
materials

Article

One-Dimensional and Two-Dimensional Analytical
Solutions for Functionally Graded Beams with
Different Moduli in Tension and Compression

Xue Li 1, Jun-yi Sun 1,2,* ID , Jiao Dong 1 and Xiao-ting He 1,2 ID

1 School of Civil Engineering, Chongqing University, Chongqing 400045, China; lixuecqu@126.com (X.L.);
dongjiaocqu@126.com (J.D.); hexiaoting@cqu.edu.cn (X.H.)

2 Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University),
Ministry of Education, Chongqing 400045, China

* Correspondence: sunjunyi@cqu.edu.cn; Tel.: +86-(0)23-6512-0720

Received: 17 April 2018; Accepted: 15 May 2018; Published: 17 May 2018
����������
�������

Abstract: The material considered in this study not only has a functionally graded characteristic
but also exhibits different tensile and compressive moduli of elasticity. One-dimensional and
two-dimensional mechanical models for a functionally graded beam with a bimodular effect
were established first. By taking the grade function as an exponential expression, the analytical
solutions of a bimodular functionally graded beam under pure bending and lateral-force bending
were obtained. The regression from a two-dimensional solution to a one-dimensional solution
is verified. The physical quantities in a bimodular functionally graded beam are compared with
their counterparts in a classical problem and a functionally graded beam without a bimodular effect.
The validity of the plane section assumption under pure bending and lateral-force bending is analyzed.
Three typical cases that the tensile modulus is greater than, equal to, or less than the compressive
modulus are discussed. The result indicates that due to the introduction of the bimodular functionally
graded effect of the materials, the maximum tensile and compressive bending stresses may not take
place at the bottom and top of the beam. The real location at which the maximum bending stress
takes place is determined via the extreme condition for the analytical solution.

Keywords: functionally graded beams; different moduli in tension and compression; bimodulus;
analytical solution; neutral layer

1. Introduction

Most materials may exhibit different elastic responses in a state of tension and compression,
but these characteristics are often neglected due to the complexity of their analysis. Materials that
have apparently different moduli in tension and compression are known as bimodular materials [1],
for example, ceramics, graphite, concrete, and some biological materials (nacre, for example [2]).
During recent decades, many studies have described useful material models for studying bimodular
materials. One is Bert’s model [3] based on the criterion of positive-negative signs of the strains
in longitudinal fibers. This model is widely used in laminated composites [4–8]. Another is
Ambartsumyan’s bimodular model [9] for isotropic materials, which has attracted the most attention in
the engineering community. This model assesses different moduli in terms of tension and compression
based on the positive-negative signs of principal stresses, which is especially important for the
analysis and design of structures. It is well-known that the cracking direction of a concrete beam is
always normal to the direction of principal tensile stresses in the beam. The difficulty in applying
Ambartsumyan’s bimodular model is that the stress state of a point must be known in advance.
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However, with the exception of some fundamental problems, we must resort to finite element analysis
to acquire the states of the stresses in a structure [10–14].

In addition to the bimodular effect in materials, it is also interesting to consider the functionally
graded characteristic of materials. Functionally graded materials (FGMs) possess properties that
vary gradually with the location within the material. The use of FGMs has many advantages in
aerospace, automotive, and biomedical applications. There are many approximations that may be
used to model the variation of properties in FGMs. One is the exponential variation, where the elastic
constants vary according to the form of the exponential function. Many researchers have found this
functional form to be convenient in solving elasticity problems. Sankar [15] obtained an elasticity
solution for a functionally graded beam subjected to transverse loads in which the Young’s modulus is
assumed to vary exponentially through the thickness and the Poisson ratio is held constant. Sankar and
co-workers studied the relative issues of functionally graded beams, including thermal stresses [16],
a sandwich beam with a functionally graded core [17], and a combined Fourier series–Galerkin
method [18]. Without specifying the gradient variations of a material property, Zhong and co-workers
presented a general solution of a functionally graded beam by the Airy stress function method [19]
and a displacement function approach [20]. Daouadji et al. [21] employed the stress function approach
to study the problem of a functionally graded cantilever beam subjected to a linearly distributed load,
in which the Young’s modulus along the thickness direction varies with power-law functions or with
exponential functions. Considering that there are many research works in this field, we do not review
them in detail.

Recently, analytical studies of bimodular beams and plates have been performed. Among these
works, the determination of the unknown neutral layer is a key issue because it opens up the possibility
for the establishment of a mechanical model based on a subarea in tension and compression. Under the
assumption that shearing stresses have no contribution to the neutral axis, Yao and Ye [22] obtained
a one-dimensional analytical solution of a bimodular shallow beam. He et al. adopted the stress
function method to find the elasticity solution of a bimodular straight beam [23] and curved beams [24].
Later, the classical Kirchhoff hypothesis was used to assess the existence of the elastic neutral layers of
a thin plate during bending with a small deflection [25]. Consequently, a series of analytical solutions
of plates is derived in rectangular and polar coordinate systems. More recently, He et al. [26] presented
an elasticity solution of a bimodular FGM beam under uniformly distributed loads and discussed
several concrete numerical examples. However, some basic problems are still unclear, which include
the consistency between a one-dimensional solution and a two-dimensional solution, the validity of
the plane section assumption, the corresponding relation among a classical beam, a standard FGM
beam, and a bimodular FGM beam, as well as the bimodular effect on stresses and deformations in
a general sense.

