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Abstract: In this study, a super porous polymeric network prepared from a natural polymer,
carboxymethyl cellulose (CMC), was used as a scaffold in the preparation of conductive polymers such
as poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh). CMC–conductive polymer
composites were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric
analysis (TGA) techniques, and conductivity measurements. The highest conductivity was observed
as 4.36 × 10−4

± 4.63 × 10−5 S·cm−1 for CMC–PANi cryogel composite. The changes in conductivity
of prepared CMC cryogel and its corresponding PAN, PPy, and PTh composites were tested against
HCl and NH3 vapor. The changes in conductivity values of CMC cryogel upon HCl and NH3 vapor
treatment were found to increase 1.5- and 2-fold, respectively, whereas CMC–PANi composites
showed a 143-fold increase in conductivity upon HCl and a 12-fold decrease in conductivity upon
NH3 treatment, suggesting the use of natural polymer–conductive polymer composites as sensor for
these gases.

Keywords: CMC cryogel; natural polymer–conductive polymer cryogel composite; carboxymethyl
cellulose cryogel composites; conductive natural polymer cryogel

1. Introduction

Conductive polymers were first synthesized as a new generation of organic materials in the
mid-1970s. Although the electrical and optical properties of conductive polymers are similar to
metals and organic semiconductors, they have attracted more attention owing to their properties,
such as the ease of synthesis and easier processing than metals [1–3]. The synthesis methods for
conductive polymers can be divided into two main groups, where the starting material is either a
polymer or a monomer. Soluble conductive polymers can be deposited through direct polymer solution
spraying, sieve, microcontact printing, probe-based deposition, photolithography, and spin coating.
Alternatively, monomers can be polymerized by chemical, electrochemical, or plasma techniques [4–7].
Conductive polymers are widely used in microelectronics industries including photovoltaic devices,
light-emitting diodes, electrochromic screens, sensors, and battery technology [8–10]. However, the
studies in the 1980s demonstrated that conductive polymers are compatible with many biological
molecules, causing a significant increase in the use of polymers for biomedical applications. Many
conductive polymers such as poly(Aniline) (PANi) [11,12], poly(Pyrrole) (PPy) [13,14], poly(thiophene)
(PTh) [15], and their derivatives [16–18] have been reported as cell and tissue compatible, which was
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supported by in vitro and in vivo studies. In addition, the chemical, physical, and electrical properties
of conductive polymers can be adapted to particular needs by modification of antibodies, enzymes,
and some other biological molecules [19–23].

Many events in the human body, such as neural communication, embryonic development,
tissue repair after injury, and heartbeat, among others, are regulated by electrical signals [24]. The
components that are electrically active in the human body are the nervous system, heart, and muscles,
respectively [25,26]. While the electric is used during the transmission of information between neurons
in the nervous system, the muscle cells in the heart produce heartbeats by generating electrical impulses
that lead to muscle contraction circulating throughout the organ [25,26]. Besides, some tissues, such
as bone marrow, have been shown to use conductivity to regenerate [27]. In this context, studies on
the design of electrically conductive materials for biotechnological and biomedical applications have
attracted a great deal of attention [28] Conductive polymers have become prominent candidates for
materials that can be used in these biotechnological and biomedical fields such as biosensors [29,30],
neural electrodes [31,32], bio-activators [33,34], wound healing and controlled release systems [35,36],
and tissue scaffolds [37,38], owing to their electrical behavior and biocompatibility [39]. The utilization
of conductive polymers in these applications can be augmented further by preparing conductive
polymers within super-porous biocompatible cryogels.

In this study, for the first time, in situ synthesis of conductive polymers within natural polymer
CMC cryogels is reported. The synthesis of cryogels from natural carboxymethyl cellulose (CMC)
polymer by employing cryopolymerization technique was accomplished. Then, the synthesized CMC
cryogel was used as a template for in situ synthesis of conductive polymers, PANi, PPy, and PTh for the
first time. The prepared CMC–conductive polymer cryogel composites were characterized by means of
Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), and conductivity measurements
employing an electrometer. Moreover, the changes in the conductivity of CMC, CMC–PANi, CMC–PPy,
and CMC–PTh cryogel composites were investigated for the detection of HCl and NH3 vapor as
potential sensing materials.

