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Abstract: As our population ages, there is a greater need for a suitable supply of 

engineered tissues to address a range of debilitating ailments. Stem cell based therapies are 

envisioned to meet this emerging need. Despite significant progress in controlling stem cell 

differentiation, it is still difficult to engineer human tissue constructs for transplantation. 

Recent advances in micro- and nanofabrication techniques have enabled the design of more 

biomimetic biomaterials that may be used to direct the fate of stem cells. These 

biomaterials could have a significant impact on the next generation of stem cell based 

therapies. Here, we highlight the recent progress made by micro- and nanoengineering 

techniques in the biomaterials field in the context of directing stem cell differentiation. 

Particular attention is given to the effect of surface topography, chemistry, mechanics and 
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micro- and nanopatterns on the differentiation of embryonic, mesenchymal and neural  

stem cells. 

Keywords: micro- and nanotopography; microwells; microarrays; embryonic and adult 

stem cells; stem cell therapy 

 

1. Introduction  

With the increasing number of patients suffering from damaged or diseased organs and the shortage 

of organ donors, the need for methods to construct human tissues outside the body has risen. To 

address this issue, the interdisciplinary field of tissue engineering has emerged in the past few years to 

generate biological tissue constructs that maintain or enhance normal tissue function [1,2]. 

One of the current challenges in the development of tissue engineered constructs is the lack of a 

renewable cell source. Embryonic, induced pluripotent and adult stem cells are promising cell sources 

in therapeutic and regenerative medicine. Due to their ability to self-renew and differentiate into 

various cell types, these cells could potentially be cultured and harvested for regeneration of damaged, 

injured and aged tissue [3,4]. Embryonic stem cells (ESC) are pluripotent with the ability to 

differentiate into cells of all three germ layers, ectoderm, endoderm, and mesoderm, whereas adult 

stem cells (ASC) are multipotent with the capacity to differentiate into a limited number of cell  

types [5]. For instance, mesenchymal stem cells (MSCs) which reside in the bone marrow, can 

differentiate into bone (osteoblasts) [6], muscle (myoblasts) [7], fat (adipocytes) [8] and cartilage 

(chrondocytes) [5] cells, while neural stem cells (NSCs) either give rise to support cells in the nervous 

system of vertebrates (astrocytes and oligodendrocytes) or neurons [9]. 

In vivo, differentiation and self-renewal of stem cells is dominated by signals from their 

surrounding microenvironment [10]. This microenvironment or “niche” is composed of other cell types 

as well as numerous chemical, mechanical and topographical cues at the micro- and nanoscale, which 

are believed to serve as signaling mechanisms to control the cell behavior [11]. For instance, 

extracellular matrix (ECM) molecules such as collagen [12] as well as the basement membrane of the 

tissue matrix [13] contain micro- and nanoscale features. Tissue stiffness is also known to vary 

depending on the organ type, disease state and aging process [14-16]. In tissue culture, stem  

cell differentiation has traditionally been controlled by the addition of soluble factors to the growth 

media [17]. However, despite much research, most stem cell differentiation protocols yield 

heterogeneous cell types [18,19]. Therefore, it is desirable to use more biomimetic in vitro culture 

conditions to regulate stem cell differentiation and self-renewal.  

Recent advances in micro- and nanofabrication technology have paved the way to create substrates 

with precise micro- and nanocues, variable stiffness and chemical composition to better mimic the  

in vivo microenvironment [2,20,21]. By employing approaches such as self-assembled monolayers 

(SAMs), microcontact printing, e-beam, photo- and soft lithography, tissue engineers aim to 

incorporate topographical, mechanical and chemical cues into biomaterials to control stem cell fate  

decisions [2,21,22]. This review highlights recent progress made by using micro- and nanoengineered 

biomaterials to direct the fate of stem cells, with particular emphasis on ESCs, MSCs and NSCs. 
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2. Biomaterials with Micro- and Nanoscale Features for Directing Stem Cell Fate 

2.1. Stem Cell Niche in Vivo 

In the body the cellular microenvironment is comprised of other cells, matrix, and soluble factors 

that regulate the resulting cell behavior [22,23]. Direct cell-cell contact is an important regulator of 

cellular processes as well as tissue architecture. For instance, cell-cell contacts regulate the cardiac 

stem cell microenvironment (Figure 1A) and direct mature cardiomyocytes to form fibrous 

microstructures (Figure 1A) [24]. Furthermore, during myogenesis, myoblasts assemble into 

microscale tubes (Figure 1B) [25]. Nanotopographies in the basement membrane also affect cells [26]. 

