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Abstract: Cognitive abilities are related to job performance. However, there is less agreement about
the relative contribution of general versus specific cognitive abilities to job performance. Similarly, it
is not clear how cognitive abilities operate in the context of complex occupations. This study assessed
the role of cognitive abilities on the performance of three aviation-related jobs: flying, navigation,
and air battle management (ABM). Correlated-factor and bifactor models were used to draw a
conclusion about the predictive relations between cognitive abilities and job performance. Overall,
the importance of particular cognitive abilities tends to vary across the three occupations, and each
occupation has different sets of essential abilities. Importantly, the interplay of general versus specific
abilities is different across occupations, and some specific abilities also show substantial predictive
power.

Keywords: cognitive abilities; general ability; job performance; aviation; predictive validity; bifactor
model

1. Introduction

The importance of general cognitive ability, g, as compared to specific abilities for
job performance has been a subject of great debate (Kell and Lang 2018). Despite the
assertion that cognitive abilities are among the best predictors of job performance, the
controversy as to which ability or set of abilities plays a significant role in explaining variance
in the criterion space of job performance has never ended. In this context, many studies
have been and are being published to advocate the importance of some particular ability
over other abilities for job performance prediction. The works of Schmidt and Hunter
(1998, 2004) are examples of a strong line of research ascertaining that g is the most crucial
ability for predicting occupational performance, whereas specific abilities do not explain
much variance beyond g. Hunter (1986, p. 341) took an extreme position when he stated
that “it is general cognitive ability and not specific cognitive aptitudes which predict job
performance.” Schmidt (2002) argued that it is “not logically possible” to have a serious
debate over the importance of general cognitive ability for job performance. In the same way,
the “Not Much More Than g” series of Ree and his colleagues (Ree and Earles 1991, 1996;
Ree et al. 1994) is a reflection of the same standpoint that views g as the best construct
for the prediction of job performance. One implication of such a hypothesis is that the
focus in selection procedures should be directed, to a large extent, to applicants’ scores of
general ability (or IQ) and, to a much lesser extent, to their narrower ability scores.

Opposing this line of cognitive ability research, another direction has started to
gain attention in recent years, emphasizing that specific abilities (e.g., verbal, quantita-
tive, spatial) can also be significant components for predicting success in occupations,
and their roles should not be ignored (e.g., Krumm et al. 2014; Lang and Kell 2020;
Murphy 2017; Reeve et al. 2015; Schneider and Newman 2015; Wee et al. 2014). The
idea of having one single trait, g, capable of fully capturing the individual differences in job
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performance might be problematic for applied industrial/organizational (I/O) psychology
(Beier et al. 2019), particularly for selection and assessment purposes. Beier et al. (2019)
noted that three challenges arise when relying solely on a g score: violation of legal frame-
works in some organizations (e.g., not complying with job analysis), limitations of the
information obtained from one single score, and the large majority—minority differences
typically associated with g scores. Criticism was raised that research examining the predic-
tion of job performance often takes g for granted, and other abilities are considered only for
the sake of a little improvement (Ziegler and Peikert 2018). Stankov (2017) argued that the
overemphasized “g” has hindered the study of broad and specific cognitive abilities and
led to neglecting the first- and second-stratum factors in the Cattell-Horn—Carroll (CHC)
model. Similarly, Murphy (2017) noted that studies stressing ¢ measures over measures of
specific abilities fail to consider the second-stratum abilities that can sometimes be more
predictive for job performance than more global measures of general cognitive ability. He
cautioned that the increasing publications overstressing the predictive role of ¢ and under-
estimating the incremental contribution of specific abilities might have led to a premature
decline in research on the roles of specific abilities in the workplace (Murphy 2017).

In contrast to the “Not Much More Than g” hypothesis, Kell and Lang (2017) main-
tained that specific abilities in some workplaces could be “More Important Than g.” The
supporters of this contention believe that many of the findings that have devalued the
significance of specific abilities in workplaces were due to limitations in the analytical
procedures used in the assessment of predictive relations. The majority relied primarily on
traditional regression analyses (e.g., hierarchical linear regression), which might not be the
ideal analyses for making a firm conclusion about the relative importance of predictors.
Although this family of statistical techniques is powerful in maximizing the prediction of a
particular set of variables, they tend to provide an “unequal” opportunity for predictors to
exhibit their potential power, especially when the multicollinearity among predictors is
high (Tonidandel and LeBreton 2011).

In hierarchical regression analyses, the frequently used method in incremental validity
studies, a score of g (often the first unrotated principal component or composite score from
a test battery), is entered first in the model, whereas specific abilities are added second in
the model (e.g., Ree et al. 1994). Criterion scores (e.g., flying performance) are regressed
first on scores of g, with scores of specific abilities (e.g., spatial ability, perceptual speed)
entered in the second step of a hierarchical regression. The shared variance in this statistical
design is always attributed to the influence of g because the model prioritizes predictors
entered first into the hierarchical regression, regardless of specific-abilities variance shared
with the criterion. Even the overlapping shared variance between ¢ and specific abilities is
counted as resulting from g. The only variance that is credited to other predictors in the
model is the percentage that does not overlap with g. Such an analytical strategy is likely
to leave little remaining variance in criterion scores that can be accounted for by specific
abilities (Lang et al. 2010).

For that reason, many researchers have called for adapting other analytical procedures
when attempting to establish whether specific abilities have incremental validity above and
beyond that provided by g. Relative importance analysis (RIA) is one useful analytical
procedure for investigating predictor—criteria relationships. Two variants of RIA have gained
popularity in recent years: relative weight analysis (Johnson 2000) and dominance analysis
(Azen and Budescu 2003). Both procedures have beenfound to produce similar results,
although they differ in their computational and analytical foundations (Johnson 2000). The
two procedures allow for a more accurate partitioning of variance in multiple regression,
which leads to a better judgment of the effect of predictors on outcomes. RIA exhibits the
impact each predictor has on the overall model, considering both its unique contribution and
its contribution in the presence of other predictors (LeBreton et al. 2007). It decomposes the
total predicted variance in a criterion into that which should be attributed to each individual
predictor, even when the predictors are strongly correlated with one another. These analyses,
however, are not meant to be a replacement for regression analyses but rather an informative
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supplement fostering the understanding of the role played by each predictor in a regression
equation (Tonidandel and LeBreton 2011). Although relative weight and dominance analysis
are very useful techniques for assessing the relative importance of predictors in a model,
neither is as powerful as multiple regression in maximizing the prediction of the criterion
variable.