2. Materials and Methods

2.1. Materials

Carboxymethyl cellulose sodium (CMC, Mw~250,000, degree of substitution: 1.2, Aldrich, St. Louis,
MO, USA), divinyl sulfone (DVS, 98%, Merck, Kenilworth, NJ, USA), aniline (ANi, 99%, Sigma-Aldrich,
St. Louis, MO, USA), pyrrole (Py, 98%, Aldrich), thiophene (Th, 99%, Aldrich), ammonium persulfate
(APS, 98%, Sigma-Aldrich), Iron (III) chloride (FeCl3, 98%, Fluka), hydrochloric acid (HCl, 37%, VWR
Chemicals, Radnor, PA, USA), sodium hydroxide (NaOH, 98.8%, VWR Chemicals), chloroform (CH3Cl,
99%, Riedel de Haen), ethanol (99.8%, Sigma-Aldrich), hydrochloric acid (HCl, 37%, VWR Chemicals),
ammonium solution (NH3, 25%, Sigma Aldrich), and double distilled water (DDW, GFL2108) were
used as received.

2.2. Synthesis of CMC Cryogel

The synthesis of CMC cryogel was reported earlier [40]. In brief, 0.2 g of CMC was dissolved
in 6 mL 0.2 M NaOH under constant stirring at 500 rpm for 4 h at ambient temperature, and then
cooled in a freezer about 5 min. Then, DVS crosslinker, with a mole ratio of 100% relative to the CMC
repeating unit, was added and quickly pipetted (0.8 cm diameter). The mixture was then placed in a
freezer at −18 ◦C for cryopolymerization reaction for 24 h to complete cryo-crosslinking. Prepared
CMC cryogels were cut in similar shapes and washed with DDW for purification. Purified CMC
cryogels were dried in a freeze-dryer and stored in closed tubes for further use.
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2.3. In Situ Synthesis of Conductive Polymers within CMC Cryogels

For in situ synthesis of poly(Aniline) (PANi) within CMC cryogels, a similar procedure reported in
the literature was followed [41,42]. In short, 0.1 g CMC cryogels were placed in 10 mL ANi monomer
for 2 h to load ANi monomer into CMC cryogels at a 100 rpm mxing rate at an ambient temperature.
After that, the ANi monomer containing CMC cryogels were weighed, and the amount of loaded ANi
was gravimetrically calculated. Then, ANi-loaded CMC cryogels were transferred in 200 mL 1 M HCl
containing APS at 1:1.25 APS/ANi mole ratio according to the amount of ANi loaded into the CMC
cryogel and stirred at 250 rpm for 30 min. Then, the prepared CMC–PANi cryogel conductive polymer
composites were washed with DDW and ethanol, and dried in an oven at 50 ◦C.

In situ synthesis of poly(Pyrrole) (PPy) within CMC cryogels was also carried out in a similar
procedure with some modification [41,42]. CMC cryogels weighing 0.1 g were placed in 10 mL Py
monomer to load Py into CMC cryogels. Then, the Py-loaded CMC cryogels were placed into 0.05 M
250 mL FeCl3 solution in DDW and stirred at 250 rpm for 2 h at an ambient temperature for in situ
polymerization of Py within CMC cryogels. Then, the prepared CMC-PPy cryogel conductive polymer
composites were washed with DDW and ethanol, and dried in an oven at 50 ◦C.

The synthesis procedure of poly(Thiophene) (PTh) within CMC cryogels was also done based on
a previously reported method [41,42]. Briefly, CMC cryogels weighing 0.1 g were placed in 10 mL of
Th monomer to load Th into CMC cryogels. After that, Th loaded CMC cryogels were placed into
50 mL 0.03 M FeCl3 solution in chloroform and placed in an oil bath at 65 ◦C with reflux system, and
stirred at 250 rpm for 16 h for the polymerization of Th within CMC cryogels. Finally, the prepared
CMC–PTh cryogel conductive polymer composites were washed with DDW and ethanol, and dried in
an oven at 50 ◦C.

