and the vacuole. Flavonoids are synthesized in the cytosol
and transported into the vacuole for storage [35]. The multidrug and toxic efflux transporter TT12,
which is localized in the vacuolar membrane, mediates flavonoid transport by an H+-antiport
mechanism into the vacuole [36]. Thus, the accumulation of metal ions and antioxidant phenolic
compounds in the same cellular compartment might facilitate the formation of NPs (Figure 2).
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Many plant species have the ability to synthesize and store NPs in their cells. For example,
Medicago sativa (alfalfa) plants grown on an AuCl4 rich environment accumulated 4 nm size Au NPs in
their tissues [7]. Similarly, when grown on an Ag ion rich medium, M. sativa accumulated Ag NPs [8].
M. sativa plants could accumulate Ag NPs of 50 nm size to about 13.6% of their fresh weight when
grown on a solution containing AgNO3 [9]. Under the same conditions, Brassica juncea accumulated
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similar NPs to about 12.4% of fresh weight [9]. The uptake of AgNO3, sodium dithiosulfatoargentate
[Na3Ag(S2O3)2], and diamine silver nitrate [Ag(NH3)2NO3] by hydroponically grown B. juncea and the
conversion of these salts to silver metal NPs has been quantified [10]. Brassica napus, which was cultured
on medium containing AgNO3, accumulated Ag NPs in the regenerated leaves [11]. Spatial distribution
of Ag NPs in the chloroplast, cytoplasmic spaces, vacuolar, and nucleolar regions was confirmed by
transmission electron microscopic analysis of tissues obtained from Vigna radiata plants exposed to
AgNO3 [12]. Interestingly, the ability of Phragmites australis and Iris pseudacorus to transform Cu ions
into Cu NPs in and around their roots has been revealed when grown in Cu-contaminated soil in the
natural environment [37].

3. Mechanism of Green Synthesis of NPs by Plant Extracts

A similar mechanism as discussed above could be operating during green synthesis of NPs
by plant extracts in vitro. Figure 3 schematically describes the formation of metallic NPs from the
corresponding metal ions. When metallic salt dissociates into cation and anion, cations will be
saturated to form hydroxyl complexes. Immediately after the supersaturation of hydroxyl complexes,
crystillite growth of metal with oxygen species starts to originate. This results in the formation of
crystalline planes with different energy levels. Heat plays a key role in providing energy to the reaction
system. The process continues until activation of the capping agent from the plant extracts, which will
ultimately arrest the growth of high-energy atomic growth planes. This results in the formation of
specific type NPs. Generally, during the synthesis, the reducing agents donate electrons to the metal
ions and convert them to NPs. These NPs exist at a high-surface energy state and tend to convert
to their low-surface energy conformations by aggregating against each other. Thus, the presence of
higher amounts of reducing agents and stabilizing agents prevents the aggregation of nanoparticles
and promotes production of smaller NPs. Additionally, proteins can trap metal ions on their surface
and convert them to their corresponding nuclei, which could further aggregate and, consequently,
form NPs [38]. Amine groups of proteins, hydroxyl and carboxyl groups of polyphenols and amino
acids, hydroxyl groups of polysaccharides, and carboxyl groups of organic acids chelate metal ions and
suppress the superoxide-driven Fenton reaction (which is believed to be the most important source of
ROS), catalyzing the formation of metallic NPs.
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Although it is essential to form a protein-metal ion complex for the vacuolar sequestration of
metal ions during in vivo accumulation of NPs, the role of proteins upon in vitro green synthesis is
not clear. Interestingly, plant extracts possess the capacity to reduce metal ions and produce NPs even
after boiling [39–42]. Although boiling could denature proteins by altering their secondary and tertiary
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structures, the peptide bonds of the primary structure between the amino acids are left intact. Because
all structural levels of the protein determine its function, the denatured protein can no longer be fully
functional. It has been stated that the protein can bind to Au NPs, either through free amino groups or
cysteine residues; the surface-bound protein lead to the stabilization of the NPs [43].