A bifactor model, or nested-factor model, is another useful approach to help improve
our understanding of the interplay of predictors. Although this model was introduced
many decades ago (Holzinger and Swineford 1937), its use as a predictive model for
associations between predictors (e.g., cognitive abilities) and outcome criteria (e.g., job
performance) has been revived only recently. In a bifactor model, g is modeled similarly
to specific abilities as a lower-order factor but differently in that it has paths to all (or
the majority) of the indicators. Studies comparing bifactor models with higher-order
models have showed that bifactor models tend to produce a better fit than higher-order
models (e.g., Cucina and Byle 2017; Morgan et al. 2015). The bifactor model’s unique
specification allows for an effective partitioning of variance among observed variables and
enables a clear separation of domain-general from domain-specific effects (Reise 2012;
Zhang et al. 2021). The g effect can thus be disentangled from specific-ability effects, and
their contributions to a criterion can be assessed using latent multiple regression models
underlying the SEM framework. The readily built-in orthogonalization feature in this
model makes it appropriate for investigations that seek a complete distinction between the
effects of general and specific factors (e.g., Gignac 2008).

Alternatively, Coyle (2014) advocated the use of an analytic approach through which
relations are tested via the non-g residuals of tests produced from a higher-order factor
model (i.e., a hierarchical structure involving three conceptual levels: g at the top, ability
group factors at the second level, and specific abilities at the lowest level represented
by observed test scores). He argued that this approach is the most promising approach
in the study of human intelligence (Coyle 2014). In these SEM models, the residuals of
specific abilities are allowed to be correlated with performance measures to partial out
the effect of g, thus providing a purer estimate for specific-abilities effects on performance.
Relations that were examined with the non-g residuals of tests showed that specific abilities
could have equal or even higher importance than g in predicting outcomes. Contrary
to the primacy of ¢ hypothesis, Coyle (2018) found significant incremental validity for
several specific abilities on the SAT, ACT, and Preliminary SAT tests above g validity for
the prediction of different criteria, often with substantial effect sizes (s ~ 0.30). This
method has seen increased use and has assisted in determining the relative role of specific
constructs beyond the validity obtained by the g factor (e.g., Benson et al. 2016; Berkowitz
and Stern 2018; Wee 2018).

In addition to the influence of statistical analyses on the results concluded from
predictive validity research, there are other factors that can determine whether or not
specific abilities are important predictors for job performance. The cognitive-ability—job-
performance compatibility principle (Schneider and Newman 2015) is one factor that
needs to be considered in such investigations and is believed to be one possible reason
biasing against specific abilities. The center point here is the necessity to make a reasonable
alignment between predictors and criteria such that a general predictor is matched with
a general criterion and specific predictors are matched with specific criteria (Wee 2018).
More precisely, as indicator variables for a predictor and criterion have similar cognitive
requirements and are equally weighted in the predictor and criterion, the strength of the
predictive relationship is expected to increase (Krumm et al. 2014, citing Brunswik’s (1956)
lens model).

Moreover, the job performance dimension is another aspect to take into account
when designing a criterion-related validity study. Drasgow (2012) argued that expanding
the criterion space to include other criteria than training performance and overall job
performance (e.g., contextual job performance, counterproductive work behaviors, and
attrition) enables a better understanding of the individual differences that predict behavior
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in the workplace. Derived from an integrative synthesis of the literature, Campbell and
his colleagues (e.g., Campbell et al. 2001; Campbell and Wiernik 2015) proposed an eight-
factor model representing the primary dimensions of performance in a work role. A
hierarchically organized structure, similar to an intelligence model, was also suggested
for job performance, where indicators from different performance domains cluster into
a few group factors of broad performance (or compound performance dimensions) and
the highest order factor of performance is at the vertex of the model (Ones et al. 2017).
Hence, a more thoughtful plan in the design of a validation study, particularly related to
the selection of criteria, can have an impact on the results and conclusions determined
about the true relations between predictor and outcome variables.

Another factor that can be highlighted in ability—performance research is the overuse
of correction (LeBreton et al. 2014). The compelling results showing the negligible role
of specific abilities relative to the predominant role of general ability for predicting job
performance may be due, in part, to studies’ reliance on correlations that have undergone
several corrections for range restriction, measurement error, or dichotomization. Although
the correction of observed correlations is a recommended strategy to produce more accurate
estimates of ability—performance relationships, it may have precluded critical evaluations
and possible refinement of the interplay of general and specific cognitive abilities in
predicting job performance. It might have also hindered scholarly understanding and
appreciation of the possible role of specific abilities as a worthy predictor for future work
outcomes. Thus, in this study, we applied uncorrected data (i.e., observed correlations)
to establish more clearly the relative contribution of cognitive abilities for predicting job
performance, free from the possible influence of correlation correction.

The bright side of this long-lived scientific debate, however, is that it has stimulated
dynamic research in both directions, which is certainly advantageous for the advancement
of related sciences. Some journals have devoted special issues debating the relative value
of cognitive abilities for performance outcomes. As an example, a special issue of Human
Performance discussed the role of general mental ability in I/O psychology (Viswesvaran
and Ones 2002). Equally, a recent special issue of Journal of Intelligence focused on this great
debate in seven articles (Kell and Lang 2018) in an attempt to motivate reconsideration
of specific abilities in the workplace. Some of these articles offered analytical strategies
that can be used as an alternative to the traditional statistical analysis to disclose the
determinants of job performance more accurately (e.g., Coyle 2018; Eid et al. 2018; Ziegler
and Peikert 2018). Of interest, this debate on the relative role of general versus specific
abilities has transferred from educational and workplace settings to other life domains.
Some forms of this debate can now be found in studies of wages (Ganzach and Patel 2018),
players of the National Football League (Lyons et al. 2009), happiness (Blasco-Belled et al.
2020), triangular love (Van Buskirk 2018), humor production ability (Christensen et al.
2018), music training (Silvia et al. 2016), and piano skill acquisition (Burgoyne et al. 2019).