2.4. Characterization

The characterization of synthesized CMC cryogels and conductive polymer composites was done
using Fourier transform infrared (FT-IR) spectrometer (Nicolet iS10, Thermo, Waltham, MA, USA),
thermogravimetric analyzer (TGA, SII 6300, Exstar, Stoneham, MA, USA), and an electrometer (2400
Source-meter, Keithley, Cleveland, OH, USA) for conductivity measurements.

2.5. Conductivity Measurements

Conductivity of synthesized CMC cryogels and their corresponding PANi, PPy, and PTh
composites was measured from the ohmic region of current–voltage (I–V) curves constructed from an
electrometer using Equations (1) and (2):

V = I × R (1)

σ = (1/R) × (l/A) (2)

where ‘V’ is the voltage, ‘I’ is the current, ‘R’ is the bulk resistance, ‘σ’ is the conductivity, ‘1/R’ is the
resistivity, ‘l’ is the thickness, and ‘A’ is the cross-sectional area of the sample.

In the conductivity measurements, small pieces of conductive carbon tapes (3 mm × 4 mm) were
attached at the top and bottom sides of CMC cryogels and/or CMC–conductive polymer composites,
and then the electrodes of the electrometer were contacted with these carbon tapes. Next, the I–V
curves were obtained by applying voltages up to 100 V to determine the conductivity of the samples.

3. Results and Discussion

3.1. Synthesis and Characterization of In Situ Synthesized Conductive Polymer CMC Cryogel Composites

The well-known cryo-crosslinking technique was used in the preparation of CMC cryogels having
an interconnected super macroporous structure. Scanning Electron Microscopy (SEM) images of
CMC cryogels synthesized using 100% DVS crosslinker based on the repeating unit of CMC were
previously reported by our group reporting the super macroporous structure of CMC cryogels with a
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pore size in a range of 1–100 µm [40]. Recently, the synthesis of conductive polymers within cryogels
was reported [41,42]. The schematic presentation of in situ synthesis of conductive polymers within
CMC cryogels is given in Figure 1a–c for PANi, PPy, and PTh synthesis, respectively. Briefly, 0.1 g
of purified cylindrical CMC cryogel pieces was placed into ANi, Py, and Th monomers separately
about 2 h for loading of monomers into CMC cryogels. Then, depending on monomer, the conductive
monomer-loaded CMC cryogels were placed into the appropriate initiator solution, as described above.

J. Compos. Sci. 2020, 4, x 4 of 11 

 

separately about 2 h for loading of monomers into CMC cryogels. Then, depending on monomer, the 
conductive monomer-loaded CMC cryogels were placed into the appropriate initiator solution, as 
described above.  

 

Figure 1. The schemcatic presentation of in situ synthesis of (a) poly(Aniline) (PANi), (b) 
poly(Pyrrole) (PPy), and (c) poly(Thiophene) (PTh) conductive polymers within carboxymethyl cel-
lulose (CMC) cryogels. APS, ammonium persulfate. 

As a result of in situ synthesis of conductive polymer, the interconnected super macro pores of 
CMC cryogels were filled with PANi or PPy, or PTh, as shown in Figure 1. The amounts of loaded 
ANi, Py, and Th into CMC cryogels; the amounts of in situ synthesized conductive polymers within 
CMC cryogels; and in situ polymerization efficiency of conductive polymers within CMC cryogels 
are summarized in Table 1. The ANi, Py, and Th loaded CMC cryogels were weighed and the 
amount of incorporation of each ANi, Py, and Th monomer into CMC structure is calculated. Briefly, 
cryogels of known weight were placed in monomers and weighed again to calculate the loaded 
amount of the corresponding monomers. 

In brief, the weight of known cryogel was placed into monomers of the desired conductive 
polymer and weighted again to calculate the loaded amount of the corresponding monomers. The 
amounts of in situ prepared conductive polymers were then calculated from the weight of the cry-
ogel–conductive polymer composites. The percent yield of in situ polymerized conductive polymers 
was calculated from the amount of in situ polymerized conductive polymers and loaded amount of 
monomer. 