4. Secondary Metabolites in Plant Extract-Mediated Green Synthesis of NPs

Synthesis of NPs using plant extracts has been reported in several plant species (Table 1).
A wide range of molecules, ranging from proteins to various low molecular weight compounds
such as terpenoids, alkaloids, amino acids, alcoholic compounds, polyphenols (catechin, flavones,
taxifolin, procyanidins of various chain lengths formed by catechin and epicatechin units, and phenolic
acids), glutathiones, polysaccharides, antioxidants, organic acids (ascorbic, oxalic, malic, tartaric,
and protocatechuic acid), quinones etc., have been reported to play a role in the green synthesis of
NPs. The participation of sugars, terpenoids, polyphenols, alkaloids, phenolic acids, and proteins
in the reduction of metal ions into NPs and in supporting their subsequent stability has also been
postulated [38]. As seen in Table 1, flavonoids have been the compounds most commonly reported/
predicted to participate in the green synthesis.

Table 1. Plant components possibly involved in the green synthesis of nanoparticles from various
plant species.

Plant Species NPs Metabolites Identified in the Extract/NPs Reference

Coleus aromaticus Ag Flavonoids [44]
Syzygium cumini Ag Flavonoids [45]
Azadirachta indica Ag Flavanoids, terpenoids [46]

Citrus sinensis Ag Flavonoids, ascorbic acid, volatile oils [47]
Zingiber officinale Ag Flavonoid, alkaloids [48]
Ocimum sanctum Ag Eugenols, linalool, terpenes [49]
Glycyrrhiza glabra Ag Flavonoids, thiamine and terpenoids [50]

Nigella arvensis Ag Flavonoids, alkaloids [51]
Dioscorea bulbifera Ag Flavonoids, polyphenols [52]

Lantana camara Ag Flavonoids, glycosides and carbohydrates [53]
Helianthus annuus Ag Fatty acids, triglycerides, phenolics, tocopherols [54]

Rosmarinus officinalis Ag Polyphenols [55]
Mimusops elengi Ag Polyphenols [56]
Syzygium cumini Ag Polyphenols [57]
Ocimum sanctum Ag Quercetin [58]
Acalypha indica Ag Quercetin, plant pigment [59]

Gardenia jasminoides Ag Rutin, gallic acid, chlorogenic acid [60]
Withania somnifera Ag Catechin p-coumaric acid, luteolin-7-glucoside, withanolides [14]

Lippia citriodora Ag Verbascoside, isoverbascoside, chrysoeriol-7-O-diglucoronide,
luteonin-7-O-diglucoronide [61]

Decalepis hamiltonii Ag Polyols, phenols [62]
Achyranthes aspera Ag Polyols [63]

Hybanthus enneaspermus Ag Several bioactive phytochemical compounds [64]
Desmodium triflorum Ag Ascorbic acid [65]

Sesuvium portulacastrum Ag Flavones, proteins, terpenoids [66]
Solanum xanthocarpum Ag Alcohols, phenols, carboxylic anions [67]

Mentha piperita Ag Alkaloids, flavones, steroids, polysaccharides, amino acids,
oximes, proteins, menthol [41]

Anacardium occidentale Ag Proteins, polyols [68]
Dioscorea bulbifera Ag Diosgenin, ascorbic acid [52]

Iresine herbstii Ag Phenolic compound [69]
Trianthema decandra Ag Catechins, hydroxyflavones [70]
Morinda pubescens Ag Flavonoids, triterpenoids, polyphenols [71]

Carica papaya Ag Proteins, alcohols, phenolics [72]

Annona squamosa Ag Alkaloids, glycoside, saponins, tannins,
phenolic, carbohydrates [73]

Trianthema decandra Ag Saponin [74]
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Table 1. Cont.

