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Abstract: Mitochondria are dynamic organelles ubiquitously present in nucleated eukaryotic
cells, subserving multiple metabolic functions, including cellular ATP generation by oxidative
phosphorylation (OXPHOS). The OXPHOS machinery comprises five transmembrane respiratory
chain enzyme complexes (RC). Defective OXPHOS gives rise to mitochondrial diseases (mtD). The
incredible phenotypic and genetic diversity of mtD can be attributed at least in part to the RC
dual genetic control (nuclear DNA (nDNA) and mitochondrial DNA (mtDNA)) and the complex
interaction between the two genomes. Despite the increasing use of next-generation-sequencing
(NGS) and various omics platforms in unravelling novel mtD genes and pathomechanisms, current
clinical practice for investigating mtD essentially involves a multipronged approach including clinical
assessment, metabolic screening, imaging, pathological, biochemical and functional testing to guide
molecular genetic analysis. This review addresses the broad muscle pathology landscape including
genotype–phenotype correlations in adult and paediatric mtD, the role of immunodiagnostics in
understanding some of the pathomechanisms underpinning the canonical features of mtD, and recent
diagnostic advances in the field.
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1. Introduction

The diagnosis of mtD is challenging due to the incredible phenotypic and genetic diversity
associated with these diseases. This partly stems from the dual genetic control (nDNA and
mtDNA) of the RC, the complexity of intergenomic signalling and its functional consequences. mtD
can be inherited in an autosomal dominant, autosomal recessive, X-linked or mitochondrial (i.e.,
maternal) fashion. The circular mtDNA encodes 13 RC subunits, 22 mitochondrial tRNAs and two
ribosomal RNAs. Additionally, the mitoproteome requires over 1300 nuclear encoded proteins to
produce, assemble and support the five multimeric OXPHOS RC (I–V), and ancillary mitochondrial
processes [1–3]. Tissues and organs affected in mtD are often those with high-energy requirements.
Clinical symptoms can manifest at any age, and can affect a single organ or be multisystemic [4].
Typically, the more severe phenotypes present early, and milder phenotypes present later in life [5].
There are classic clinical syndromes with stereotypic features such as Leigh syndrome (subacute
necrotising encephalomyopathy), MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis
and stroke-like episodes) and Alpers disease (epilepsy and liver failure). Point mutations and
large-scale mtDNA deletions represent the two most common causes of primary mtDNA disease, the
former usually being maternally inherited, and the latter typically arising de novo during embryonic
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development [1]. Exemplary genotype–phenotype associations are recognised, often in a syndromic
context, e.g., mitochondrial protein synthesis tRNA gene point mutations are associated with MELAS,
myoclonic epilepsy with ragged red fibres (MERRF) and syndromic forms of maternally transmitted
diabetes; mutations in mitochondrial RC protein coding genes are associated with Leber hereditary
optic neuropathy (LHON), neuropathy, ataxia, retinitis pigmentosa (NARP), and maternally inherited
Leigh syndrome (MILS); single mtDNA deletions are associated with Pearson syndrome, chronic
progressive external ophthalmoplegia (CPEO) and Kearns-Sayre syndrome (KSS); multiple mtDNA
deletions are associated with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE),
autosomal dominant or autosomal recessive progressive external ophthalmoplegia (AD/AR-PEO),
and sensory ataxic neuropathy, ataxia, ophthalmoplegia (SANDO); mtDNA depletion are associated
with early-onset myopathic and hepatocerebral forms; Leigh syndrome is associated with a variable
genotypic background including nDNA and mtDNA mutations; and so on [6,7]. However, many
patients display non-specific features of developmental delay or regression, further hindering accurate
diagnosis [8]. The onset of symptoms, phenotypic variability, and variable penetrance of mtD
are influenced by the peculiarities of mitochondrial genetics including the threshold effect, mitotic
segregation, clonal expansion and a genetic bottleneck, as well as the nuclear genome background in
which it coexists or by environmental and epigenetic factors [6].