These topographies are mainly composed of networks of nanoscale pores, ridges, and fibers made by 

ECM molecules such as collagen, fibronectin and laminin [26]. In addition, hydroxyapatite crystals 

and cell adhesive proteins such as osteopontin, osteocalcin and fibronectin can bind to collagen fibers  

(Figure 1C) [26,27] resulting in discrete nanopatterns of cell adhesive and mineral patches [26]. In 

summary, cells encounter and respond to topography in the in vivo environment at length scales 

ranging from the nano- to microscale [26]. It is therefore important to incorporate features at such 

length scales into the development of biomaterial-based platforms suitable for stem cell therapies. 

Figure 1. (A) Cluster of cardiac stem cells (green) and lineage committed cells (red). The 

yellow regions stain for connexin 43 (Published with permission from PNAS [24]); (B) A 

fluorescent image in which myoblast actin filaments are stained green and the myoblasts 

nuclei are shown as dark elongated spots. Each myoblast tube is measured to be 

approximately 12.5 μm in diameter (Published with permission from Am Physiol  

Soc [25]); (C) Atomic force microscopy images of the D-band patterns on collagen I 

(Published with permission from Royal society Publishing [27]). 

 

2.2. Stem Cell Interactions with Microtopographies 

With the advances in photo- and soft lithographic techniques, there has been a growing interest 

towards fabrication of micro- and nanotopographies to address fundamental questions related to  

cell-substrate interactions. An excellent example is the alignment of cells along microgrooves, a 

phenomenon known as contact guidance [28-31]. Microstructures also influence basic cellular processes 

such as adhesion [32-37], migration [38-40], proliferation [41,42] and differentiation [43,44]. Recently, 

there has been significant interest towards utilizing microscale topographies in controlling stem cell 
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behavior. Most of these studies have examined the effect of microgrooved topographies on alignment, 

morphology and differentiation of stem cells. In a study by Mallapragada et al. [45], adult rat 

hippocampal progenitor cells (AHPCs) exhibited an elongated morphology along microgrooved 

laminin coated polystyrene (PS) substrates (Figure 2A). On these substrates, the elongated morphology 

of the cells remained intact after seeding cortical astrocytes with the AHPCs, and the differentiation of 

AHPCs towards an early neural phenotype (III β-tubulin) was enhanced after co-culturing. Likewise, 

mouse mesenchymal stem cells (mMSCs) were shown to exhibit an elongated morphology when 

cultured on microgrooves [46] (Figure 2B). A number of studies have investigated the effect of 

microgroove widths on differentiation of MSCs [44,47]. It was shown that the differentiation of MSCs 

into neural-like cells was less pronounced on the 4 µm wide microgrooves compared to narrower 1 and 

2 µm microgrooves. In addition, MSCs on 1 µm and 2 µm grooves showed an upregulation of the 

expression neurogenic markers such as microtubule associate protein 2 (MAP2) and neural nuclei 

(NeuN) [44]. In another study, Kurpinski et al. [47] applied a uniaxial strain to an elastomeric PDMS 

substrate containing parallel microgrooves on its surface. The uniaxial mechanical stimuli resulted in 

stem cell alignment along the microgrooves and an increase in cell proliferation. It was also evident 

that there was an increased expression of calponin 1, a gene-marker of smooth muscle cell contractility 

after 2 and 4 days of culture under induced mechanical strain.  

The shape of the microtopographies has also been shown to be important in stem cell  

behavior [48,49]. For example Engel et al., [48] developed ring and square shaped poly(methyl 

methacrylate) (PMMA) patterns to control the attachment of rat MSCs (rMSCs) (Figure 2C). They 

showed that the attachment of rMSCs was most favorable to ring shaped microstructures compared to 

other geometries, while cell proliferation and differentiation were the same on the microstructured and 

flat surfaces. In another study [49], hMSCs were cultured on concave and convex shaped  

poly(L-Lactic-Acid) (PLLA) microtopographies. More than 50% of cells expressed CD71 after  

10 days on the concave and convex surfaces confirming that hMSCs maintained their proliferative 

ability. Additionally the authors observed enhanced cell spreading on concave surfaces compared to 

the convex ones.  