Plant Species NPs Metabolites Identified in the Extract/NPs Reference

Aegle marmelos Ag Tannin [75]
Rosa rugosa Ag Carboxylate, amine groups [76]

Hibiscus rosa- sinensis Ag Carboxylate ion groups [77]
Leonuri herba Ag Hydroxyl, polyphenols groups [78]

Lonicera japonica Ag Phenolic and hydroxyl groups of chlorogenic acid [79]
Mangifera indica Ag Ketone, aldehydes, hydroxyl, carboxyl groups [80]

Eucalyptus Fe Alcohol, phenols, alkylaldehyde [81]
Alternanthera sessilis Ag Tannins, carbohydrates, proteins, ascorbic acid [82]

Boswellia serrata Ag Proteins [83]
Piper betle Ag Amide, aromatic amine [84]

Plumeria rubra Ag Proteins [85]
Jatropha curcas Ag Cyclic peptides (curcacycline A and curcacycline B) [86]

Hibiscus rosa- sinensis Au Flavonoids [87]
Vitis vinifera Au Flavonoids [88]

Mangifera indica Au Favonoids, terpenoids, thiamine [89]
Abutilon indicum Au Flavonoids, phenolic compounds [90]
Suaeda monoica Au Flavonoids, terpenoids, soluble proteins [91]

Sesbania grandiflora Au Flavonoids, polyphenols [92]
Citrus maxima Au Flavonoids, terpenes, vitamins [93]

Hypoxis hemerocallidea Au Flavonoids, terpenoids, phenolic compounds and/or
carbohydrates [94]

Galenia africana Au Flavonoids, terpenoids, phenolic compounds and/or
carbohydrates [94]

Nigella arvensis Au Flavonoids, phenolic compounds [95]
Butea monosperma Au Polyphenols [96]
Sterculia acuminata Au Polyphenols [97]
Terminalia arjuna Au Polyphenols [98]
Terminalia catappa Au Hydroxyl group of phenols [99]
Hygrophila spinosa Au Hydroxyl group [100]
Cassia auriculata Au Hydroxyl group [101]

Platycodon grandiflorum Au Hydroxyl group [102]
Phoenix dactylifera Au Hydroxyl group [103]

Lansium domesticum Au Carboxylic acid [104]

Salix alba Au Proteins, metabolites having functional groups of amines,
alcohols, ketones, aldehydes, carboxylic acids (salicin) [105]

Cinnamomum zeylanicum Au Proteins [39]
Ficus benghalensis Au Proteins [106]

Jatropha Au Proteins [16]
Morinda citrifolia Au Proteins [42]

Gymnema sylvestre Au Proteins, polypeptides [107]
Olea europaea Au Proteins [40]

Trianthema decandra Au Saponin [74]
Terminalia arjuna Au Hydrolyzable tannins [108]
Elaeis guineensis Au Phenolic, carboxylic, amines [109]
Mentha piperita Au Menthol [41]

Argemone mexicana Au Phosphorous compounds [110]
Tamarindus indica Au Phenolic compounds [111]
Averrhoa bilimbi Au Phenols, tertiary amides [112]

Couroupita guianensis Au Phenol group [113]
Syzygium jambos Au Saccharides, phenolics [114]

Zostera noltii Au Flavone sulfates [115]
Ipomoea carnea Au Polysaccharides, protein [116]
Mirabilis jalapa Au Polysaccharides [117]
Panax ginseng Au Polysaccharides, phenolic compounds [118]

Galaxaura elongata Au
Glutamic acid, hexadecanoic acid, oleic acid, 11-eicosenoic
acid, stearic acid, gallic acid, epigallocatechin, catechin,
epicatechin gallate

[119]

Tagetes sp. and Rosa sp. Cd Alcoholic, amide, C–C, –OCH3 groups (tannins, flavonoids,
alkaloids and carotenoids) [120]

Punica granatum Cu Flavonoids, alkaloids, polyphenols [121]
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Table 1. Cont.

Plant Species NPs Metabolites Identified in the Extract/NPs Reference

Cymbopogon citratus Cu Polyphenols, proteins [122]
Lawsonia inermis Cu Phenolic compounds [123]

Euphorbia granulate Pd Hydroxyflavones, phenolics [124]
Hippophae rhamnoides Pd Flavonoids [125]

Delonix regia Pd Polyphenols [126]
Cacumen platycladi Pt Flavonoids, proteins [127]

Diospyros kaki Pt Terpenoids [128]
Dioscorea bulbifera Pt-Pd Hydroxyl group of polyphenolic compounds [129]