In this study, we will adopt a bimodular FGM beam theory to derive the one-dimensional and
two-dimensional solutions. Theoretically speaking, any FGM beams may be suitable for this theory
provided that the bimodular effect in tension and compression needs to be emphasized for a refined
analysis; or, in other words, a certain constituent that forms functionally graded materials presents
a relatively obvious bimodular effect which can not be ignored otherwise it will introduce much error
into the analysis. The article is organized as follows. The corresponding analytical solutions under
pure bending and lateral-force bending will be obtained in Sections 2 and 3, respectively. Specifically,
a perturbation method is adopted to solve the transcendental equation for the determination of the
unknown neutral layer. The validity of the plane section assumption is discussed and some important
physical quantities among a classical beam, a standard FGM beam, and a bimodular FGM beam are
compared in Section 4. Besides this, without specifying the real magnitude of the external load and the
geometrical dimension of the beam, the bimodular effect on the stress and deformation in a general
sense will be investigated in Section 4. Some important conclusions and subsequent studies are given
in the concluding remarks.
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2. Functionally Graded Beams under Pure Bending

2.1. One-Dimensional Solution

2.1.1. Bending Stress

A bimodular functionally graded beam with a rectangular section dimension of h × b is subjected
to a bending moment M alone as shown in Figure 1. This causes a bending of the beam in the plane
coordinate system xoz. Note that due to the introduction of the bimodular effect in tension and
compression as well as the functionally graded characteristic of the material, the neutral layer of
the beam generally does not locate on the half height of the section. The x axis is established on the
unknown neutral layer as shown in Figure 1. It is obvious that the zone below the neutral layer is in
tension while the zone up the layer is in compression. Let the tensile and compressive section heights
of the beam be h1 and h2, respectively. Also, let the modulus of elasticity of the material in the tensile
and compressive zones be E+(z) and E−(z), respectively, while the Poisson’s ratios remain the same.
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Figure 1. Scheme of a bimodular functionally graded material (FGM) beam under pure bending. 
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Figure 1. Scheme of a bimodular functionally graded material (FGM) beam under pure bending.

If an exponential function is used to express the function grade of the material, E+(z) and E−(z)
may be expressed as

E+(z) = E0eα1z/h, E−(z) = E0eα2z/h, (1)

where α1 and α2 are two grade indexes. E+(z) = E−(z) = E0 when z = 0, that is, at the neutral layer
the tensile modulus is equal to the compressive one. Let the curvature radius of the neutral layer be ρ;
then, the bending strain along the x axis in the whole beam will be the uniform expression εx = z/ρ

if the plane section assumption holds. Thus, according to Ambartsumyan’s bimodular model the
bending stress in the tensile and compressive zones, σ+

x and σ−x , are also the tensile and compressive
principal stress and they are, respectively,

σ+
x =

E+(z)
ρ

z, for 0 ≤ z ≤ h1, (2)

and

σ−x =
E−(z)

ρ
z, for − h2 ≤ z ≤ 0. (3)

Let the normal resultant at any section be N, thus N = 0 yields

∫ h1

0
σ+

x bdz +
∫ 0

−h2

σ−x bdz = 0. (4)
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Substituting Equations (2) and (3) into Equation (4), we have

∫ h1

0

E0eα1z/hzb
ρ

dz +
∫ 0

−h2

E0eα2z/hzb
ρ

dz = 0. (5)

If we let ∫ h1
0 eα1z/hzdz =

(
hh1
α1
− h2

α2
1

)
eα1h1/h + h2

α2
1
= A+

1∫ 0
−h2

eα2z/hzdz =

(
hh2
α2

+ h2

α2
2

)
e−α2h2/h − h2

α2
2
= A−1

, (6)

Equation (4) will lead to the following relation

A+
1 + A−1 = 0, (7)

which is used for the determination of the unknown neutral layer later.
Similarly, the bending moment at any section will give

∫ h1

0
σ+

x bzdz +
∫ 0

−h2

σ−x bzdz = M. (8)

Substituting Equations (2) and (3) into Equation (8), we have

∫ h1

0

E0eα1z/hz2b
ρ

dz +
∫ 0

−h2

E0eα2z/hz2b
ρ

dz = M. (9)

If we let ∫ h1
0 eα1z/hz2dz =

(
hh2

1
α1
− 2 h2h1

α2
1

+ 2 h3

α3
1

)
eα1h1/h − 2 h3

α3
1
= A+

2∫ 0
−h2

eα2z/hz2dz = −
(

hh2
2

α2
+ 2 h2h2

α2
2

+ 2 h3

α3
2

)
e−α2h2/h + 2 h3

α3
2
= A−2

, (10)

Equation (8) will yield
1
ρ
=

M
E0b(A+

2 + A−2 )
. (11)

If D∗ is introduced to denote the flexural stiffness of the bimodular functionally graded beam,
that is,

D∗ = E0b(A+
2 + A−2 ), (12)

the deformation of the beam will follow the familiar form

1
ρ
=

M
D∗

. (13)

Substituting the relation (11) into Equations (2) and (3), we obtain the one-dimensional solution
of the bending stress in the tensile and compressive zones, respectively,

σ+
x =

Meα1z/hz
b(A+

2 + A−2 )
, for 0 ≤ z ≤ h1, (14)

and

σ−x =
Meα2z/hz

b(A+
2 + A−2 )

, for − h2 ≤ z ≤ 0. (15)

It should be noted here that due to this being the pure bending case, only the bending stress may
be obtained and the shearing stress can be derived in the lateral-force bending case, which will be
discussed in Section 3.
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2.1.2. Deflection Curve

Let the vertical displacement of any point on the neutral layer be w; then, Equation (11) may be
expressed in terms of the second-order derivative of w to x as follows

1
ρ
= −d2w

dx2 =
M

E0b(A+
2 + A−2 )

. (16)

Integrating twice with respect to x, we have

w = − Mx2

2E0b(A+
2 + A−2 )