The present study revolved around this context—the debate on whether it is general
ability or specific abilities that contribute most to the prediction of job performance. More
specifically, we assessed the role of five specific abilities (verbal, quantitative, spatial,
perceptual speed, and aviation-related acquired knowledge), as well as general ability, in
predicting performance in three military aviation-related occupations: flying, navigation,
and air battle management (ABM). Given the nature of the three occupations, the selectees
to these jobs are typically of high cognitive aptitude and they achieve high scores in many
selection requirements such as scholastic, personality, physical, and medical examinations.
Hence, there is more opportunity for cognitive abilities to demonstrate their roles and
influence in the individuals” performance. In this study, we aimed to understand how
influential certain cognitive abilities are in different aviation occupations, and how the
occupational patterns may vary.

The examination of relationships relied primarily on a bifactor modeling approach
as a suitable alternative statistical approach. In this study, we sought to examine latent
relationships between cognitive abilities and job performances, which can be accomplished
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appropriately through SEM procedures. We were interested in capturing the latent con-
structs of cognitive abilities and related them to latent (or observed) job performance. SEM
can be a sound method for this particular goal as compared to other alternative analy-
ses more suitable for the assessment of scores at the observed, lower abstract level (e.g.,
Oh et al. 2004; Glutting et al. 2006). Through SEM application, we can also overcome the
concerns raised around the hierarchical regression analysis. Given the goals pursued by
the current investigation, a bifactor SEM model provides an efficient tool to disentangle
the effect on criteria due to the general factor from the effects due to the specific-ability
factors, with several equations and parameters tested simultaneously. Every ability factor,
including the g factor, will have a path (i.e., regression) coefficient showing its effect on
performance criteria, controlling for other abilities in the model. Thus, the unique contribu-
tion of every ability to the candidates” outcomes in the three aviation jobs can be estimated.
The two main research questions investigated in the present study were as follows: (1)
How do the predictive relations between cognitive abilities and job performance vary across the
three occupations (flying, navigation, air battle management (ABM))? (2) Is there any incremental
validity of the specific group factors of the abilities above that obtained from the g factor in any of
the three occupations (flying, navigation, ABM)?

2. Materials and Methods
2.1. Subjects

Data for pilots and navigators were obtained from the uncorrected correlation matrices
reported in Olea and Ree’s (1994) study, while the data for air battle managers were obtained
from the uncorrected correlation matrix reported in Carretta’s (2008) technical report.
The three correlation matrices are presented in Appendix A. The pilot sample consisted
of 1867 undergraduate pilot training (UPT) students. The navigator sample included
957 undergraduate navigator training (UNT) students. The subjects of both samples were
tested for officer selection between 1981 and 1985, and all possessed baccalaureate degrees
when they began training. The time elapsed between cognitive testing and criterion data
collection was between 13 months and four years. The air battle manager sample consisted
of 680 undergraduate air battle manager (UABM) training students who had been tested for
officer selection between 1999 and 2007. The Air Force Officer Qualification Test (AFOQT)
was the primary selection tool used in qualifying the subjects of all three samples for the
officer training programs. In addition, the selected applicants had to meet other selection
requirements (e.g., academic, fitness, medical, moral, and physical standards).

2.2. Measures
2.2.1. Cognitive Abilities

The cognitive ability test scores were obtained from the AFOQT testing during selec-
tion. The AFOQT is a multiple-aptitude test battery used by the U.S. Air Force (USAF)
to select officer candidates and qualify them for different USAF jobs, including aviation
professions. The AFOQT scores used in this study came from two different forms: Form
O (Carretta and Ree 1996), which was administered to the pilot and navigator samples
(16 subtests), and Form S (Drasgow et al. 2010), which was administered to air battle
managers (11 subtests). Although the two forms consisted of a different number of subtests,
the 11 subtests in Form S had been retained from earlier AFOQT versions (Form O, P, and
Q). Thus, the 11 subtests in both versions are equivalent and represent similar contents and
constructs. Ten of the 11 subtests were used to test factor-analytic AFOQT models for each
of the three data sets.

Consistent with the five-factor model previously proposed for the AFOQT (Carretta
and Ree 1996; Carretta et al. 2016; Drasgow et al. 2010), confirmatory factor analysis
(CFA) measurement models representing five group factors were specified. Specifically,
two subtests were selected as indicators for each of the five domains of cognitive abilities:
Verbal Analogies (VA) and Word Knowledge (WK) for verbal ability, Arithmetic Reasoning
(AR) and Math Knowledge (MK) for quantitative ability, Rotated Blocks (RB) and Hidden
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Figures (HF) for spatial ability, Table Reading (TR) and Block Counting (BC) for perceptual
speed, and Instrument Comprehension (IR) and Aviation Information (AI) for the domain-
specific ability of aviation-related acquired knowledge. Although the AFOQT test battery
was designed to measure multiple cognitive domains, and its composite scores have been
shown to be multidimensional, it should be noted that the battery was not designed to
maximize predictive value of the underlying specific factors. Thus, to some degree, our
secondary analysis of the subtest scores’ correlations used these data for a different purpose
than was originally intended.

2.2.2. Performance Measures

Olea and Ree (1994) reported six outcome criteria for both pilot and navigator samples.
From these measures, three for each sample that covered the performance space adequately
were selected to be used in the current study. The selected criteria for flying performance
were Pass/Fail training, Phase 2 average rating, and Phase 3 average rating. Pass/Fail
training indicated the final training outcome and the overall performance of students
academically, professionally, and even ethically. The ratings from Phase 2 and Phase 3 of
training were cumulative grades covering different aspects of flying and airmanship, such
as flying performance in daily flight and check flight, commanders’ ratings, and several
written tests on aeronautical topics. The selected criteria for navigation performance were
Pass/Fail training, day check flight, and night check flight. Day and night check flights
represented actual work samples for students, which covered essential navigation skills
such as stellar observations, sun plotting, and real flight missions. The performance criteria
in ABM training were one overall index given to the students, representing an average
final score on several written tests taken during the training course (Carretta 2008).