Cassia fistula ZnO Flavonoids, polyphenols [130]
Azadirachta indica ZnO Flavonoids, phenolic acid, terpenoids, protein [131]

Rosa canina ZnO Phenolic and carboxylic acids [132]
Aloe barbadensis ZnO Phenol, amines, alcohol groups [133]

Agathosma betulina ZnO Hydroxyl group [134]
Trifolium pratense ZnO Hydroxyl group [135]

Parthenium hysterophorus ZnO Phosphorus compound, secondary sulfonamide,
monosubstituted alkyne [136]

Anisochilus carnosus ZnO Phenol, carboxylic acid [137]
Coptis chinensis ZnO Alcohol, carboxylic acid, alkyl halide, alkynes [138]

Calotropis procera ZnO Hydroxyl groups, aldehydes, amines, ketones, carboxylic
acids [139]

Although researchers face significant challenges in identifying the elements participating in the
green synthesis of NPs, Fourier-transform infrared spectroscopy (FT-IR) analyses have been used to
obtain clues on the biomolecules possibly involved in the reduction of the metal ions and capping.
A FT-IR analysis of Ag NPs synthesized using Acacia mearnsii bark extract suggested that compounds
with hydroxyl, alkyne, carboxyl, and amide groups of the monoterpenoids, sesquiterpenes, and phytols
might have participated in these processes [140]. Similar analysis of Au NPs green-synthesized
using Suaeda monoica leaf extract indicated that the biomolecules with carboxyl, amine, and hydroxyl
functional groups were involved in the reduction of Au ions [91]. Isolated flavonoids, terpenoids,
chlorogenic acid, etc. have been successfully used in the green synthesis of NPs. Highly monodispersed
(18.24 nm) spherical Au NPs could be synthesized using kaempferol as the in situ reductant and
stabilizer [141]. The ability of terpenoid fractions isolated from Andrographis paniculata leaves for
the green synthesis of ZnO NPs has also been demonstrated and confirmed by the presence of C=O
functional group in the NPs [142]. Au NPs were synthesized using chlorogenic acid as reductant,
and the corresponding FT-IR spectra indicated that an –OH functional group was likely involved
in the synthesis [143].

5. Flavonoids are the Major Contributors of Green Synthesis of NPs

High performance liquid chromatography (HPLC) analysis of Ag NPs green synthesized using
Withania somnifera leaf extract revealed that several phenolic compounds present in the extract were
selectively trapped in the Ag NPs [14]. On the basis of their characteristic UV-vis spectra and
further confirmation by co-elution with pure standards, these compounds were identified as catechin,
p-coumaric acid, and luteolin-7-glucoside. In addition, a major compound that appeared in the NPs
was not found in the original extract, which might be a derivative resulting from the interaction of
some withanolide derivatives with Ag ions.

Jain and Mehata [58] were able to green synthesize Ag NPs using both leaf extract of Ocimum
sanctum and a flavonoid (quercetin) present in the extract separately. Their results revealed that
both Ag NPs showed similar optical, morphological, and antibacterial characteristics, demonstrating
that quercetin was responsible for the NP synthesis. Other flavonoids such as hesperidin, naringin,
and diosmin have also been shown to be involved in the green synthesis of Ag NPs, with the size and
shape distribution varied between the compounds. These authors concluded that the –OH group was
involved in the reduction of Ag ions into Ag NPs [144].
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Flavonoids are a family of natural polyphenolic compounds that include flavone, flavonol,
flavanone, flavanonol, and isoflavone derivatives. The skeleton of flavonoids consists of two phenyl
rings (A and B), connected by an oxygenated heterocycle ring C, and is hydroxylated in several
positions. These compounds have important roles in plants because they participate in the response
to biotic and abiotic stresses [145]. Much attention has been paid to the chelating properties and
antioxidative activities of natural flavonoids, as they are important for plant physiology and desirable
for human health. A flavonoid-metal complex may be a target for ROS and free radicals. However,
this complex can be a catalytic center for Fenton reaction and the ligand moiety may act as an acceptor
for hydroxyl radical. It has been reported that the antioxidant activity of flavonoid-metal complexes is
higher than that of free ligands [146,147].