+ cx + d, (17)

where c and d are two undetermined constants. If a simply-supported beam is considered, the boundary
conditions give

w = 0, while x = 0 or l, (18)

where l is the span length of the beam. Thus, the deflection curve of the neutral axis is

w =
M(l − x)x

2E0b(A+
2 + A−2 )

. (19)

If a cantilever beam with the right end fixed is considered, as shown in Figure 1, the displacement
restriction is

w =
dw
dx

= 0, while x = l, (20)

and the deflection curve of the neutral axis will be

w = − M(x− l)2

2E0b(A+
2 + A−2 )

. (21)

2.1.3. Determination of the Neutral Layer

It should be noted here that the two important parameters h1 and h2 have still not been determined.
From Equations (6) and (7), we may have(

h1

α1
− h

α2
1

)
eα1h1/h +

(
h2

α2
+

h
α2

2

)
e−α2h2/h =

h
α2

2
− h

α2
1

, (22)

where α1 and α2 are two indexes concerning the grade function as indicated above. If we introduce the
following dimensionless variables

H1 =
h1

h
, H2 =

h2

h
, (23)

and also multiply the two ends of the equation by α2
1α2

2, Equation (22) may be transformed into
a dimensionless form, such that

(α1H1 − 1)α2
2eα1 H1 + (α2H2 + 1)α2

1e−α2 H2 = α2
1 − α2

2, (24)

in which H1 and H2 are the basic variables and satisfy H1 + H2 = 1. It is a transcendental equation and
is hard to solve analytically to some extent due to the existence of an exponential function. Next, we will
adopt the perturbation idea to solve the transcendental equation.



Materials 2018, 11, 830 6 of 20

The exponential items eα1 H1 and e−α2 H2 may be spread with respect to H1 and H2, respectively,

eα1 H1 = 1 + α1H1 +
1
2 α2

1H2
1 + · · ·+

1
n! (α1H1)

n + · · · ,
e−α2 H2 = 1− α2H2 +

1
2 α2

2H2
2 + · · ·+

1
n! (−α2H2)

n + · · · .
(25)

If the linear approximation is adopted, such that

eα1 H1 = 1 + α1H1, e−α2 H2 = 1− α2H2, (26)

substituting it into Equation (24) will yield

H1 = H2 =
1
2

, (27)

which is exactly the solution of a classical problem without considering the functionally graded
property and bimodular effect of the material. We call it the first-order approximation solution of the
problem. If the second-order approximation is adopted, such that

eα1 H1 = 1 + α1H1 +
1
2

α2
1H2

1 , e−α2 H2 = 1− α2H2 +
1
2

α2
2H2

2 , (28)

substituting it into Equation (24) and considering H2 = 1− H1 yields

(α1 − α2)H3
1 + 3α2H2

1 + (2− 3α2)H1 + α2 − 1 = 0, (29)

which is an algebra equation of H1 and is easily solved either by an analytical method or by a numerical
technique once the numerical values of α1 and α2 are known. The solution of Equation (29) may be
called the second-order approximation solution. Similarly, if more items in Equation (25) are taken,
we will obtain a high-order approximation solution according to the procedure indicated above.
Thus, based on the perturbation idea, the transcendental equation may be gradually transformed
into a nonlinear algebra equation of H1 and the position of the unknown neutral layer is determined
analytically.

2.2. Two-Dimensional Solution

2.2.1. Stress

Let the stress components in the two-dimensional beam problem shown in Figure 1 be σx,
σz, and τxz, let the strain components be εx, εz, and γxz, and also let the displacement components
in the same problem be u and w. Then, in the differential equation of equilibrium in which the body
forces are neglected, the geometrical relation as well as the consistency equation are the same as those
in the classical problem, and they are, respectively,

∂σx

∂x
+

∂τxz

∂z
= 0,

∂τzx

∂x
+

∂σx

∂z
= 0, (30)

and {
εx = ∂u

∂x , εz =
∂w
∂z , γxz =

∂w
∂x + ∂u

∂z
∂2εx
∂z2 + ∂2εz

∂x2 = ∂2γxz
∂x∂z

. (31)

The physical equation gives 
εx = s11σx + s13σz

εz = s13σx + s33σz

γzx = s44τzx

. (32)



Materials 2018, 11, 830 7 of 20

After considering the different moduli in tension and compression as well as the functional grade
of the material, the physical equation may take the following form

ε+/−
x = 1

E0eαi z/h (σ
+/−
x − µσ+/−

z )

ε+/−
z = 1

E0eαi z/h (σ
+/−
z − µσ+/−

x )

γ+/−
zx = 2(1+µ)

E0eαi z/h τ+/−
zx

, (33)

where a superscript “+/−” denotes a tensile (compressive) quantity and αi(i = 1, 2) correspond to
the cases of tension and compression, respectively. Equation (33) is in essence two sets of equations
concerning tension and compression.