Table 1. The amount of loaded Aniline (ANi), Pyrrole (Py), and Thiophene (Th); the amount of in 
situ synthesized cryogel composites; and in situ polymerization yield. CMC, carboxymethyl cellu-
lose. 

Materials 
(Cryogel 

Composite) 

Weigth of 
CMC 

Cryogels (g) 

Loaded 
Amount of 

Monomer (g) 

Amount of 
Composite 
Cryogel (g) 

Yield of In Situ 
Polymerization (%) 

CMC–PANi 0.1 ± 0.01 1.98 ± 0.02 0.97 ± 0.11 46.2 ± 5.44 
CMC–PPy 0.1 ± 0.01 1.94 ± 0.03 0.23 ± 0.01 10.9 ± 0.21 
CMC–PTh 0.1 ± 0.01 1.92 ± 0.03 0.11 ± 0.01 5.18 ± 0.49 
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cryogels. APS, ammonium persulfate.

As a result of in situ synthesis of conductive polymer, the interconnected super macro pores of
CMC cryogels were filled with PANi or PPy, or PTh, as shown in Figure 1. The amounts of loaded
ANi, Py, and Th into CMC cryogels; the amounts of in situ synthesized conductive polymers within
CMC cryogels; and in situ polymerization efficiency of conductive polymers within CMC cryogels are
summarized in Table 1. The ANi, Py, and Th loaded CMC cryogels were weighed and the amount of
incorporation of each ANi, Py, and Th monomer into CMC structure is calculated. Briefly, cryogels of
known weight were placed in monomers and weighed again to calculate the loaded amount of the
corresponding monomers.

Table 1. The amount of loaded Aniline (ANi), Pyrrole (Py), and Thiophene (Th); the amount of in situ
synthesized cryogel composites; and in situ polymerization yield. CMC, carboxymethyl cellulose.

Materials (Cryogel
Composite)

Weigth of CMC
Cryogels (g)

Loaded Amount
of Monomer (g)

Amount of Composite
Cryogel (g)

Yield of In Situ
Polymerization (%)

CMC–PANi 0.1 ± 0.01 1.98 ± 0.02 0.97 ± 0.11 46.2 ± 5.44
CMC–PPy 0.1 ± 0.01 1.94 ± 0.03 0.23 ± 0.01 10.9 ± 0.21
CMC–PTh 0.1 ± 0.01 1.92 ± 0.03 0.11 ± 0.01 5.18 ± 0.49

In brief, the weight of known cryogel was placed into monomers of the desired conductive polymer
and weighted again to calculate the loaded amount of the corresponding monomers. The amounts of
in situ prepared conductive polymers were then calculated from the weight of the cryogel–conductive
polymer composites. The percent yield of in situ polymerized conductive polymers was calculated
from the amount of in situ polymerized conductive polymers and loaded amount of monomer.
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Upon polymerization of ANi, Py, and Th within CMC cryogels by placing into corresponding
solutions for the in situ synthesis of conductive PANi, PPy, and PTh polymers within CMC cryogels,
the weights of conductive PANi, PPy, and PTh polymers were computed as 0.97 ± 0.11, 0.23 ± 0.01,
and 0.11 ± 0.01 g, respectively. The in situ polymerization efficiency of conductive PANi, PPy, and
PTh within CMC cryogels was gravimetrically assessed as 46.21% ± 5.44%, 10.95% ± 0.21%, and
5.18% ± 0.49%, respectively.

The FT-IR spectra and TGA thermograms of CMC cryogel, as well as CMC–PANi, CMC–PPy,
and CMC–PTh composites, are shown in Figure 2a,b, respectively. In Figure 2a, the FT-IR spectrum of
CMC cryogels gave characteristic peaks as wide band around 3350 cm−1 assigned to –OH stretching,
asymmetric stretching of –COO- at 1592 cm−1, symmetric stretching of -COO- at 1423 cm−1, and
–CO stretching at 1047 cm−1, respectively. On the other hand, new bands appeared at 1544 cm−1