The number of hydroxyl groups and the structure of flavonoids are important for metal-binding
activity (Figure 4). Simple aglycones, such as chrysin, apigenin and genistein, may accept metal ion in
one coordination pocket between the 4-carbonyl group and 5-hydroxyl group. Divalent metal ions
Cu2+, Co2+, and Ni2+ are bound by two chrysin ligands [148]. Moreover, genistein and biochanin
a chelate Cu2+ and Fe3+ with a 1:2 (metal:ligand) stoichiometry. Complexes of isoflavones with Cu
have higher antioxidant potential than the free ligands, as revealed via 2,2-diphenyl-1-picrylhydrazyl
(DPPH) reduction assays. Fe chelates were shown to have prooxidant potential [149]. In another report,
apigenin was found to bind Al3+ and Fe2+ with a 1:3 (metal:ligand) stoichiometry in a dioxan water
solution. In this case, the 4′-hydroxyl group was the coordination site [150]. Apigenin, naringenin,
and hesperitin can chelate Cu ions and create coordination pocket between 4-carbonyl and 5-hydroxyl
groups. Such complexes have a strong DNA-binding properties and cytotoxicity [151].
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Figure 4. Metal-chelating properties of flavonoids.

Bicalein is a highly bioactive flavonoid that is characterized by three possible bidentate binding
sites (4-carbonyl and three hydroxyl groups at carbons number 5, 6, 7). In this case, metal:bicalein
complexes can be created by using only one binding site. Either hydroxyls at 5- and 6- carbon atoms
or 6-hydroxyl-7-hydroxyl are potentially the binding sites of Fe2+ and Fe3+ ions, with a 1:1 and 1:2
stoichiometry. The Fe-bicalein complexes have high antioxidant properties due to inhibition of the
Fenton reaction [152,153]. Similarly, two potential bidentate binding sites are present in the luteolin
structure (5-hydroxyl-4-carbonyl and 3′4′-hydroxyl groups of the ring B) and both sites can bind Al3+

ions in the molar ratio 2:1 (metal:ligand). The separation of the coordination pocket is important
for increasing the chelating properties [154]. Quercetin has three potential bidendate binding places.
The stable complexes of quercetin were reported for a large number of metal ions, such as Fe2+, Fe3+,
Cu2+, Zn2+, Co2+, Pb2+, Al3+ [155]. 3-hydroxyl and 4-carbonyl groups of quercetin can chelate Fe2+
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with a 1:2 (metal:ligand) stoichiometry. Quercetin-iron complex is characterised by high free radical
scavenging, DNA binding and antibacterial activities [156].

Cherrak, et al. [33] reported on the chelating properties of quercetin, O-methylated quercetins,
rutin, and catechin. The most stable complexes with Fe3+, Zn2+, and Cu2+ were observed for catechin,
quercetin, and rutin compared to O-methylated analogues. Moreover, spectrophotometric studies of
O-methylated quercetins showed the binding sequence with the iron ion: 3′4′-OH > 3-OH >> 5-OH [33].
In summary, the modification of free hydroxyl groups in the flavonoids structure causes changes to
both chelating and antioxidant properties. O-methylated flavonoids are weaker chelators than the
free ligands. The aglycones have stronger antioxidant activities in comparison to the glycosides,
e.g., baicalein-baicalin or luteolin-luteolin-4′-O-glucoside [147].

6. Green-Synthesized NPs are Highly Bioactive and Biocompatible

As discussed above, GNPs are often capped with secondary metabolites [14]. In addition to
providing stability to the GNPs as capping agents or stabilizers, the presence of these compounds might
enhance the bioactivities of these NPs (Table 2). The scavenging activities of Ag NPs prepared using
three different natural polyphenols, epigallocatechin-3-gallate (EGCG), resveratrol (RSV), and fisetin,
were highly correlated with their secondary metabolite content [157]. Green-synthesized Ag NPs using
white rot fungi Pycnoporus broth showed better antimicrobial activity against the pathogenic bacteria
in comparison to the chemically synthesized ones [158]. Microbiological tests performed using varying
concentrations of green (aloe extract) and chemical ZnO NPs showed that green ZnO nanoparticles
had enhanced biocidal activity against various pathogens compared to the chemical ZnO NPs [17].
It was observed that the green-synthesized Ag NPs using Salvadora persica root extract exhibited
comparable or better antibacterial activities than the chemically obtained Ag NPs [18]. A bioactivity
comparison of Ni NPs prepared via the chemical and green routes (Desmodium gangeticum aqueous
root extract) suggested that NPs prepared by the green route had better antioxidant and antibacterial
activity, without any toxicity towards epithelial cell line and Wistar rats [19].