Non-adhesive microscale structures also direct cell differentiation. For example, it is widely 

recognized that the differentiation of ESCs into various cell types could benefit from cell aggregates 

called embryoid bodies (EBs) [50]. Typically, EBs are generated in non-adhesive dishes to yield cell 

aggregates of various sizes. To generate more homogenous EBs, the hanging drop method is used, 

however this technique is cumbersome and difficult to scale-up [51]. Recently, microtopography has 

been employed to generate homogenously sized EBs by trapping cells inside microwells with different 

diameters [52]. For example, non-adhesive PEG microwells have been used to generate and retrieve 

EBs of controlled sizes [53]. Such microwells have also been shown to direct the differentiation of 

stem cells by modulating the size of EBs [43]. In particular, larger EBs (450 µm) resulted in more 

cardiac cells whereas smaller EBs (150 µm) generated more endothelial cells. This behavior was 

shown to be regulated by the differential expression of non-canonical Wnt pathway molecules, Wnt5a 

and Wnt11. Overall, the above-mentioned studies demonstrated the potential of microstructures for 

creating EBs with a homogenous size distribution and in directing the fate of ESCs.  
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Figure 2. (A) Co-culture of adult rat hippocampal progenitor cells (AHPCs) with 

astrocytes on microgrooved PS substrate. The square illustrates how the cells align in the 

same direction as the microgrooves (Published with permission from Elsevier [45]);  

(B) Elongation of mouse mesenchymal stem cells (mMSCs) inside microgrooves on a 

silicon substrate (Published with permission from Elsevier [46]); (C) Attachment of rMSCs 

on ring shaped PMMA microstructures (Published with permissions from Elsevier [48]); 

(D) Formation of embryoid bodies (EBs) using an array of PEG microwells (Published 

with permission from Elsevier [53]). 

 

2.3. Stem Cell Behavior on Micropatterned Surfaces 

Micropatterned substrates have been used extensively to pattern cells on substrates and to control 

the resulting cell shape [8,54-56]. These studies have revealed that cell shape is an important regulator 

of apoptosis [54,56], proliferation and differentiation [55]. For instance, McBeath et al. [55] 

demonstrated that hMSCs that were spread on large protein patterns differentiated into osteogenic 

cells, while rounded cells on smaller patterns generated adipogenic cells. In another study,  

Kilian et al. [8] explored the differentiation of hMSCs into osteogenic and adipogenic cells on 

different micropatterns. It was shown that cell attachment on ellipsoid and star shaped fibronectin 

micropatterns enhanced the differentiation into bone cells compared to square shaped geometries.  

Micropatterns have also been used to demonstrate a relationship between NSCs shape and 

differentiation. Solanki et al. [9] was able to control the fate of rat NSCs (rNSCs) by varying the 

geometry and dimensions (10–250 μm) of laminin patterns. They reported that grid patterns resulted in 

axon-like outgrowths from the cell body accompanied by neural differentiation, while square shaped 

islands resulted in an increase in the number of cells expressing astrocyte markers. Likewise, a more 

stellate-like cell morphology was observed by Ruiz et al. [57] on grid shaped micropatterns compared 

to a nonpatterned surface. The stellate morphology resulted in an enhanced expression of the neural 
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marker β-TubIII. In summary, these reports [8,9,57] validate the feasibility of controlling the fate of 

both MSCs and NSCs by culturing cells on micropatterned surfaces. 