corresponding to benzenoic-quinonic nitrogen, at 1494 cm−1 for aromatic C-C, at 1288 cm−1 for aromatic
amine group, and at 1118 cm−1 for C-N-C stretching in the FT-IR spectrum of CMC–PANi cryogel
composites, which are in accordance with the literature [43]. The characteristic bands of PPy were
also observed in the FT-IR spectrum of CMC–PPy cryogel composites at 1358 cm−1 corresponding to
=C-H in-plane vibrations, at 1276 cm−1 for N-C stretching vibrations, and at 901 cm−1 assigned to the
presence of polymerized pyrrole units [44]. Moreover, the peaks observed at 703, 1319, and 1426 cm−1

from the FT-IR spectrum of CMC–PTh cryogel composites were assigned to α–α connection between
thiophene molecules [45], and C-H in-plane bending vibrations of Th molecules, respectively [46].
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Figure 2. (a) Fourier transform infrared (FT-IR) spectrum and (b) thermogravimetric analysis (TGA)
thermograms of CMC cryogel, CMC–PANi, CMC–PPy, and CMC–PTh cryogel composites.

The thermal stability and degradation steps of CMC cryogel, CMC–PANi, CMC–PPy,
and CMC–PTh cryogel composites were compared with TGA analysis and corresponding TGA
thermograms are given in Figure 2b. The first degradation step of CMC cryogel was observed between
260 and 308 ◦C with 41.5% weight loss from the thermogram, the second step of degradation was
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observed between 676 and 694 ◦C with 75.8% weight loss, and 78.8% weight loss was observed at
800 ◦C. On the other hand, it was deduced that the thermal stability of CMC cryogels decreased with
the in situ synthesis of PANi conductive polymer, where the first degradation step was seen between
137 and 208 ◦C with 43.1% weight loss, the second step of degradation was observed between 425 and
607 ◦C with 89.8% weight loss, and 91.2% weight loss was attained at 800 ◦C from the TGA thermogram
of the CMC–PANi cryogel composite. The one step degradation of CMC–PPy cryogel composites was
noticed between 224 and 517 ◦C with 91.2% weight loss, and 92.1% weight loss was observed at 800 ◦C.
Finally, the TGA thermogram of CMC–PTh cryogel composites also resulted in two degradation steps,
starting between 222 and 278 ◦C with 16.5% weight loss, between 373 and 414 ◦C with 58.5% weight
loss, and 63.8% weight loss was observed at 800 ◦C. TGA thermograms of CMC cryogel, CMC–PANi,
CMC–PPy, and CMC–PTh cryogel composites clearly show that the thermal stability of CMC cryogel
decreased by in situ synthesis of PANi, and slightly decreased for the in situ synthesis of PPy and PTh
conductive polymers.

3.2. Conductivity Measurements

Although the reason behind the conductivity for conjugated organic molecules was initially
assumed to be derived from unfilled electronic valence and conduction bands, it was later shown
that the conductivity can be associated with spineless charge carriers such as soliton, polaron, and
bipolaron, after the discovery of conductive polymers such as PANi, PPy, and PTh [47]. In this study,
the conductivity of CMC cryogels, as well as the changes in conductivities of CMC–PANi, CMC–PPy,
and CMC–PTh cryogel composites, were determined by using an electrometer from the ohmic region of
obtained I–V curves. In Figure 3a, the digital camera images of CMC cryogel, CMC–PANi, CMC–PPy,
and CMC–PTh cryogel composites are given. It was clearly seen that the white color of CMC cryogels
turned to black after in situ synthesis of PANi and PPy, and also turned to light brown upon in situ
synthesis of PTh conductive polymer.
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The schematic representation of electrometer measurement setup is shown in Figure 3b. As can
be seen, the probes of electrometer were contacted to carbon tapes that were attached at the top and
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bottom sides of CMC-based cryogels and cryogel composites. The corresponding I–V curves of CMC
cryogel, CMC–PANi, CMC–PPy, and CMC–PTh are given in Figure 4a.J. Compos. Sci. 2020, 4, x 7 of 11 
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Figure 4. The comparison of (a) current–voltage (I–V) curves obtained from electrometer; and
(b) calculated conductivity values of CMC cryogel, CMC–PANi, CMC–PPy, and CMC–PTh
cryogel composites.