2.3. Analytic Plan

Through a SEM framework, each of the three samples underwent a separate analysis
but with similar analytic procedures. Only one difference may be highlighted here con-
cerning the ABM sample criterion’s modeling. Due to the single criterion available for this
sample, we modeled it as an observed variable, while the criteria in the other two samples
were modeled as latent variables constructed with three different observed scores. We
planned the following analytic procedure for each of the three samples. First, we tested a
CFA measurement model comprising five specific cognitive abilities. Two models were
assessed: a correlated-factor model and a bifactor model. Figure 1a,b displays the two CFA
models specified at this stage. This test was necessary to confirm the plausibility of the
suggested five-factor model and to ensure the adequacy of fit before moving to the SEM
stage of analyses.

Second, we specified a combined correlated-factor model containing the ability factors
and the criterion factor (or the observed score in the case of ABM). This model was esti-
mated to verify the existence of relationships between the ability factors and performance
criteria. Third, we specified bifactor SEM models to estimate the effects of the five specific
cognitive abilities, as well as the g factor, on the performance measures. Bifactor modeling
was found to be an effective technique for assessing the predictive role of general and
specific abilities. For model identification purposes, the loadings of the two test score
indicators of each of the five specific factors (verbal, quantitative, spatial, perceptual speed,
acquired knowledge) were constrained to be equal (e.g., Green and Yang 2018). This was
applied to both types of models, correlated-factor and bifactor. Under this setting, the
single loading value estimated might be interpreted, loosely, as an average loading for that
indicator pair.
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(a)

WK

(b)

Figure 1. Representation of the AFOQT correlated-factor (a) and bifactor (b) models. Note: VA
= Verbal Analogies; WK = Word Knowledge; AR = Arithmetic Reasoning; MK = Math Knowl-
edge; RB = Rotated Blocks; HF = Hidden Figures; TR = Table Reading; BC = Block Counting; IR =
Instrument Comprehension; Al = Aviation Information.

All CFA and SEM models were estimated using maximum likelihood (ML). Models’ fit
was assessed according to several goodness-of-fit indices, including comparative fit index
(CFI), root mean square error of approximation (RMSEA), and standardized root mean
square residual (SRMR). As recommended by Hu and Bentler (1999), good fit between the
hypothesized model and the observed data requires a value close to 0.95 for CFA, although
any value over 0.90 is considered acceptable. Similarly, RMSEA and SRMR values close
to 0.06 indicate good fit, although values as high as 0.08 are considered acceptable. For
chi-square (x?), due to the large sample used in all data sets, it was not considered for
judging model fit, although it was reported. Regarding the interpretation of the resulting
effect sizes, the normative correlation guidelines suggested by Gignac and Szodorai (2016)
were considered: 0.10, 0.20, and 0.30 indicate relatively small, typical, and relatively large,
respectively. All analyses were performed using R packages (R Core Team 2020).

3. Results
3.1. CFA Measurement Models

Figure 1a,b displays the two measurement models tested in this step. As seen in
Table 1, both CFA correlated-factor and bifactor models across the three samples fit the
data adequately, with a slight advantage of the bifactor models. All factor loadings from
the correlated-factor models were significantly different from zero across the three samples
(p <0.001), as shown in Table 2. For each sample, the Table Reading subtest on the
perceptual speed factor had the weakest loading (0.48-0.51), whereas the Verbal Analogies
subtest on the verbal ability factor had the largest loading (0.91-0.94). With respect to
intercorrelations among the five factors, Table 3 indicates that the weakest across the
three samples were those between aviation acquired knowledge and quantitative ability
(0.19-0.27), while the strongest were those between spatial ability and perceptual speed
(0.67-0.76).
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Table 1. Fit statistics of all models tested in the study.

Model x> df CFI RMSEA SRMR
Pilots CFA Correlated-factor 397.29 30 0.91 0.08 0.07
CFA Bifactor 333.25 30 0.92 0.07 0.05
Combined Correlated-factor 558.47 55 0.93 0.07 0.06
SEM Bifactor 494.52 54 0.94 0.07 0.05
Navigators CFA Correlated-factor 158.22 30 0.93 0.07 0.06
CFA Bifactor 135.27 30 0.95 0.06 0.05
Combined Correlated-factor 186.63 55 0.94 0.05 0.05
SEM Bifactor 162.03 54 0.95 0.05 0.04
Air Battle CFA Correlated-factor 138.26 30 0.94 0.07 0.07
Managers CFA Bifactor 121.74 30 0.95 0.07 0.05
Combined Correlated-factor 158.68 35 0.94 0.07 0.06
SEM Bifactor 141.22 34 0.95 0.07 0.05

Table 2. Factor loadings from correlated-factor and bifactor models.

Verbal Quantitative Spatial Perceptual Knowledge
Sample Model Factor
VA WK AR MK RB HF TR BC I1C Al
Correlated-factor 0.94 0.60 0.82 0.69 0.51 0.56 0.48 0.75 0.62 0.64
Pilots Bif Specific 0.80 0.50 0.51 0.40 0.27 0.30 0.31 0.49 0.59 0.65
1tactor General 049 038 061 062 051 041 040 055 038 0.5
Correlated-factor 091 0.60 0.86 0.65 0.51 0.54 0.48 0.79 0.67 0.64
Navigators Specific 0.78 0.50 0.65 0.48 0.20 0.23 0.31 0.51 0.58 0.59

Bifactor General 050 037 055 047 054 043 038 059 046 017

Correlated-factor 091 0.70 0.81 0.76 0.69 0.65 0.51 0.87 0.67 0.69
Specific 0.78 0.59 0.59 0.60 0.27 0.26 0.34 0.61 0.52 0.59
General 0.48 0.39 0.58 0.43 0.63 0.60 0.43 0.60 0.56 0.29

Note. All loadings were significant at p < 0.001, except for the Aviation Information subtest on g factor in the pilot sample. (p = 0.07).