2. Laboratory Investigations and the Rationale for Muscle Biopsy

Given the complexity of mtD phenotypes and genetics, securing a diagnosis frequently requires
extensive non-invasive and invasive tests including imaging, neurophysiology, metabolic and
biochemical studies, muscle pathology and functional testing, followed by definitive molecular genetic
confirmation. Resting and exercise induced increase in blood lactate is a useful albeit non-specific
screening tool for mtD, but can be normal or minimally elevated as in mitochondrial polymerase
gamma (POLG1) associated diseases, Leber Hereditary Optic Neuropathy (LHON), Leigh disease,
Kearns-Sayre syndrome and Complex I deficiency [9]. The blood lactate/pyruvate ratio may increase
in inborn errors of the mitochondrial respiratory chain [10]. Spurious elevation of plasma lactate
and/or pyruvate may occur from poor collection or handling technique, secondary mitochondrial
dysfunction in a range of systemic and metabolic diseases, and in nutritional thiamine deficiency.
Blood and/or CSF pyruvate levels may increase in defects of pyruvate metabolism. Similarly, CSF
lactate and/or pyruvate levels may increase without blood elevation in mtD with predominant CNS
manifestations [11]. Elevated plasma/CSF amino acids, urine organic acids, and plasma acylcarnitines
all suggest underlying mitochondrial dysfunction, however, normal levels do not exclude mtD [12,13].
CK values are normal or mildly elevated, unless measured in the setting of rhabdomyolysis [14].
Neurophysiology may show non-specific signs of a myopathy, or a neuropathy when present, but
may be normal. Neuroimaging, encompassing several modalities beyond routine T1 and T2 magnetic
resonance imaging (MRI), including volumetric analysis, diffuse tensor imaging (DTI), magnetic
resonance spectroscopy (MRS), arterial spin labelling, and functional magnetic resonance imaging
(fMRI) has shown its potential as an investigative tool, and in many cases, providing non-invasive
and repeatable biomarker inquiry in patients with mtD [15]. MRI findings in patients with mtD can
often be non-specific, including in those with clinical central nervous system involvement; however,
it is the pattern of involvement that can suggest an underlying neurometabolic defect. In children,
a common pattern is “global” delay in myelination early in the course of the disease [16]. The most
common specific MRI findings are a symmetrical signal abnormality of deep grey matter presenting
with hyperintensity on T2 and FLAIR images, and hypointensity on T1 images. Any deep structure
can be involved and the character of the lesion can be either patchy or homogeneous. Cerebral
and cerebellar atrophy may be present in varying degrees. These specific MRI findings are more
likely to be associated with well recognised syndromic phenotypes such as Leigh disease, MERRF,
MELAS, KSS, MNGIE, etc. [17]. MRS can provide valuable in vivo metabolic information to measure
metabolites possessing resonating nuclei (hydrogen-1; 1H: phosphorous-31; 31P: carbon-13; 13C) in
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the mM range. mtD represent a particularly prominent set of diseases that show MRS changes due to
the consequences of impaired OXPHOS. The most consistent MRS change accompanying increased
lactate in mitochondrial disease is decreased N-acetyl-L-aspartate (NAA) normalised to creatine,
suggestive of cellular compromise [12,17]. Other brain metabolites such as myo-inositol, choline,
creatinine and succinate can be measured by MRS. One disease biomarker that appears highly specific
to complex II disease is a large elevation in succinate in white matter [18]. MRS is being increasingly
applied as a non-invasive tool to monitor the effects of therapeutic intervention in patients with mtD.
Diagnostically useful patterns of selective muscle involvement are well-recognised and increasingly
being used in the diagnostic algorithm for muscular dystrophies, congenital myopathies and a few
other heritable neuromuscular disorders [19]. This approach appears less useful in mtD, probably
reflecting the fact that clinically and biochemically affected muscles in mtD rarely ever show significant
fibro-fatty infiltration when examined histologically.