The conductivity values were calculated from I–V curves using Equations (1) and (2), and are
illustrated in Figure 4b for CMC cryogel, CMC–PANi, CMC–PPy, and CMC–PTh cryogel composites.
The conductivity of CMC cryogels was calculated as 2.21× 10−9

± 1.98× 10−10 S·cm−1. An approximately
200 K-fold increase was observed in the conductivity of CMC cryogels by the in situ synthesis of
PANi, which was calculated as 4.58 × 10−4

± 5.68 × 10−5 S·cm−1. The conductivity of CMC–PPy
cryogel composites was calculated as 5.02 × 10−5

± 5.54 × 10−6 S·cm−1 with approximately a 25 K-fold
increase as compared with the conductivity of bare CMC cryogel. On the other hand, the difference
between conductivity of CMC cryogels and CMC–PTh cryogel composites was insignificant, where
the calculated conductivity value of CMC–PTh cryogel composites was 2.28 × 10−9

± 5.24 × 10−10

S·cm−1. Among the monomers used for in situ syntheses of conductive polymers within CMC cryogel,
Th polymerization stands out as the most difficult one. The results summarized in Table 1 confirm this
phenomenon as the in situ polymerization efficiency for PTh within CMC cryogels was calculated as
5%. Therefore, the observation of some major differences in conductivity values among the conductive
polymers and CMC and CMC–PTh cryogel composites can be explained by a very small amount of
PTh conductive polymer in CMC cryogels.

The highest increase in conductivity was observed after in situ synthesis of PANi with a 200 K-fold
increase, following Py with a 25 K-fold increase, which could be owing to their higher amounts within
CMC pores, allowing better conductivity.
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3.3. The Change in Conductivity Upon Exposure to HCl and NH3 Vapors

The potential sensor use of the prepared CMC cryogel, CMC–PANi, CMC–PPy, and CMC–PTh
cryogel composites for HCl and NH3 vapors was tested by measuring the changes in conductivities
of prepared CMC-based cryogels by following literature [41]. In brief, CMC cryogel, CMC–PANi,
CMC–PPy, and CMC–PTh cryogel composites were treated with HCl and NH3 vapors for 15 min
by employing a simple experimental set up [41]. Cryogel composites were exposed to HCl and
NH3 vapors using a simple set up. In brief, two funnels were connected with a glass fritted neck,
where cryogel composites were placed on the top surface of the glass frit connected with another
funnel containing a glass cotton that is attached to HCl or NH3 solutions with a valve for the release
of vapors. The conductivities of CMC cryogel, CMC–PANi, CMC–PPy, and CMC–PTh cryogel
composites were calculated before and after gas exposures. The conductivity changes in CMC cryogel,
CMC–PANi, CMC–PPy, and CMC–PTh cryogel composites after treating with HCl vapor for 15 min
are demonstrated in Figure 5a, and the values are summarized in Table 2. The conductivity of
CMC cryogel was increased from 2.31 × 10−9

± 2.19 × 10−10 S·cm−1 to 4.59 × 10−9
± 6.33 × 10−10

S·cm−1 with approximately a twofold increase after 15 min of HCl vapor treatment. Moreover, the
conductivity of CMC–PANi cryogel composite increased from 4.36 × 10−4

± 4.63 × 10−5 S·cm−1 to
6.24 × 10−2

± 5.21 × 10−3 S·cm−1 with approximately a 150-fold increase after 15 min of HCl vapor
treatment. Further, the conductivity of CMC–PTh was increased from 2.12 × 10−9

± 8.36 × 10−9 S·cm−1

to 3.67 × 10−8
± 3.36 × 10−9 S·cm−1 with approximately a 20-fold increase after 15 min of HCl vapor

treatment. The change in conductivity of CMC–PPy was found to be insignificant as the conductivity
was increased to 5.97 × 10−5

± 9.32 × 10−6 S.cm-1 from 4.98 × 10−5
± 3.57 × 10−6 S·cm−1. Overall, the

highest conductivity change was observed for CMC–PANi cryogels with a 150-fold increases after HCl
vapor treating for 15 min. As HCl was also used for the in situ synthesis of PANi within CMC cryogels,
this conductivity increase in the CMC–PANi cryogel composite can be explained by the further doping
effect of HCl vapor for PANi conductive polymers within the CMC superporous network.
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Figure 5. The change in the conductivities of CMC cryogel, CMC–PANi, CMC–PPy, and CMC–PTh
cryogel composites after 15 min (a) HCl and (b) NH3 vapor exposure.
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Table 2. The changes in the conductivities of CMC cryogel, CMC–PAN, CMC–PPY, and CMC–PTh
cryogel composites after 15 min HCl and NH3 vapor treatment.