Next, the stress function method will be adopted to obtain the solution of this two-dimensional
problem. Due to pure bending, here we still consider that the stress function ϕ+/−(x, z) depends only
on z, that is

ϕ+/−(x, z) = f+/−(z), (34)

where f+/−(z) is an unknown function and “+/−” still denotes a tensile (compressive) quantity.
According to the relation between the stress function and the stress components,

σ+/−
x =

∂2 ϕ+/−

∂z2 , σ+/−
z =

∂2 ϕ+/−

∂x2 , τ+/−
xz = −∂2 ϕ+/−

∂x∂z
. (35)

Equation (33) may be changed as
ε+/−

x = 1
E0eαi z/h

d2 f+/−(z)
dz2

ε+/−
z = −µ

E0eαi z/h
d2 f+/−(z)

dz2

γ+/−
zx = 0

. (36)

Letting Equation (36) satisfy the consistency relation, we obtain

d2

dz2

[
1

E0eαiz/h
d2 f+/−(z)

dz2

]
= 0. (37)

Integrating twice with respect to z, we have

d2 f+/−(z)
dz2 = (C+/−

1 z + C+/−
2 )E0eαiz/h, (38)

where C+/−
1 and C+/−

2 are four undetermined constants. Continuously integrating with respect to z,
we obtain

f+/−(z) =
(

z− 2h
αi

)
E0C+/−

1 h2eαiz/h

α2
i

+
E0C+/−

2 h2eαiz/h

α2
i

+ C+/−
3 z + C+/−

4 , (39)

where C+/−
3 and C+/−

4 are four undetermined constants and may be neglected. The stress function is
simplified as

ϕ+/−(x, z) =
(

z− 2h
αi

)
E0C+/−

1 h2eαiz/h

α2
i

+
E0C+/−

2 h2eαiz/h

α2
i

. (40)

Correspondingly, the stress expressions are

σ+/−
x = (C+/−

1 z + C+/−
2 )E0eαiz/h, σ+/−

z = 0, τ+/−
zx = 0. (41)



Materials 2018, 11, 830 8 of 20

Next, we will use the boundary conditions as well as the continuity condition of stress to determine
the four unknown constants C+/−

1 and C+/−
2 .

First, the continuity conditions of the stresses on the neutral layer give

σ+
x = σ−x = 0, σ+

z = σ−z , τ+
xz = τ−xz at z = 0. (42)

According to Equation (41), it is easily found that the last two conditions are surely satisfied and
the first condition yields

C+
2 = C−2 = 0. (43)

The stress boundary conditions on the two main sides of the beam are, respectively,{
σ+

z = 0, τ+
xz = 0 at z = h1

σ−z = 0, τ−xz = 0 at z = −h2
, (44)

which are surely satisfied due to pure bending. At the left end of the beam, the application of
Saint-Venant’s Principle gives

∫ h1
0 σ+

x bdz +
∫ 0
−h2

σ−x bdz = 0,∫ h1
0 σ+

x zbdz +
∫ 0
−h2

σ−x zbdz = M∫ h1
0 τ+

xzbdz +
∫ 0
−h2

τ−xzbdz = 0,

, at x = 0. (45)

It is easily found that the last condition is satisfied and the first two conditions will
yield, respectively,

C+
1

∫ h1

0
zeα1z/hdz + C−1

∫ 0

−h2

zeα2z/hdz = 0, (46)

and

C+
1

∫ h1

0
z2eα1z/hdz + C−1

∫ 0

−h2

z2eα2z/hdz =
M

E0b
. (47)

Considering the Equations (6), (7), and (10), we solve

C+
1 = C−1 =

M
E0b(A+

2 + A−2 )
. (48)

Thus, the final stress components are

σ+/−
x =

M
b(A+

2 + A−2 )
zeαiz/h, σ+/−

z = 0, τ+/−
zx = 0, (49)

which is the same as the one-dimensional solution obtained in Section 2.1.1.

2.2.2. Displacement

After the determination of the stress components, the combination of the physical equations and
the geometrical equations will give

ε+/−
x = M

E0b(A+
2 +A−2 )

z = ∂u
∂x

ε+/−
z = −µM

E0b(A+
2 +A−2 )

z = ∂w
∂z

γ+/−
zx = 0 = ∂u

∂z + ∂w
∂x

. (50)
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Integrating the first two expressions with respect to x and z, we have, respectively,

u =
M

E0b(A+
2 + A−2 )

zx + g1(z), (51)

and
w =

−µM
2E0b(A+

2 + A−2 )
z2 + g2(x), (52)

where g1(z) and g2(x) are two undermined functions. Substituting u and w into the third expression
in Equation (50), we have

M
E0b(A+

2 + A−2 )
x +

dg2(x)
dx

= −dg1(z)
dz

= a, (53)

where a is a rigid displacement item. Integrating the above expression with respect to z and x, we have,
respectively,

g1(z) = −az + c, (54)

and
g2(x) = − M

2E0b(A+
2 + A−2 )

x2 + ax + d, (55)

where and d are still rigid displacement items. Now, the displacement may be expressed as

u =
M

E0b(A+
2 + A−2 )

zx− az + c, (56)

and
w = − M

2E0b(A+
2 + A−2 )

(x2 + µz2) + ax + d. (57)

If we consider here a simply-supported beam, the corresponding boundary conditions give{
u = w = 0, while x = 0, z = 0
w = 0, while x = l, z = 0

, (58)

where l is the span length of the beam. Thus, the last displacement components are u(x, z) = M
2E0b(A+

2 +A−2 )
(2x− l)z

w(x, z) = − M
2E0b(A+

2 +A−2 )
(x2 + µz2 − lx)

. (59)

The deflection curve of the neutral layer may be obtained by w(x, z)|z=0, which is the same as the
one-dimensional solution, i.e., Equation (19). If a cantilever beam with the right end fixed is considered,
the restriction conditions yield

u = w =
∂w
∂x

= 0, while x = l, z = 0, (60)

the last displacement components will be u(x, z) = M
E0b(A+

2 +A−2 )
(x− l)z

w(x, z) = − M
2E0b(A+

2 +A−2 )
(x2 + µz2 − 2lx + l2)

. (61)

Similarly, the deflection curve of the neutral layer is consistent with the result presented in
Equation (21).
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3. Bimodular Functionally Graded Beams under Latera-Force Bending