Air Battle
Managers Bifactor

Table 3. Summary for the factor intercorrelations resulting from the CFA correlated-factor models.

Verbal Quantitative Spatial Perceptual Knowledge
Pilots Verbal 1
Quantitative 0.55 1
Spatial 0.42 0.59 1
Perceptual 0.28 0.58 0.74 1
Knowledge 0.16 0.19 0.45 0.29 1
Verbal Quantitative Spatial Perceptual Knowledge
Navigators Verbal 1
Quantitative 0.50 1
Spatial 0.46 0.54 1
Perceptual 0.34 0.47 0.76 1
Knowledge 0.29 0.26 0.55 0.36 1
Verbal Quantitative Spatial Perceptual Knowledge
Air Battle Verbal 1
Managers Quantitative 0.52 1
Spatial 0.46 0.55 1
Perceptual 0.31 0.50 0.67 1
Knowledge 0.32 0.27 0.67 0.42 1

Note. All correlations were significant at p < 0.001.
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For the bifactor models, the standardized loading coefficients of the ten subtests on
both the g factor and specific-ability factors are also presented in Table 2. Even in the
presence of g, the five ability factors in the three samples remained clearly evident with
significant loadings. Across samples, the factor that seemed most greatly influenced by
the presence of ¢ in the models was the spatial ability factor, as indicated by the weak
loadings of its two indicators (0.20 to 0.30). The lowest loadings on the general factor
were those produced by the Aviation Information subtest, one of the two indicators of
the aviation-related acquired knowledge factor (0.05, p = 0.07 for the pilots’ sample; 0.17,
p <0.001 for the navigators’ sample; 0.29, p < 0.001 for the ABM sample). Overall, this
initial phase of the study confirmed the soundness of the suggested five-factor model for
aviation trainee cognitive abilities.

3.2. Abilities—Performance Relationships

Combined correlated-factor models associating the five cognitive abilities with job
performance criteria were then specified. Figure 2 presents an example of a tested model
containing ability factors and one latent performance criterion. The CFA fit statistics of
this model for the three samples were all acceptable, as presented in Table 1. The result
of this analysis is presented in Table 4. All factors correlated substantially with the latent
variable of pilots” performance, with the exception of the verbal ability factor (r = —0.01,
p > 0.10). The magnitudes of the significant relations ranged from 0.11 (quantitative ability)
to 0.32 (aviation acquired knowledge). For navigators, the relations of cognitive abilities
with latent performance outcomes were all significant with no exception, ranging from 0.13
(verbal ability) to 0.40 (spatial ability). For air battle managers, the correlations between
the five abilities and the observed performance variable were also all significant, ranging
between 0.19 (perceptual speed) and 0.32 (quantitative ability). This phase of analyses
indicated that associations between cognitive abilities and job training performance were
generally significant, although the pattern differed across occupations.

Measure 1 Measure 2 Measure 3

Figure 2. Representation of combined correlated-factor model containing cognitive abilities and performance measures.
Note: VA = Verbal Analogies; WK = Word Knowledge; AR = Arithmetic Reasoning; MK = Math Knowledge; RB = Rotated
Blocks; HF = Hidden Figures; TR = Table Reading; BC = Block Counting; IR = Instrument Comprehension; Al = Aviation
Information. Performance presented here is latent, as is that modeled in pilot and navigator samples.

Table 4. Correlations between cognitive abilities and job performance.

. Lo Air Battle
Flying Navigation Management
Verbal Ability —0.01™ 0.13 ** 0.29 **=
Quantitative Ability 0.11 *** 0.37 *** 0.32 ***
Spatial Ability 0.15 *** 0.40 *** 0.22 ***
Perceptual Speed 0.17 *** 0.32 *** 0.19 ***
Acquired Knowledge 0.32 *** 0.16 *** 0.29 ***

Note. Gray color indicates negative estimate or nonsignificant positive estimate (p > 0.05). Model fit was as
follows. ns, p < 0.10. ** p < 0.01. ** p < 0.001.
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3.3. The Effects of g and Specific Abilities on Job Performance (Bifactor Model)

In this phase, a bifactor modeling approach was used to investigate the predictive
value of g and five domain-specific abilities. Figure 3a—c display the structural models
tested for pilot, navigator, and air battle manager data, respectively. As shown, the latent
performance variables of pilots and navigators and the observed performance variable
of air battle managers were regressed on the six abilities included in the models. Model
fit statistics of the three predictive bifactor models are presented in Table 1. The models
fit the three correlation matrices well (pilots: CFI = 0.94, RMSEA = 0.07, SRMR = 0.05;
navigators: CFI = 0.95, RMSEA = 0.05, SRMR = 0.04; battle managers: CFI = 0.95, RMSEA =
0.07, SRMR = 0.05).

Results presented in Table 5 and Figure 3a—c show interesting findings concerning
the predictive relation of general ability and job performance. Among the three samples,
the g effect was notably high only in the navigation sample, where its estimate was the
only significant estimate among predictors in the model, with relatively high beta (3 = 0.42,
p < 0.01). Conversely, the g effect was small and not significant in the ABM sample (3 = 0.10;
p > 0.05), whereas three specific abilities emerged as strong predictors: quantitative ability,
aviation acquired knowledge, and verbal ability ( = 0.32, 0.31, 0.24, respectively; p < 0.01).
For the pilot sample, the g effect was rather small and barely reached the significance
level (3 = 0.11; p < 0.05), whilst aviation acquired knowledge, the only meaningful specific
predictor in the model, predicted flight performance fairly strongly (3 = 0.29, p < 0.001).
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(c)

Performance

Figure 3. Bifactor SEM model for pilot (a), navigator (b), and air battle manager (c) data and the
predictive validity estimates of general ability and specific abilities on job performance. Note: VA =
Verbal Analogies; WK = Word Knowledge; AR = Arithmetic Reasoning; MK = Math Knowledge; RB
= Rotated Blocks; HF = Hidden Figures; TR = Table Reading; BC = Block Counting; IR = Instrument
Comprehension; Al = Aviation Information. Loadings of indicator pairs on their specific factor were
constrained to be equal for model identification.