2.4. Nanoscale Engineering Approaches for Controlling Stem Cell Fate  

Early studies of cells on nanostructured surfaces have mainly focused on nanogrooves. These 

studies have demonstrated that nanoscale grooves can direct cell alignment and migration through 

contact guidance even on feature sizes that were only 30 nm deep [58-61]. Moreover, studies have 

shown that stem cell alignment on nanogrooves lead to a more pronounced differentiation profile. In 

the paper by Lee et al., polymeric nanogrooves (350 nm wide) were used to demonstrate a correlation 

between cell alignment and hESCs differentiation into the neuronal linage [62]. A similar relationship 

between the alignment of hMSCs and their neuronal differentiation was shown using 350 nm wide 

grooves by Yim et al. [63]. With the advances in the nanofabrication technology, other topographies 

have now become available for use in stem cell studies. For example, approaches such as polymer 

phase separation [64-66], metal anodization [67-69], dip-pen nanolithography [70], colloidal 

lithography [71-73], UV-assisted capillary force lithography [62,74,75] molecular beam epitaxy 

(MBE) [76-78], and glancing angle deposition [79,80] have been employed to fabricate sub-100 nm 

nanotubes, islands, and pyramids.  

It has been shown that the nanostructured surfaces can direct MSCs into osteogenic  

cells [6,67,68,81-83]. Much of this focus has been on MSCs interaction with vertical TiO2 nanotubes 

fabricated by metal anodization [6,67,68,81,82]. Park et al. [67,68] performed extensive studies on the 

behavior of rMSCs on TiO2 nanotubes with tube diameters in the range of 15 to 100 nm  

(Figure 3A) [67,68]. A more pronounced cell response was observed on smaller nanotubes (15–30 nm), 

where cell adhesion, spreading, bone mineralization (Figure 3B) and bone marker expression  

(Figure 3C) were found to be enhanced compared to flat TiO2 [68,69,84]. Moreover, by examining the 

cytoskeletal structure of the cells, more focal contacts were observed on the smallest nanotubes [67], in 

agreement with the upregulated stem cell differentiation observed on the 15 and 30 nm nanotubes [85]. 

Other groups have observed similar behavior for hMSCs and rMSCs that were cultured on 70 and 100 

nm TiO2 nanotubes [6,86]. For example, a higher alkaline phosphate activity was observed on 80 nm 

nanotubes followed by a larger mineralization of calcium and phosphate [86]. Furthermore,  

Oh et al. [6] found that the expression of bone proteins such as osteopontin and osteocalcin were 

significantly higher on 100 nm nanotubes. In conclusion, there is a strong indication that generation of 

nanotubes by metal anodization could enhance the performance of orthopedic titanium implants. This 

is either linked directly to mechanical stresses transmitted from the nanostructures to the cell  

nucleus [87-89] or indirectly by structural modulation of ECM proteins to expose cell adhesive 

domains [90-92] or a combination of both. 

As described previously, the nanoscale chemical and topographical cues in vivo have different 

shapes and sizes. By employing UV-assisted capillary force lithography it is possible to examine stem 

cell behavior on nanotopographies with various chemistries, shapes and sizes [23,62,75]. In a study by 

You et al. [75], the osteogenic differentiation of hMSCs on polyurethane acrylate nanogrooves and 

columns with different sizes were investigated. They noticed that the highest expression of osteogenic 

markers and alkaline phosphatase activity was on the 400 nm wide nanocolumns.  
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Figure 3. (A) Scanning electron micrographs of the TiO2-nanotubes (15, 20, 30, 50, 70, 

100 nm); (B) Plot of alkaline phosphatase activity versus nanotube diameter; 

(C) Osteocalcin (red) and F-actin (green) staining of cells seeded on 15 nm and 100 nm 

TiO2-nanotubes. The scale bar is 20 μm (Published with permission from ACS 

publications [67]). 

 

Moreover, the distribution of topographical cues in the stem cell microenvironment may also 

influence stem cell behavior. Dalby et al. [83] found that surfaces composed of nanopits with 

controlled disorder resulted in increased expression of osteogenic markers relative to surfaces 

consisting of either highly ordered or randomly displaced nanopits. In another study by Hunt and 

coworkers [70], dip-pen nanolithography was used to fabricate nanopatterns with different chemistries 

and spacings for analysis of stem cell behavior [70]. Specifically, they patterned thiolated molecules 

terminated with various chemistries (including carboxyl, amino, methyl and hydroxyl) onto gold 

surfaces. The chemically functionalized islands were 70 nm wide with inter-island spacing that ranged 

from 140 to 1000 nm. They cultured hMSCs on the fabricated surfaces and found that the adhesion and 

expression of several stem cell markers depended on the specific chemistry and the distance between 

the nanoscale islands [70]. This approach provided an efficient method to precisely control size, 

spacing and chemistry of nanofabricated patterns and could in theory be used to fabricate randomly 

ordered nanoscale islands. Thus, various nanoscale fabrication methods can be used to create 

nanostructured surfaces for directing stem cell differentiation. These approaches are implemented in 

2D, therefore to further advance the use of these systems to regulate stem cell behavior, it is necessary 
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to implement the nanosculpturing in a 3D environment to better replicate the in vivo environment of 

the stem cells.  