Let us consider the lateral-force bending problem of a bimodular functionally graded beam,
as shown in Figure 2, in which the left end of the beam is subjected to the action of a concentrated
force P and the right end is fixed. Due to the combined action of the bending moment and the shearing
force, any point in the beam is in diagonal tension or diagonal compression; so, it is very difficult to
determine the position and shape of the unknown neutral layer if the constitutive law defined in the
principal stress direction is strictly followed. For this purpose, an important assumption that shearing
stresses have no contribution to the neutral axis [22] is used to establish the simplified mechanical
model. In the light of the assumption, the beam will deflect and develop a so-called tensile zone
and compressive zone under the external load. The tension and compression of any point in the
beam depend only on the direction of the bending stress and are independent of the shearing stress.
Thus, similar to the case of pure bending shown in Figure 1, the mechanical model based on a subarea
in tension and compression is still established in the case of lateral-force bending as shown in Figure 2.
The basic equations of the problem are the same as those in Section 2.2.1, that is, Equations (30)–(33).
According to the loading conditions, the stress function may be assumed to be

ϕ+/− = x f+/−(z), (62)

where f+/−(z) is an unknown function, and it may be determined by satisfying the consistency
relation. The strain components expressed in term of f+/−(z) are

ε+/−
x = x

E0eαi z/h
d2 f+/−(z)

dz2

ε+/−
z = −µx

E0eαi z/h
d2 f+/−(z)

dz2

γ+/−
zx = −2(1+µ)

E0eαi z/h
d f+/−(z)

dz

. (63)
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Satisfying the consistency relation for any x gives

d2

dz2

[
1

E0eαiz/h
d2 f+/−(z)

dz2

]
= 0. (64)

Continuously integrating with respect to z, we have

f+/−(z) =
(

z− 2h
αi

)
E0C+/−

1 h2eαiz/h

α2
i

+
E0C+/−

2 h2eαiz/h

α2
i

+ C+/−
3 z, (65)
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where C+/−
1 , C+/−

2 and C+/−
3 are six undetermined constants; the constant item has been neglected.

Thus, the stress function now has the following form

ϕ+/− = x

[(
z− 2h

αi

)
E0C+/−

1 h2eαiz/h

α2
i

+
E0C+/−

2 h2eαiz/h

α2
i

+ C+/−
3 z

]
. (66)

The stress components expressed in terms of the undetermined constants are σ+/−
x = x(C+/−

1 z + C+/−
2 )E0eαiz/h, σ+/−

z = 0

τ+/−
zx = −(αiz− h) E0C+/−

1 heαi z/h

α2
i

− E0C+/−
2 heαi z/h

αi
− C+/−

3
. (67)

The continuity conditions of the stresses on the neutral layer under lateral-force bending are the
same as those under pure bending; thus, applying Equation (42) yields

C+
2 = C−2 = 0, (68)

and
E0C+

1 h2

α2
1
− C+

3 =
E0C−1 h2

α2
2
− C−3 . (69)

Similarly, the stress boundary conditions on the two main sides of the beam are the same as those
in Equation (44). Satisfying the conditions in the tensile and compressive zones yields, respectively,

τ+
zx = −(α1h1 − h)

E0C+
1 heα1h1/h

α2
1

− C+
3 = 0, (70)

and

τ−zx = −(−α2h2 − h)
E0C−1 he−α2h2/h

α2
2

− C−3 = 0. (71)

At the left end of the beam, the application of Saint-Venant’s Principle gives
∫ h1

0 σ+
x bdz +

∫ 0
−h2

σ−x bdz = 0,∫ h1
0 σ+

x zbdz +
∫ 0
−h2

σ−x zbdz = 0∫ h1
0 τ+

xzbdz +
∫ 0
−h2

τ−xzbdz = P,

, at x = 0. (72)

It is easily found that the first two conditions are satisfied and the last condition gives

∫ h1

0

[
(α1z− h)

E0C+
1 heα1z/h

α2
1

+ C+
3

]
dz +

∫ 0

−h2

[
(α2z− h)

E0C−1 heα2z/h

α2
2

+ C−3

]
dz = −P

b
. (73)

Equations (69), (70), (71), and (73) may be used for the solution of C+/−
1 and C+/−

3 .
First, substituting Equations (70) and (71) into Equation (69) and also considering A+

1 and A+
1

introduced beforehand, we have a simple expression

A+
1 C+

1 + A−1 C−1 = 0, (74)

which gives C+
1 = C−1 due to A+

1 + A−1 = 0. Second, integrating Equation (73), substituting Equations
(70) and (71) into it, and also considering A+

2 and A−2 introduced beforehand, Equation (73) may be
simplified as

A+
2 C+

1 + A−2 C−1 =
P

E0b
. (75)
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Combining Equations (74) and (75) will solve C+
1 and C−1 , and substituting them into

Equations (70) and (71), we finally obtain

C+
1 = C−1 = P

E0b(A+
2 +A−2 )

C+
3 = Peα1h1/h

b(A+
2 +A−2 )

(
h2

α2
1
− hh1

α1

)
,

C−3 = Pe−α2h2/h

b(A+
2 +A−2 )

(
h2

α2
2
+ hh2

α2

) (76)

Substituting the determined C+/−
1 , C+/−

2 and C+/−
3 into Equation (67), the stress components are

obtained as follows

σ+/−
x = Px

b(A+
2 +A−2 )

zeαiz/h, σ+/−
z = 0

τ+
zx = P

b(A+
2 +A−2 )

[(
h2

α2
1
− hz

α1

)
eα1z/h −

(
h2

α2
1
− hh1

α1

)
eα1h1/h

]
τ−zx = P

b(A+
2 +A−2 )

[(
h2

α2
2
− hz

α2

)
eα2z/h −

(
h2

α2
2
+ hh2

α2

)
e−α2h2/h

] . (77)