Table 5. Prediction of job performance by general ability and specific abilities via bifactor models.

Flying Navigation Mi:;g::ll:n t
Verbal Ability —0.07 "M —0.14 M 0.24 **
Quantitative Ability 0.07 s 0.15™ 0.32 **
Spatial Ability 0.04 1S 0.02 1 0.331s
Perceptual Speed 0.10™¢ —-0.01"™ 0.18 "¢
Acquired Knowledge 0.29 *** —0.05™ 0.31 **
General Ability (g) 0.11* 0.42 ** 0.10™s

Note. Gray color indicates negative estimate or nonsignificant positive estimate (p > 0.05). ns, p < 0.10. * p < 0.05.
**p <0.01. *** p <0.001.

4. Discussion

Intelligence researchers have long debated whether the general ability factor is the
only factor that accounts for performance in cognitive tasks or if there might be other
broad ability factors that explain some of the common variance in test scores (e.g., Agnello
et al. 2015; Reeve and Bonaccio 2011). Another version of this debate is the debate among
industrial/organizational (I/O) psychology researchers about whether it is general ability
or narrower abilities that contribute most to the prediction of job and training performance
(e.g., Hunter 1986; Kell and Lang 2017; Lang et al. 2010; Ones et al. 2017). The current
study weighs in on this controversy by providing results that may be of mutual inter-
est to intelligence and I/O psychology researchers using data from highly cognitively
demanding occupations, where individual differences in job performance are linked to
differences in cognitive abilities. Evidence from three aviation occupations was provided
aboutthe predictive relations between cognitive abilities and job performance. Through
the application of bifactor predictive models, results clarify the interplay of general and
specific cognitive abilities in predicting the training performance of pilots, navigators, and
air battle managers.

The effect size of bifactor g was large in the navigator sample, small in the pilot
sample, and negligible in the air battle manager sample. In contrast, the number of
significant effects due to specific factors was none in the navigation sample, one in the
flying sample, and three in the ABM sample. In the navigator sample, when g was
modeled, the effect of specific abilities either declined or faded away, as compared to their
significant relationships with performance criteria in the correlated-factor model. g was
found to be the only noteworthy predictor for navigators” performance, suggesting that
the simple correlations of the five abilities with navigation performance were mostly due
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to their overlap with g. Navigation, like flying, is considered a complex class of jobs that
requires high cognitive ability, even to undertake the training. In the old 16-subtest AFOQT
(e.g., Carretta and Ree 1996), navigation applicants had to be qualified by an 11-subtest
composite score (Navigator/Technical composite), as compared to an 8-subtest composite
score (Pilot composite) for the qualification of pilot applicants. This gives an indication
of the cognitively demanding nature of this job that may also explain the greater role of g,
relative to specific abilities, in the prediction of trainees” performance in navigation tasks.

The pattern in the pilots’ sample comes in between the patterns noted for navigators
and air battle managers, where aviation acquired knowledge, along with g, stayed signifi-
cant and effective in the predictive model. Acquired aviation knowledge became a better
predictor of flight performance after removing the general factor variance from its scale
scores. The effect of this factor was estimated to be 0.29 versus 0.11 for the g factor. The
higher effect of the aviation-related acquired knowledge factor in the pilot sample than in
the other two samples may reflect the fact that the two indicators used to extract the factor
include content more related to pilot jobs than any other jobs in the USAF. The predictive
utility of tests measuring acquired knowledge for pilot performance has been documented
in a number of meta-analyses (ALMamari and Traynor 2019, 2020; Hunter and Burke 1994;
Martinussen 1996).

The strong relationship between the AFOQT construct of aviation acquired knowl-
edge and pilot performance has been distinctly determined in ALMamari’s (2021) study.
Using a similar modeling technique to that presented here (i.e., bifactor) and three pilot
performance criteria, effect sizes of 0.43 and 0.12 were obtained for this construct when
predicting “hands-on” flying performance at primary and advanced phases of training, re-
spectively. For the academic performance criterion, acquired knowledge showed a weaker
role (3 = 0.08), although still noteworthy. Bifactor g related more strongly to academic
performance (3 = 0.24) and less strongly to hands-on pilot performance at the primary
phase ( = 0.26) than acquired knowledge did. Perceptual speed ability demonstrated the
highest predictive validity for hands-on pilot performance at the advanced phase. The
remaining cognitive abilities (verbal, quantitative, and spatial) contributed trivially to pilot
performance predictive models.

Job knowledge test scores often demonstrate strong relationships with job performance
(Hunter 1986; McDaniel et al. 1988). Hence, the comparative importance of this factor in
the current finding may not be different from the trend. What makes the finding different,
however, is the relatively large significant effect of this factor even with the presence of
g, although it is common to hypothesize that job knowledge influences job performance
indirectly through its relation with g (Ree et al. 1995; Schmidt et al. 1986). Interestingly;
the knowledge-based tests can also be viewed as indicators of an applicant’s interest and
motivation toward the job they are applying for (e.g., Kanfer and Ackerman 1989; Colquitt
et al. 2000), and thus, it may be this interaction between the cognitive and non-cognitive
aspects of the construct that makes this factor a robust predictor for pilot performance.

Compared to flying and navigation performances, cognitive abilities’ predictive re-
lations with air battle managers’ performance showed a distinct pattern that seemed
somewhat unexpected. Due to the nature of the air battle manager performance mea-
sure as an average score of multiple written tests, the expectation was that this measure
would relate more strongly to general ability than any specific ability due to its saturation
with general academic and knowledge constructs. The influence of g on academic and
achievement performance is a well-documented phenomenon (Gottfredson 2002; Gustafs-
son and Undheim 1996), especially when the performance is general in scope (Kahana
et al. 2002) as is the case in air battle managers’ composite measure. However, contrary to
expectations, quantitative ability, aviation acquired knowledge, and verbal ability were the
three strongest predictors of air battle manager performance after removing the general
factor variance in their latent scores. Thus, the current findings that seem in contrast with
the majority of research supporting a dominant role of g over any specific abilities in the
prediction of academic performance remain to be explained.
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One possible reason for the significance of specific abilities and non-significance of g as
predictors of air battle manager performance is the way that air battle manager performance
was modeled in this study. Due to the existence of only one performance measure for the
air battle manager performance, it was modeled as an observed variable indicated by one
dimension of performance more related to academic achievement, rather than modeling it
as a latent variable indicated by multiple measures of different performance dimensions.
Including scores from multiple dimensions of air battle manager performance may make
the construct more suitable to be predicted by a general predictor such as g (e.g., Ones and
Viswesvaran 1996). Additionally, performance measures of pilots and navigators in this
study relied primarily on ratings of hands-on job samples, while that of air battle managers
was mostly academic, which may not correspond well to our operationalization of g that
includes spatial ability and perceptual speed, which were probably not sampled in the
conventional academic test items.