Interestingly, green-synthesized ZnO NPs, which had been stabilized by plant metabolites,
varied in their anti-diabetic activity based on their size in streptozotocin (STZ)-induced diabetic
mice [20]. Au NPs synthesized using methanolic extract of Azolla microphylla showed excellent
antioxidant activity [159]. Au NPs produced from Hypoxis hemerocallidea exhibited antibacterial
activity against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas
aeruginosa, whereas Au NPs produced from Galenia africana only exhibited antibacterial activity against
P. aeruginosa [94]. The Fe3O4 NPs synthesized using agro-waste extracts exhibited higher removal
(>90%) of antibiotics than Fe3O4 NPs synthesized by a conventional method [15]. The Cd NPs
synthesized using marigold petal extracts showed better larvicidal activity against mosquito larvae
compared to the Cd NPs synthesized using rose petal extracts [120]. An Azadirachta indica
extract-mediated reduction of Ag ions resulted in the formation of different sizes of NPs (4.74 nm,
8.17 nm, 14.23 nm, and 18.98) when the aqueous extract was not boiled [160], whereas the NPs prepared
using boiled extract were of an average size of 34 nm [46]. Moreover, although the latter showed
antibacterial activities against both gram positive and gram-negative bacteria, the former did not show
activity against gram-positive bacteria.

Table 2. Bioactivities of green-synthesized NPs.

NPs Plant Species Used Bioactivity Reported Reference

Ag Withania somnifera Antibacterial, anticandidal [14]
Ag Lansium domesticum Antibacterial [104]
Ag Crocus sativus Antibacterial [161]
Ag Datura stramonium Antibacterial [162]
Ag Prosopis glandulosa Antibacterial [163]
Ag Azadirachta indica Antibacterial [46]
Au Hypoxis hemerocallidea Antibacterial [94]
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Table 2. Cont.

NPs Plant Species Used Bioactivity Reported Reference

Au Galenia africana Antibacterial [94]
Cu Terminalia catappa Antibacterial [164]
Se Azadirachta indica Antibacterial [165]
Pt Taraxacum laevigatum Antibacterial [166]

TiO2 Trigonella foenum-graecum Antibacterial [167]
Ag2O Ficus benghalensis Antibacterial [168]

Ag Pteris tripartita Antibacterial, antifungal, antioxidant, antiinflammatory [169]
Ag Phyllanthus amarus Antibacterial [170]
Ag Aloe arborescens Antibacterial [171]
Ag Syngonium podophyllum Anticandidal [172]
Ag Euphorbia prostrata Antiplasmodial [173]
Ag Ocimum sanctum Antibacterial [58]
Ag Hybanthus enneaspermus Larvicidal [64]
Ag Eclipta prostrata Larvicidal [174]
Cd Tagetes sp. and Rosa sp. Larvicidal [120]
Ag Holarrhena antidysenterica Larvicidal [175]
Ag Tinospora cordifolia Larvicidal [176]
Ag Chrysanthemum Larvicidal [177]
Ag Delonix elata Wound healing [178]
Ag Ficus krishnae Antibacterial, anticancer [179]
Ag Andrographis paniculata Hepatocurative [180]
Ag Lippia nodiflora Antioxidant, antibacterial, cytotoxic [181]
Ag Tragia involucrata Antiurolithic [182]
Ag Tagetes patula Antifungal [183]
Au Vetiveria zizanioides Antifungal [184]
Au Cannabis sativa Antifungal [184]
Ag Rauvolfia serpentina Antimicrobial, larvicidal and cytotoxic [185]
Au Cassia fistula Antihypoglycemic [186]
Au Terminalia chebula Antifilarial [187]
Au Euphorbia milii Antinociceptive, muscle relaxant, sedative [188]
Ag Rubus glaucus Antioxidant [189]
Au Punica Granatum Antioxidant [190]
Au Azolla microphylla Antioxidant [159]