It is easily found that the item Px in σ+/−
x is exactly the magnitude of the bending moment, which

is consistent with Equations (14) and (15).
By use of the physical equation and the geometrical equation, the displacement components may

be determined as
u+ =

P[(1+µ)h(12hα1z−6α2
1z2)+µα3

1z3+3α3
1x2z+12(1+µ)h2eα1(h1−z)/h(h−h1α1)]

6E0bα3
1(A+

2 +A−2 )
− a+z− c+

u− =
P[(1+µ)h(12hα2z−6α2

2z2)+µα3
2z3+3α3

2x2z+12(1+µ)h2e−α2(h2+z)/h(h+h2α2)]

6E0bα3
2(A+

2 +A−2 )
− a−z− c−

w+/− = P
6E0b(A+

2 +A−2 )
(−3µxz2 − x3) + a+/−x + d+/−

, (78)

where a, d, and c are the items concerning rigid displacement. Using the boundary condition u = w =

∂w/∂x = 0 at x = l, z = 0, we have a+/− = Pl2

2E0b(A+
2 +A−2 )

, d+/− = − Pl3

3E0b(A+
2 +A−2 )

,

c+ = 2(1+µ)h2(h−h1α1)Peα1h1/h

E0bα3
1(A+

2 +A−2 )
, c− = 2(1+µ)h2(h+h2α2)Pe−α2h2/h

E0bα3
2(A+

2 +A−2 )

. (79)

Thus, the final displacements are determined.

4. Results and Discussions

4.1. Comparision among Three Types of Beam

As indicated before, the material considered in this study not only has a functionally graded
characteristic but also presents different mechanical properties in tension and compression. It is
valuable to compare physical quantities in a bimodular FGM beam and a standard FGM beam
(without bimodular effect) with their counterparts in a classical problem. We should note that
in a classical problem, there is no variation of material properties along the thickness direction;
thus, the relevant integrals are usually done over the whole section height. The comparisons among
the three types of beams are listed in Table 1. It is easily found that when the grade indexes α1 = α2,
the quantities in a bimodular FGM beam regress to the corresponding quantities in a standard FGM
beam; when α1 = α2 = 0, the regression continues up to the classical problem.
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Table 1. Comparisons among a classical beam, an FGM beam, and a bimodular FGM beam.

Quantities A Classical Beam A FGM Beam A Bimodular FGM Beam

Modulus of elasticity

E E = Const. E(z) = E0eαz/h E+(z) = E0eα1z/h, E−(z) = E0eα2z/h

Moment of inertia

Iy bh3

12

∫
A eαz/hz2dA

∫ h1
0 eα1z/hz2bdz +

∫ 0
−h2

eα2z/hz2bdz
= b(A+

2 + A−2 )

Bending stiffness

D EIy E0
∫

A eαz/hz2dA E0b(A+
2 + A−2 )

Curvature

1
ρ

M
EIy

M
E0
∫

A eαz/hz2dA
M

E0b(A+
2 +A−2 )

Bending stress

σx
M
Iy

z Mz∫
A eαz/hz2dA

σ+
x = M

b(A+
2 +A−2 )

zeα1z/h

σ−x = M
b(A+

2 +A−2 )
zeα2z/h

Static moment when computing shearing stress

Sy
b
2

(
h2

4 − z2
) ∫

A eαz/hzdA


S+ =

∫ h1
z ea1z/hzbdz for 0 ≤ z ≤ h1

= b
[(

h2

a2
1
− hz

a1

)
ea1z/h −

(
h2

a2
1
− hh1

a1

)
ea1h1/h

]
S− =

∫ −h1
z ea2z/hzbdz for − h2 ≤ z ≤ 0

= b
[(

h2

a2
2
− hz

a2

)
ea2z/h −

(
h2

a2
2
+ hh2

a2

)
ea2h2/h

]
Shearing stress

τxz
PSy
Iyb

P
∫

A eαz/hzdA
b
∫

A eαz/hz2dA


τ+

zx = for 0 ≤ z ≤ h1
P

b(A+
2 +A−2 )

[(
h2

a2
1
− hz

a1

)
ea1z/h −

(
h2

a2
1
− hh1

a1

)
ea1h1/h

]
,

τ+
zx = for − h2 ≤ z ≤ 0

P
b(A+

2 +A−2 )

[(
h2

a2
2
− hz

a2

)
ea2z/h −

(
h2

a2
2
− hh2

a2

)
ea2h2/h

]
,

4.2. Plane Section Assumption

For the pure bending problem, the rotation of a vertical element of the cross section, β, may be
obtained from Equation (61),

β =
∂u
∂z

=
M

E0b(A+
2 + A−2 )

(x− l). (80)

It is obvious that the rotation is not dependent on z, which shows that for the pure bending
problem, the plane section assumption is surely satisfied. However, for the lateral-force bending
problem, the rotation may be obtained from Equation (78), respectively, for the tensile area

β = ∂u+

∂z =
P[(1+µ)h(12hα1−12α2

1z)+3µα3
1z2+3α3

1x2−12(1+µ)α1heα1(h1−z)/h(h−h1α1)]

6E0bα3
1(A+

2 +A−2 )
− a+, (81)

and for the compressive area

β = ∂u−
∂z =

P[(1+µ)h(12hα2−12α2
2z)+3µα3

2z2+3α3
2x2−12(1+µ)α2he−α2(h2+z)/h(h+h2α2)]

6E0bα3
2(A+

2 +A−2 )
− a−. (82)