Materials
Conductivity (S·cm-1)

HCl Vapor Change
(fold)

NH3 Vapor Change
(fold)Before After Before After

CMC 2.31 × 10−9 4.59 × 10−9 2 2.16 × 10−9 3.11 × 10−9 1.5
CMC–PANi 4.36 × 10−4 6.24 × 10−2 143 4.11 × 10−4 3.27 × 10−5 12
CMC–PPy 4.98 × 10−5 5.97 × 10−5 1.2 5.16 × 10−5 1.11 × 10−5 5
CMC–PTh 2.12 × 10−9 3.67 × 10−8 17 2.51 × 10−9 4.14 × 10−8 16

The conductivity changes in CMC cryogel, CMC–PANi, CMC–PPy, and CMC–PTh cryogel
composites after treating with NH3 vapor for 15 min are shown in Figure 5b. As shown in Table 2, the
conductivity changes in CMC cryogel, CMC–PANi, CMC–PPy, and CMC–PTh cryogel composites are
from 2.16 × 10−9

± 3.71 × 10−10 S·cm−1 to 3.11 × 10−9
± 5.95 × 10−10 S·cm−1, from 4.11 × 10−4

± 5.32 ×
10−5 S·cm−1 to 3.27 × 10−5

± 2.56 × 10−5 S·cm−1, from 5.16 × 10−5
± 4.38 × 10−6 S·cm−1 to 1.11 × 10−5

±

8.73 × 10−6 S·cm−1, and from 2.51 × 10−9
± 9.17 × 10−10 S·cm−1 to 4.14 × 10−8

± 4.28 × 10−9 S·cm−1,
respectively. The highest conductivity change was observed for the CMC–PTh cryogel composite
with a 15-fold increase upon 15 min NH3 vapor treatment. Besides, 12-fold and 5-fold decreases were
observed in the conductivity of CMC–PANi and CMC–PPy cryogel composites, respectively.

As a consequence, it can be assumed that the amounts of conductive polymer in CMC cryogel
templates and the types of conductive polymer can affect the potential sensor applications of composite
systems against different gases, for example, HCl and NH3 vapor.

4. Conclusions

Herein, CMC cryogels from natural sources were utilized as a template for in situ PANi, PPy,
and PTh conductive polymer synthesis for the first time in the literature. It was observed that the
conductivity of CMC cryogels was increased by in situ preparation of PANi and PPy conductive
polymers to 4.36 × 10−4

± 4.63 × 10-5 S·cm−1 with a 200 K-fold increase, and 4.98 × 10−5
± 3.57 ×

10-6 S·cm−1 with approximately a 25 K-fold increase according to conductivity of CMC cryogels,
respectively. The potential sensor application of CMC-based PANi, PPy, and PTh cryogel composites
was also tested against HCl and NH3 vapor exposure. The most significant conductivity difference
was realized for CMC–PANi cryogel against HCl vapor by 15 min exposure time, with a 150-fold
increase in the conductivity attributed to the doping of PANi conductive polymers with HCl vapor.
Additionally, a 15-fold increase was observed in the conductivity of CMC–PTh, and a 12-fold decrease
was observed in the conductivity of CMC–PANi against NH3 vapor exposure by 15 min exposure.
Overall, it can be concluded that CMC–PANi, CMC–PPY, and CMC–PTh cryogel composites can be
used as a sensor for HCl and NH3 vapors. Importantly, the innate biocompatibility of CMC cryogels,
and sustainability of CMC with the capability of in situ prepared PANi, PPY, and PTh conductive
polymers, make these natural–synthetic polymer composites promising materials for biotechnological
and biomedical applications.
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