CuO Morus alba Antioxidant [191]
CuO Olea europaea Antioxidant [192]
Au Acanthopanacis cortex Anti-inflammatory [193]
Au Allium sativum Hepatoprotective [194]
Au Trigonella foenum-graecum Catalytic [195]

CuO Cissus quadrangularis Antifungal [196]
CuO Ormocarpum cochinchinense Anticancer [197]

Pt Punica granatum Cytotoxic [198]
Pd Tinospora cordifolia Antifilarial, antimalarial [199]
Pd Pelargonium graveolens Cytotoxic [200]
Zn Cochlospermum religiosum Antibacterial, antimitotic [201]
Zn Momordica charantia Acaricidal, pediculicidal, larvicidal [202]

ZnO Ulva lactuca Insecticidal [203]
ZnO Hibiscus sabdariffa Antibacterial, antidiabetic [20]
ZnO Calotropis procera Photocatalytic [139]
Ni Desmodium gangeticum Antioxidant, antibacterial [19]

NiO Aegle marmelos Cytotoxic, antibacterial [204]
CeO2 Camellia sinensis Healing of liver sepsis [205]
TiO2 Parthenium hysterophorus Larvicidal, antibacterial, photocatalytic [206]

Fe3O4 Rosmarinus officinalis Leishmanicidal [207]
CeO2 Rubia cordifolia Anticancer [208]

Se Clausena dentata Larvicidal [209]
Au Salix alba Antifungal, antinociceptive, muscle relaxant [105]
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7. Potential Applications of Green-Synthesized NPs

In addition to the several bioactivities listed above, GNPs also have been found to possess several
industrial applications due to the presence of plant compounds (Table 3). For instance, enzymes are
important biocatalysts in modern biotechnology but are highly unstable in nature. The thermal, pH,
and storage stability of α-amylase could be improved by immobilization with naringin-functionalized
magnetite nanoparticles [210]. Ag NPs synthesized using O. sanctum and Chenopodium aristatum
showed good catalytic activity in degradation of 4-nitrophenol [21,22]. Similarly, Ag NPs synthesized
using Thuja occidentalis extract could be used as a soil conditioner and plant growth promoter [211].
Cu NPs synthesized using Lawsonia inermis extract could be used to prepare electrical-conducting
nanobiocomposites [123]. CuO NPs green-synthesized using Ocimum tenuiflorum extract could be used
as non-enzymatic glucose biosensor [212].

Table 3. Secondary metabolites conjugated with NPs.

NP Source Compound(s) Trapped/Conjugated Reference

Ag Withania somnifera leaf extract Catechin, p-coumaric acid,
and luteolin-7-glucoside and withanolides [14]

TiO2 Arabidopsis thaliana seedlings Flavonoids [213]
TiO2 Food samples Myricetin [214]

Fe3O4 Urine and blood Luteolin, quercetin, kaempferol [215]
TiO2 Flavonoids Flavonoids [216]

TiO2-SiO2 Quercetin, rutin Quercetin, rutin [217]
TiO2-SiO2 Quercetin Quercetin [218]

Au Baicalin Baicalin [219]
Au Naringin Naringin [220]
Au Quercetin Quercetin [221]
Au Hesperetin Hesperetin [222]
Au Quercetin Quercetin [223]

Fe3O4 Quercetin Quercetin [224]
Fe3O4 Naringin Naringin [210]

The ability of plant secondary metabolites to chelate metal ions in the production of stable
complexes and their potential to conjugate with NPs has opened a new window for NP use in
harvesting these natural products. The ability to form a NP-secondary metabolite complex upon green
synthesis provides us an opportunity to establish a relationship between NP type and compound
classes, which would have impact on the nanoharvesting of compounds from live plants or tissues.
During nanoharvesting, the metabolites are adsorbed onto the NPs and extrudes from plant cells
to the medium and the metabolites can be separated through elution and magnetization [217].
Nanoharvesting eliminates the use of organic solvents, allows for the spectral identification of the
isolated compounds, and provides new avenues for the use of nanomaterials for coupled isolation and
testing of bioactive properties of plant-synthesized compounds.