It is readily seen that the rotation is now the function of z. This means that on any cross section,
a vertical element under bending will deviate from the original vertical direction and the deviated
value varies with the distance from the neutral layer, i.e., z. Consequently, for the lateral-force
bending problem the plane section assumption no longer holds. Moreover, unlike the pure bending
problem, the rotation will not continuously develop at the neutral layer due to the difference in tension
and compression.
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4.3. Bimodular Effect on Stress and Displacement

The bimodular effect on stress and displacement may be analyzed by the use of the analytical
results obtained. To avoid the inconvenience introduced by the dimension of physical quantities,
besides Equation (23), we adopt the following dimensionless manner:

m = M
E0h3 , p = P

E0h2 , a =
A+

2 +A−2
h3 , ζ = z

h , η = x
l ,

s+/− = σ+/−
x b
E0h , t+/− = τ+/−

zx b
E0h , u∗ = ub

l2 , w∗ = wb
l2 ,

. (83)

The two-dimensional solution for stress and displacement under pure bending,
i.e., Equations (49) and (61), may be changed as, respectively,

s+ =
m
a

ζeα1ζ , for 0 ≤ ζ ≤ H1; s− =
m
a

ζeα2ζ , for − H2 ≤ ζ ≤ 0, (84)

and

u∗ =
m
a

h
l
(η − 1)ζ, w∗ = − m

2a
[η2 + µ(

h
l
)

2
ζ2 − 2η + 1]. (85)

The above dimensionless displacement is helpful for analyzing the approximation degree from
a two-dimensional solution to a one-dimensional one. We note that there exists a common factor h/l in
the expressions of u∗ and w∗. If a typical shallow beam is considered here, the ratio of the beam height
to span length will be much less than 1, i.e., h/l � 1; this makes the magnitude of the u∗ value much
less than the value of w∗. Thus, in one-dimensional beam theory the horizontal displacement u∗ is
generally neglected without much error. On the other hand, if h/l � 1, also the term (h/l)2 � 1 and
0 < µ < 0.5 for common materials; thus, the second term µ(h/l)2ζ2 in w∗ may be neglected comparing
to other items. This yields

u∗ = 0, w∗ = − m
2a

(η − 1)2, (86)

which is exactly the dimensionless one-dimensional solution for displacement.
Similarly, the two-dimensional solution for stress under lateral-force bending, i.e., Equation (77),

may be changed as

s+ = p
a

l
h ηζeα1ζ , for 0 ≤ ζ ≤ H1; s− = p

a
l
h ηζeα2ζ , for − H2 ≤ ζ ≤ 0 (87)

t+ = p
a

[(
1
α2

1
− ζ

α1

)
eα1ζ −

(
1
α2

1
− H1

α1

)
eα1 H1

]
, for 0 ≤ ζ ≤ H1

t− = p
a

[(
1
α2

2
− ζ

α2

)
eα2ζ −

(
1
α2

2
+ H2

α2

)
e−α2 H2

]
, for − H2 ≤ ζ ≤ 0

. (88)

Considering the characteristics of the grade function E+(ζ) = E0eα1ζ where 0 ≤ ζ ≤ H1 and
E−(ζ) = E0eα2ζ where −H2 ≤ ζ ≤ 0, it is easily found from Figure 3 that if the grade indexes α1 > 0
and α2 > 0, E+(ζ) > E−(ζ) holds; if α1 < 0 and α2 < 0, E+(ζ) < E−(ζ) holds; obviously, α1 = α2 = 0
corresponds to the classical problem. Therefore, 13 representative examples concerning the taken
values of α1 and α2 are selected, including ±0.5, ±1.0, and ±2.0. Some relative parameters, including
H1 and H2 (from Equation (24)) and a (from Equation (83)), are computed and listed in Table 2.
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From Table 2, it is easily found that for E+(ζ) > E−(ζ), as the values of α1 and α2 increase,
the tensile height decreases while the compressive height increases, which means that the neutral axis
is tending downward (see Figures 1 and 2, z axis is down); for E+(ζ) < E−(ζ), as the absolute values
of α1 and α2 increase, the tensile height increases while the compressive height decreases, which means
the neutral axis is tending upward. Besides this, we also note another interesting phenomenon, which
is that due to the characteristic of an exponential function, the heights in tension and compression H1

and H2 are exactly reversed in some cases, including groups (a) and (g), (b) and (h), (c) and (i), and (e)
and (k). For the values of a, they are the same as in the combinations above.

If the midspan displacement (i.e., x = l/2 or η = 0.5) of a beam under pure bending is considered,
u∗ in Equation (85) may be changed as

u∗

m
= − ζ

20a
, (89)

where h/l is taken as 1/10. For the main three types of cases listed in Table 2, i.e., the representative
groups (d), (f), and (j), the varying curves of u∗/m with ζ(= z/h) as well as the deflection curve of
the neutral layer (ζ = 0, see w∗/m in Equation (86)) with η(= x/l) are plotted in Figures 4 and 5,
respectively, in which the solid lines correspond to the case of E+(ζ) > E−(ζ), the dashed
lines correspond to the case of E+(ζ) = E−(ζ), and the dotted lines correspond to the case of
E+(ζ) < E−(ζ).

Table 2. Numerical values of H1, H2, and a in different cases.