There is no single “gold standard” laboratory test for diagnosing mtD. The screening tests
described above broadly confirm presence of dysfunction in various organ systems and help to
increase or decrease the clinical suspicion of mtD. More invasive testing is necessary to establish
direct morphological, biochemical and molecular genetic evidence of mitochondrial dysfunction [5].
In principle, the relevant tissue to investigate is one that clinically expresses disease. Skeletal
muscle remains the tissue of choice, and is frequently sampled in part due to the relative safety
and ease with which tissue samples can be obtained. It can provide valuable diagnostic information
in many cases, even without clinically overt myopathic involvement [20–22]. Skeletal muscle is
a post-mitotic terminally differentiated tissue with only limited regenerative capacity via satellite
cell transformation. This terminal differentiation results in a fairly stable lifelong relationship
between the mutant and wild-type mtDNA ratio (heteroplasmy) in contrast to nucleated blood
cells in which this ratio can decrease due to selection pressure, thereby obscuring evidence of
mitochondrial dysfunction [22]. Skeletal muscle mitochondria are abundant in subsarcolemmal
and intermyofibrillar locations and larger than in most other tissues. Pathological assessment of
“non-muscle” components in biopsies including blood vessels and nerves can provide evidence
of multi-organ dysfunction [21]. Biochemical testing of respiratory chain enzyme dysfunction
typically involves determination of individual or paired respiratory chain enzyme complex activities
in mitochondrial fractions or tissue homogenates prepared from fresh or frozen muscle tissue.
Biochemical assays have low inter-laboratory reproducibility and a systematic program to share
samples and standardise methodologies across diagnostic laboratories has not been implemented.
Other confounding factors include masking of a RC defect in tissue homogenates due to low-level
heteroplasmy and a physiological compensatory mitochondrial proliferative response [8]. In this
context, parallel histological assessment of skeletal muscle can uniquely provide histochemical
evidence of RC defect at the single cell level. Simultaneously, the biopsy can be assessed for a number
of conditions in the clinical differential diagnosis that can mimic a mitochondrial myopathy or induce
secondary mitochondrial dysfunction. This includes fatty acid oxidation defects, glycogen storage
disorders, endocrine, congenital and inflammatory myopathies and muscular dystrophies. The
reliability of detecting morphological and histochemical abnormalities in skeletal muscle in mtD has
led to their inclusion as major and minor criteria in several classification schemes for diagnosing mtD
in adults and children [23–26]. It is standard practice to perform a skin biopsy in parallel to a muscle
biopsy primarily for establishing fibroblast cultures. While it is less invasive, it is not uncommon for
patients with OXPHOS defects in skeletal muscle to have normal RC activities in fibroblasts [27,28].
This in part due to altered heteroplasmy and high tissue regeneration rate of fibroblasts compared
to skeletal muscle [27]. It is equally important to recognise the limitations of muscle biopsy analysis
in investigating mtD. RC deficiencies are usually tissue specific, particularly if sporadic and somatic,
further influenced by the type of mutation and the peculiarities of mitochondrial genetics. Therefore
even muscle samples with proven mtD mutations/phenotypes may not show pathological and/or
biochemical evidence of mitochondrial dysfunction [14]. mtDNA copy number analysis in muscle
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tissue by real time qPCR normalised to age-matched controls gives an indication of depletion or
amplification of mtDNA content. mtDNA depletion can point towards mtDNA depletion syndromes
caused by a number of genes involved in mtDNA maintenance. mtDNA depletion in muscle is
however not as obvious in patients with the myopathic disease form as it is in liver tissue in patients
with the hepatocerebral form [29]. There are no reliable histochemical assays for demonstration of
defects in complexes I, III and V [1,21]. Muscle biopsy may appear histologically normal even in the
context of genetically confirmed mtD and when the biochemical defect does not involve complex
IV [23,30]. The histological interpretation of paediatric muscle biopsies can be challenging in the
absence of age-matched controls. Morphological and histochemical abnormalities of mitochondria are
not entirely specific and are seen secondary to other myopathic processes and with ageing. Despite its
invasive nature and limitations, muscle biopsy remains the gold standard for mtD, especially due to
primary mtDNA mutations [31].