3. The Role of Chemical Moieties and Substrate Stiffness on Stem Cell Fate  

3.1. Chemically Functionalized Surfaces 

The stem cell microenvironment consists of numerous molecular cues including proteins and 

polysaccharides. It is becoming increasingly clear that the biochemical cues in the cellular 

microenvironment to a large extent determine processes such as cell attachment, proliferation and 

differentiation [93]. By using SAMs to coat surfaces, it is possible to test stem cell behavior on a range 

of chemistries [94,95]. Wu and coworkers [95] used SAMs with different chain lengths and 

hydrophobic head groups to develop various surface hydrophobicities. They observed that an increase 

in surface hydrophobicity resulted in higher hESC proliferation and differentiation [95]. In the future, 

such SAM coated surfaces could potentially be used to control cell size and enhance the differentiation 

profile of hESCs in vitro. 

SAMS conjugated to various ligands, such as peptides or proteins, have also been synthesized and 

used in stem cell studies [96-99]. For example, surfaces functionalized with RGD ligands increased 

osteogenic [100-103], chondrogenic [104] and neurogenic [105] differentiation of stem cells compared 

to non-functionalized substrates. Although many studies have used RGD functionalized surfaces, 

different polymer coatings have likewise been used to induce stem cell differentiation. In one 

approach, Joy et al. [106] coated surfaces with different polymer compositions and observed that the 

surface chemistry had a significant influence on the osteogenic and adipogenic differentiation of 

hMSCs. However, after functionalization with RGD ligands, no differences were found in the 

expression of these markers between surfaces coated with different polymers. The fact that 

immobilized adhesive ligands can override the effect of the underlying polymer coating can have 

important implications in designing polymer-based biomaterials. In conclusion, altering the surface 

chemistry influences the behavior of stem cells and their differentiation in a notable way.  

3.2. Substrate Stiffness 

Mammalian cells can sense the elasticity of the substrates on which they are cultured [7]. This is 

caused by transmission of mechanical forces between substrate and cell, which generates contractile 

forces in the cell. These contractile forces in turn influence cell behaviors such as spreading [107,108], 

migration [109], proliferation [110] and apoptosis [111]. Pitelka and coworkers [112] provided early 

evidence in 1979 that substrate stiffness also affects differentiation. They found that mouse epithelial 

cells (mECs) differentiate better on softer collagen substrates compared to harder plastic tissue culture 

dishes. In another study, myoblasts were seeded on substrates with different stiffness [113] to show 

that actin/myosin striation, as it is seen in natural muscle, occurred only on the substrates with 

mechanical properties similar to that of a muscle [114]. More recently, Engler et al. [7] cultured 

hMSCs on a polyacrylamide gel homogeneously coated with collagen I ligands. The substrates had 

variable stiffness representing that of nerve (0.1–1 kPa), muscle (8–17 kPa) and bone tissue  

(25–40 kPa) and it was it was observed that the hMSCs differentiated along the neurogenic, myogenic 
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and osteogenic lineage, respectively (Figure 4) [7]. Cooper-White and coworkers [113] further 

hypothesized that ECM proteins could influence hMSCs fate and therefore analyzed the combined 

effect of various ECM proteins (collagen I, collagen IV, laminin, and fibronectin). Their results 

revealed a significant interplay between ECM proteins and the underlying substrate elasticity affecting 

the myo- or osteogenic differentiation patterns. These studies suggest that both the elastic modulus of the 

substrate and the coated ECM proteins play a significant role in hMSC differentiation [7,113]. 