Moreover, according to the job complexity hypothesis, a highly complex job requires
more general ability, and a less complex job requires only specific abilities (Gottfredson
1997; Hunter et al. 1990; Murphy 1989). Thus, the air battle manager performance in this
study may have been represented by a less complex dimension in the wide criterion space
of the ABM job, while the performance of pilots and navigators was represented by a global
score with overlapping dimensions and constructs, most of which were practical in their
essence. Furthermore, an air battle manager’s job is generally less complex than pilot and
navigator jobs (e.g., Fowley 2016; Rhone 2008), with a lower minimum qualifying score
(Carretta 2008), and thus, also based on the job complexity proposition, a lesser role for
g might be expected. Last, it is expected that the courses taught in a technical program
for training air battle managers are also of technical scope and tend to target narrower
knowledge and skills. According to the ability—criterion compatibility principle (Schneider
and Newman 2015), such a specific-ability-oriented criterion score is best predicted by a
specific-ability-oriented score.

Allin all, despite pre-existing overwhelming evidence of the supremacy of the general
factor as the best stand-alone predictor of job and training performance (Ones et al. 2017;
Ree and Earles 1992; Schmidt and Hunter 2004), the present study provides support for
crucial predictive roles for some specific abilities that contribute uniquely to performance
outcomes. A strong predictive role for some specific abilities (relative to g) for job and
training performance has also been found in some recent investigations (e.g., Coyle 2018;
Lang and Kell 2020; Lang et al. 2010; Ziegler et al. 2011), implying that this conclusion may
hold across a wider range of occupations. In our view, a next step should be to synthesize
this accumulating evidence to characterize more systematically which specific abilities
tend to predict job performance outcomes and net g, which performance outcomes, and
in what types of job roles. Following Brunswik and Krumm et al. (2014), we might then
ask, in each study that has found stand-alone predictive value of specific factors, what
were the indicator components of g, their analytic weights or loadings, and the indicator
components of any specific factors and their weights, and to what extent were they aligned
with the indicators of successful job performance?

5. Implication for Selection and Training

For psychometricians developing or maintaining selection test batteries for aviation
professions, it is recommended that they increase the attention given to the construct of
aviation acquired knowledge in the selection process as it is shown to be a strong or-
thogonal predictor of air battle manager and pilot (although not navigator) performance
outcomes. Flight programs outside the USAF that have traditionally based student ad-
mission decisions primarily on educational achievement or aptitude scores, such as GPA,
SAT, or ACT scores, might consider introducing more standardized evidence of applicants’
aviation acquired knowledge into their selection processes or allowing students who have
demonstrated a certain baseline level of knowledge to forego introductory courses and
proceed to more advanced levels of training. Recognizing that the nature of military and
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civilian aviation occupations is changing with increasing automation, we expect attention
may also be needed to developing or maintaining relevant aviation-acquired-knowledge
test tasks.

If a goal is to optimize selection and prediction, our results also may suggest that
the latent cognitive constructs underlying AFOQT total scores should not be given equal
weight in generating scores to evaluate an applicant’s readiness for training or in predicting
their future performance outcomes (and that the scores weighting for these two predic-
tive purposes should likely be different). Presently, the AFOQT developers compute six
composite scores from ten AFOQT subtests (Form T). The construction of these composites
is mostly conceptual groupings of the subtests, rather than factor-based. Factor scores
may provide more accurate representations of the relations between CHC broad ability
constructs and achievement or performance outcomes than total scores created by sum-
ming subtest scores do (Benson et al. 2016). Hence, future scoring development of the
AFOQT might include factor scores to overcome problems typically associated with the
more common practice of subtest analysis.

Finally, specific recommendations from a selection perspective for youth program
administrators promoting aviation professions as a potential career are to (a) emphasize
the importance of cognitive abilities as selection criteria for flight programs and that these
abilities can be developed by practice, (b) determine specific cognitive abilities that serve as
significant predictors of aviation performance among young people, (c) familiarize partici-
pants with common ability test batteries used in selection, and (d) provide opportunities for
training directed toward the most important cognitive abilities for aviation professionals.

6. Limitations and Future Research

In this study, the role of general ability and domain-specific abilities as predictors for
job performance was examined using data for three aviation-related occupations. The main
focus was five ability factors, along with psychometric g, that can be extracted from AFOQT
subtest scores. The results of the present study show that the predictive relations differed
across three professional aviation occupations. Although the cognitive testing applied on
the three samples was similar, the performance measures differed to some extent, especially
that of the ABM sample. The breadth of performance measures used in each sample (e.g.,
general or specific), the varying modeling approach (e.g., latent or observed), and the
constraints we imposed to identify the predictive bifactor model (e.g., Eid et al. 2018; Zhang
et al. 2021) could have had some effect on the results. To allow a better comparison, future
studies should attempt to obtain comparable performance measures across occupations,
such as academic performance of the training program or actual hands-on experience of the
job sample. The ability—performance relationship was investigated in this study without
controlling for any potential covariates that may influence the predictive relations. Future
studies that aim to establish the validity of cognitive abilities for job performance could
add to the predictive models potential moderator variables, such as gender or ethnicity
group, if such moderators were suggested by previous empirical findings. Future studies
could expand the scope and assess the predictive role of other cognitive functions obtained
from different test batteries (e.g., memory, multitasking, reaction time) for professional
flight occupations. Due to the limitation of cross-sectional data and the likely influence
of between-group sampling variability (Little 2013), future studies may also attempt a
longitudinal design for tracking the changes of predictive relations through different phases
of training, with some control of previous levels of variables.