Kurepa, et al. [213] showed that TiO2 NPs enter Arabidopsis thaliana plant cells, conjugate
enediol and catechol group-rich flavonoids in situ, and exit plant cells as flavonoid-nanoparticle
conjugates. The compound adsorption capacities of NPs could be further improved by
functionalization [217]. For instance, adsorption capacity of SiO2 NPs towards quercetin was higher upon
TiO2 functionalization in comparison to non-functionalized and decyl group functionalized SiO2 NPs
due to possible binding of quercetin to the metal oxide [218]. This adsorption capacity increased linearly
with surface coverage of TiO2, emphasizing the correlation between functional surface and quercetin
adsorption. Similar to in vivo nanotrapping, in vitro green synthesis of NPs using plant extracts can be
extended further to develop high throughput tools to extract specific classes of compounds from crude
extracts (Figure 5).
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This NPs-secondary metabolite conjugation property can also be used in different fields of
industrial biotechnology. Nanoparticle-mediated delivery of medicinally important flavonoids and
other biomolecules will increase their therapeutic efficacy. As a potential drug delivery system,
hesperitin-conjugated gold nanoparticles enhanced the treatment of hepatocellular carcinoma by
minimizing the side effects and reduced the dose of chemotherapy drug [222]. Recently, several
reports have addressed the potential risk of NPs to both human health and the environment,
which necessitates a method to detect them in food and other samples. A green, facile, and rapid
method using a flavonoid-assisted method was standardized to extract and detect the TiO2 NPs in
food samples [214]. It was also applicable in identifying flavonoid traces in biological samples, such as
urine and blood [215].

8. Conclusions

Although the ability of extracts from diverse plant species to synthesize NPs could be explained by
the widespread occurrence of polyphenolic compounds in the plant kingdom, a precise understanding
of the green synthesis process is needed to realize the full potential of this process in medical
and industrial applications. In spite of the facile synthesis of NPs via a green method, obtaining
homogeneously dispersed NPs is a huge challenge, as several parameters including temperature,
pH of the system, nature of the capping agent, concentration of active compounds, etc. might play
vital roles in defining the size and morphology [225]. Au NPs synthesized using Cinnamomum
zeylanicum leaf broth differed in their shape, which was based on the concentration of the extract [39].
At lower concentrations of the extract, the formation of prism-shaped NPs dominated and, at higher
concentrations however, mostly spherical NPs were formed [39]. Hence, reducing, capping,
or stabilizing agents participating in the green synthesis need to be further analyzed to specify the NP
structural relationship.

A high-throughput analysis of plant extracts with diverse metal ions would provide clues as to
whether there is any correlation between the specific compounds and the NPs generated. This would
have a huge potential in the trapping of compounds and proteins using metal ions or NPs, which are
difficult or expensive to purify by other means. NPs green-synthesized using medicinal plant extracts
should be tested for various bioactivities in comparison with their chemically or physically synthesized
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counterparts to understand whether the bioactivities observed could be attributed to the presence of
capping agents in the NPs. Considering that NPs bioactivities also differ between their size shape
and zeta potential, similar NPs needs to be compared. For example, in spite of excellent antibacterial
activities reported against antibiotic resistant strains, it is not clear whether this is a result of the NPs,
the compounds attached to them, both, or, conversely, a result of the other compounds present in the
extract; such comparisons require further study.

In the light of above discussion, it has been extensively reported that GNPs surface chemistry is
helpful in the advancement of biomedical applications. However, most studies have shown that GNPs
are subjected to calcinations using a blast furnace at ultra high temperatures [225–227] to attain the
highest level of crystalline morphology before they can be used. This will surely provide a pure-phase
crystalline structure, but the surface-attached phytochemicals as capping agents will be decomposed.
Accordingly, to achieve GNPs with functionalized surfaces and sticky capping agents for advanced
biological applications, we must improve the synthesis modes.
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