Figure 4. (A) The elastic moduli of different solid tissues ranging from blood to 

collagenous bone; (B) The images show how different substrate stiffness values influence 

cell morphology. Scale bar is 20 μm; (C) Microarray profiling of differentiation marker 

expression on substrates with different stiffnesses. The microarray profiling showed that 

neurogenic markers were highest on 0.1–1 kPa gels, while myogenic markers were highest 

on 11 kPa gels and osteogenic markers were highest on 34 kPa gels. (Published with 

permission from Elsevier [7]). 

 

In vivo, stem cells exist in 3D microenvironments, hence it is important to understand the effect of 

3D matrix stiffness on stem cell differentiation. Over the past few years, many new techniques have 

emerged to fabricate 3D constructs with precise mechanical properties [93]. In particular, hydrogels 

have proven as a promising tool for the fabrication of 3D microenvironments [115-121]. In one study 

Pek et al. [116] used a thixotropic polyethylene glycol-silica (PEG-silica) to generate 3D gels with 

different stiffnesses [116]. Their findings showed that the highest expression of neural (ENO2), 

myogenic (MYOG) and osteogenic (Runx2, OC) markers occurred on gels corresponding to low  

(7 Pa), intermediate (25 Pa) and high (75 Pa) gel stiffness respectively, consistent with previous 

findings on 2D surfaces [7].  
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3.3. High-Throughput Screening of Stem Cell Differentiation on Biomaterials 

Most of today’s biomaterials are prepared and tested individually for various applications. This 

process is time-consuming and expensive. An emerging approach in the development of biomaterials 

has been the use of combinatorial high-throughput screening methods to lower the cost and the 

experimentation time. This approach can be applied to stem cell bioengineering by simultaneously 

examining numerous parameters on stem cell fate. Kohn and co-workers [122] developed one of the 

first high-throughput biomaterial library systems in 1997. By employing polyacrylates, they 

successfully generated a microarray with 112 different combinations and used the array to examine 

fibroblast proliferation. 

Microarray printing technologies have been more widely used in the biomaterials field over the past 

few years to screen for various stem cell material-interactions [100,123,124]. For example,  

Flaim et al. [124] used a DNA spotter to develop an ECM matrix microarray for probing the 

differentiation of primary rat hepatocyte cells (rHCs) and mESCs towards an early hepatic phenotype, 

by using five different proteins (collagen I, collagen III, collagen IV, laminin and fibronectin) in  

32 combinations. This platform was used to identify specific ECM mixtures, containing either collagen 

I or fibronectin, that directed mESCs into a hepatic fate.  

The differentiation profile of hESCs have also been examined on high-throughput biomaterial 

platforms [123,125,126]. The growth of hESCs on arrays with 18 different laminin-derived peptides 

was investigated by Derda et al. [125]. Their results revealed that the RNIAEIIKDI laminin peptide 

resulted in undifferentiated cells, while LGTIPG peptide promoted differentiation. Thus, they 

demonstrated that high-throughput platforms can be used to quickly identify peptide sequences that 

can regulate stem cell fate. In another study by Anderson et al. [123], the growth and differentiation of 

hESCs into cytokeratin positive cells on a microarray containing 1728 polymer mixtures were 

examined. Later, they investigated additional parameters such as root mean square roughness  

(0 –100 nm), stiffness (0.002 –2.262 GPa) and wettability (30–110°). They found that surface 

wettability and the elastic modulus of the polymers modulated the colony formation frequency (CFF) 

of hESCs, while surface roughness did not have a significant effect [126]. Taken together, these 

studies show that high-throughput screening platforms could more rapidly identify important 

parameters in culture dishes for better control of stem cell fate.  

4. Conclusions 

Surface topography as well as micro- and nanoscale chemical patterns on biomaterials have proven 

to be efficient methods to direct stem cell behavior. In addition, substrate stiffness and chemical cues 

are important factors in controlling stem cell fate. Further advances in controlling stem cell fate could 

be achieved by combining the above mentioned parameters in a more scalable and combinatorial 

manner to address the complexity of the natural stem cell niche. Overall, it is becoming clearer that the 

advances in micro- and nanoengineering can be used to precisely control stem cell behavior through 

cell-substrate interactions with enormous potential implications in science and medicine.  
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