The modeling technique applied in the present study was based primarily on a bifactor
model, which has some inherent limitations (Eid et al. 2018; Reise 2012; Zhang et al. 2021).
For example, the factors in a bifactor model, both the general factor and grouping factors,
are restricted to being uncorrelated. In addition, each indicator in a bifactor model is
allowed to load onto the general factor and to only one grouping factor. Due to the
known intercorrelations between cognitive data, these assumptions may seem unrealistic,
where group factors are conceptually related, or an indicator can mark more than one
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construct. For example, perceptual speed and spatial ability factors are expected to share
some common variance that is attributable to the general factor (e.g., Barron and Rose
2013), but each was marked with a separate set of indicators. Thus, it would be useful
to attempt different approaches with other analytic procedures to give the results further
credibility. Examples of such approaches that have shown to be effective in separating
the effects of predictors on a criterion include relative weight analysis (Johnson 2000),
dominance analysis (Azen and Budescu 2003), and the non-g residuals of tests derived
from a higher-order factor structure (Coyle 2018). Replicating the results of the current
study using some of these methods can give further confidence in the results. Finally,
because this study attempted to provide a view of ability—performance relationships
different from the conventional view that relies on corrected data, the findings are likely to
be an underestimation of the true effects of cognitive abilities on job performance measures.
Using correlational data that are corrected for attenuation (e.g., range restriction) may
show a different or substantially similar pattern of predictive relations (Aguinis et al.
2011), although those data transformation techniques also have limitations (LeBreton et al.
2014). Given the restrictive samples used in this study due to the strict selection procedures
for USAF officer candidates, especially those qualified for aviation jobs, generalization of
current findings to less restricted samples from similar occupations (e.g., civil airline pilots)
needs to be made with caution.

7. Conclusions

The interplay of cognitive abilities as predictors of job performance in three aviation-
related occupations showed a pattern that is different from the body of evidence pertaining
to the influence of general ability on performance criteria. Removing the systematic
variance associated with the general factor produces larger effects for some specific ability
factors predicting job performance (e.g., aviation acquired knowledge in the pilot sample)
while diminishing the effects of some other specific factors (e.g., spatial ability in the
navigation sample). The significant effects revealed in the current study for some cognitive
abilities have practical importance. Based on the results of bifactor modeling, the general
ability in this study is a strong predictor of navigation performance, a weak predictor
of pilot performance, and a negligible predictor of air battle manager performance. The
approach to cognitive modeling utilized in this study opens an opportunity for future
research seeking to enhance the predictive validity of ability constructs for job performance.
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Appendix A
Table A1. Correlations among variables for pilot, navigator, and air battle manager samples.
Pilot Sample
VA AR WK MK IC BC TR Al RB HF C1 Cc2 C3
VA 1
AR 039 1
WK 059 033 1
MK 040 058 033 1
IC 013 019 011 0.15 1
BC 020 032 013 030 027 1
TR 011 029 009 028 020 037 1
Al 005 005 012 —0.06 040 0.00 0.00 1
RB 022 027 014 029 029 035 015 0.09 1
HF 020 020 014 024 020 027 018 004 029 1
Cc1 000 011 -—0.02 0.04 023 010 015 0.18 010 0.06 1
Cc2 000 014 -001 006 028 0.9 012 027 010 0.04 0.68 1
c3 000 008 —002 003 017 011 013 012 006 0.07 076 049 1
M 1532 1327 16.08 16.57 11.26 1271 29.8 1075 893 1043 0.79 72.04 81.59
SD 322 376 514 473 44 374 6 4 28 25 04 1302 74
Navigator Sample
VA AR WK MK IC BC TR Al RB HF C1 C2 C3
VA 1
AR 036 1
WK 057 0.35 1
MK 034 057 029 1
IC 020 020 015 0.18 1
BC 025 030 016 022 0.29 1
TR 014 026 015 022 018 0.38 1
Al 012 0.07 017 004 042 0.07 0.00 1
RB 024 025 012 021 032 037 018 0.15 1
HF 021 023 013 020 019 028 015 007 0.28 1
Cci1 009 024 005 020 012 017 017 004 019 0.12 1
c2 005 010 004 013 005 0.9 014 0.00 007 005 033 1
Cc3 006 015 005 013 005 0.09 013 0.04 014 012 031 017 1
M 1510 13.18 1504 16.61 14.09 13.05 30.50 14.04 9.34 1049 084 87.80 85.6
SD 323 366 509 500 413 358 594 405 281 248 036 1333 154
Air Battle Manager Sample
VA AR WK MK IC BC TR Al RB HF (1
VA 1
AR 043 1
WK 0.65 0.35 1
MK 029 061 024 1
IC 022 024 018 017 1
BC 024 034 021 029 035 1
TR 015 035 010 028 024 047 1
Al 017 013 021 0.02 047 013 011 1
RB 029 034 022 025 041 038 021 025 1
HF 027 031 020 024 038 037 027 018 044 1
Cc1 025 027 027 022 018 014 020 022 018 0.12 1
M 1758 1539 1649 1622 13.11 13.68 29.03 9.26 899 10.26 94.43
SD 355 487 468 48 485 362 642 422 298 317 247

Note. VA = Verbal Analogies; AR = Arithmetic Reasoning; WK = Word Knowledge; MK = Math Knowledge;
IC = Instrument Comprehension; BC = Block Counting; TR = Table Reading; Al = Aviation Information; RB =
Rotated Blocks; HF = Hidden Figures; C = Criterion; M = Mean; SD = Standard Deviation; for pilot sample: C1 =
Pass/Fail training, C2 = Phase 2 average rating, C3 = Phase 3 average rating; for navigator sample: C1 = Pass/Fail
training, C2 = day check flight average rating, C3 = night check flight average rating; for ABM sample: C1 =
average final score on several written tests. Correlation matrices were obtained from Olea and Ree (1994) for pilot
and navigator samples and from Carretta (2008) for air battle management sample.
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