Cases Groups ff1 ff2 H1 H2 a

E+(ζ) > E−(ζ)

(a) 1.0 2.0 0.3725 0.6275 0.0560
(b) 2.0 1.0 0.3859 0.6141 0.0836
(c) 1.0 1.0 0.4180 0.5820 0.0762
(d) 1.0 0.5 0.4399 0.5601 0.0872
(e) 0.5 0.5 0.4585 0.5415 0.0815

E+(ζ) = E−(ζ) (f) 0 0 1/2 1/2 1/12

E+(ζ) < E−(ζ)

(g) −2.0 −1.0 0.6275 0.3725 0.0560
(h) −1.0 −2.0 0.6141 0.3859 0.0836
(i) −1.0 −1.0 0.5820 0.4180 0.0762
(j) −1.0 −0.5 0.5638 0.4362 0.0720
(k) −0.5 −0.5 0.5415 0.4585 0.0815

Similarly, we may use the midspan stress formulas (η = 0.5) of a beam under lateral-force bending
to analyze the bimodular effect on the bending stress and shearing stress. Thus, Equation (87) is
changed as

s+

p
=

5
a

ζeα1ζ , for 0 ≤ ζ ≤ H1;
s−

p
=

5
a

ζeα2ζ , for − H2 ≤ ζ ≤ 0 (90)
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where l/h = 10. For the main three cases listed in Table 2, the variation of stresses with ζ(= z/h) are
plotted in Figures 6 and 7, in which the shearing stress curve t/p is directly from Equation (88).

We should note such a fact that since the neutral layer is established on the x axis beforehand,
the dividing line between tension and compression is always on ζ = 0, which may be easily seen from
Figures 4, 6 and 7. Figure 4 shows that the horizontal displacement varies in a linear relation along the
direction of the beam thickness as indicated in Equation (89). The maximum horizontal displacement
takes place at the edge of the compressive area for E+(ζ) > E−(ζ) and at the edge of the tensile area
for E+(ζ) < E−(ζ), while the maximum displacement is equal for E+(ζ) = E−(ζ). Figure 5 shows
that, for any point on the neutral layer, the deflection value when E+(ζ) > E−(ζ) is always less than
the corresponding value when E+(ζ) < E−(ζ).
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Figure 6 presents a typical exponent relation of bending stress varying along the direction of the
beam thickness. Due to the variation of elastic modulus with the thickness direction, the location at
which the maximum stress takes place may be changed. For E+(ζ) > E−(ζ), the maximum tensile
stress still takes place at the tensile edge of the beam while the maximum compressive stress will
take place on a certain level between the compressive edge and the neutral layer; for E+(ζ) < E−(ζ),
the maximum compressive stress still takes place at the compressive edge of the beam while the
maximum tensile stress will take place on a certain level between the tensile edge and the neutral
layer; for E+(ζ) = E−(ζ), the maximum tensile and compressive stress are equal and take place at
the tensile and compressive edges of the beam, respectively, as we expected. This conclusion may be
proved by the use of the extreme condition for an analytical solution of bending stress. We take the
first-order derivative of bending stress with respect to the thickness direction, z, such that,

∂σ+/−
x
∂z

=
∂

∂z
M(x)

b(A+
2 + A−2 )

zeαiz/h =
M(x)

b(A+
2 + A−2 )

(eαiz/h + z
αi
h

eαiz/h), (91)
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where M(x) = M for pure bending and M(x) = Px for lateral bending. Via extreme conditions
∂σ+/−

x /∂z = 0, we have
eαiz/h(1 + z

αi
h
) = 0, (92)

eαiz/h > 0 permanently holds true, we have

z = − h
αi

, (93)

which determines the location at which the maximum tensile or compression stress takes place.
By referring to Figure 3, it is obvious that for E+(ζ) > E−(ζ), the maximum compressive stress
takes place at z = −h/α2; for E+(ζ) < E−(ζ), the maximum tensile stress takes place at z = −h/α1.
This phenomenon is quite different from the classical problem.

For the three cases of different moduli in tension and compression, Figure 7 uniformly indicates
that the maximum shearing stress takes place at the neutral layer (ζ = 0) and takes zero at the top
and bottom of the beam. For E+(ζ) = E−(ζ), the shearing stress in tension and compression is
symmetrical with respect to ζ = 0, while for the other two cases the rule does not hold. Moreover,
the maximum shearing stress in the case of E+(ζ) > E−(ζ) is less than the maximum stress in the case
of E+(ζ) < E−(ζ).

5. Concluding Remarks

In this study, one-dimensional and two-dimensional mechanical models for a functionally graded
beam with different moduli in tension and compression were established. The corresponding analytical
solutions under pure bending and lateral-force bending were obtained. The following three conclusions
can be drawn.

(1) The mechanical models established on the one-dimensional and two-dimensional theory are
consistent; the two-dimensional solution may regress to the corresponding one-dimensional solution.

(2) For pure bending problems, the plane section assumption still holds for a bimodular
functionally graded beam; for lateral-force bending problems, the plane section assumption holds only
in the case of a shallow beam.

(3) The introduction of the bimodular effect and functionally graded characteristic of materials
will change the stress and deformation of the structure to some extent. Specifically, the maximum
bending stress may take place at a certain level between the neutral layer and edge fibers of the beam,
which should be given more attention in the analysis and design of similar structures.

The material considered in this study not only has a functionally graded characteristic but also
exhibits different tensile and compressive moduli of elasticity, which further complicates the analysis
of similar structures made from these materials. It will be worthwhile considering the plate model
adopting classical plate theory for laminate (or higher order theory) to discretize the material properties
along the direction of the plate thickness (or here along the beam height).

Moreover, since beams, plates, and shells can all be attributed to, from the point of view of loading
and deformation, bending elements under external loads, this work may be extended to the static and
dynamic responses of functionally graded beams [27], of functionally graded plates [28], as well as of
functionally graded shells [29], in which the bimodular effect of the materials will be incorporated.
At the same time, this work may also be extended to an investigation on the existing capabilities and
limitations in numerical modeling of fracture problems in functionally graded materials by means of
the well-known finite element code ABAQUS [30]. We will study these interesting issues in the future.
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