3. Technical Considerations

Muscle and skin biopsies must be performed and processed in a manner that optimally preserves
mitochondrial morphology, enzymatic/functional activity, protein and DNA/RNA content to allow
for the broadest range of tissue investigations into mitochondrial dysfunction. This requires
good communication between clinicians, surgeons and pathologists and teamwork. Rigorous
implementation of a standardised biopsy protocol minimises the risk of ambiguity in interpretation of
results due to a myriad of artefacts resulting from improper sampling and processing. Some of these
issues are discussed below. A limb muscle such as vastus lateralis, gastrocnemius, deltoid or biceps
brachii is selected for sampling, depending on the institutional preference. Occasionally extraocular
muscles may be sampled in patients with external ophthalmoplegia. However, these muscles may
normally harbour features considered “myopathic” for limb muscles, and show a greater prevalence
of ragged red fibres (RRF) and COX-negative fibres compared to limb muscles from the third decade
of life [32,33]. Skeletal muscle can be harvested via an open biopsy or a needle biopsy procedure.
The latter has the advantage of being performed under local anaesthesia and/or deep sedation, and
producing a smaller scar. Concerns about tissue fragmentation and smaller tissue yield that may be
insufficient for biochemical assays have been addressed by implementing protocols using the modified
Bergström needle for sampling. Ideally, the sample should be examined under a dissecting microscope
in the procedure room for adequacy and orientation. A portion of fresh unfixed muscle is immediately
placed in RNase free tubes and snap frozen in liquid nitrogen for biochemistry and genetic testing. The
best oriented portion can be transported to the laboratory wrapped in cling film or by placing in a closed
petri dish on a piece of gauze lightly moistened in saline, and then frozen in isopentane cooled in liquid
nitrogen for histology, histochemistry and immunohistochemistry. A small longitudinal piece 0.5
mm long is placed in chilled 2% glutaraldehyde for electron microscopy. Functional assays including
polarographic studies require fresh, unfixed tissue. Excessive mechanical trauma to the sampled
tissue, infiltration of the local aesthetic into the fascicles, drying out and excess contact with saline can
render morphology and histochemistry uninterpretable. Isopentane may interfere with measurement
of complexes I, II and III in biochemical assays and give falsely low activities [34]. Many laboratories
routinely fix a portion of muscle in 10% formalin for paraffin embedding. Apart from providing a
larger sampling field and with the exception of high-risk infectious samples, this practice has several
disadvantages and its routine implementation should be discouraged. Formalin fixation causes loss of
histochemical enzyme activity, yields inferior muscle morphology, enhances autofluorescence, and
may require laborious antigen retrieval protocols for protein immunohistochemistry. In case of large
open biopsies, an additional block can be prepared for freezing in isopentane, and any surplus tissue
can be snap frozen in liquid nitrogen. A 4× 4 mm skin punch biopsy from the thigh provides sufficient
tissue for growing fibroblast cultures and should be placed in sterile conditions in a culture medium
containing uridine and pyruvate to prevent the loss of cells harbouring mutant mtDNA [35]. Detailed
protocols for sampling and processing of skin and muscle biopsies have been published [22,36].
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4. Histochemical Assays for Detecting RC Defects

The mitochondrial RC responsible for cellular ATP generation is located on the inner
mitochondrial membrane comprising five complexes: CI, NADH-coenzyme Q reductase; CII,
succinate-CoQ reductase that includes the FAD-dependent succinate dehydrogenase (SDH) and
iron-sulphur proteins; CIII, reduced CoQ-cytochrome C reductase; CIV, cytochrome C oxidase; and
CV, ATP synthase [37]. The free energy generated via redox reactions involving electron transfer
across the complexes to molecular oxygen creates a transmembrane proton gradient—protons are
pumped through CI, CIII and CIV, and CV allows protons to flow back into the mitochondrial
matrix, and the released energy is used to synthesise ATP. Histochemical stains are available that
can demonstrate activities of CI (NADH-TR), CII (SDH) and CIV (COX). NADH-TR stain comprises
reduced nicotinamide adenine dinucleotide as the substrate that is oxidized by NADH-dependent
enzymes. Addition of a tetrazolium salt (NBT) results in the deposition of a reduced, insoluble blue
formazan product at the reaction site. TR denotes tetrazolium reductase. However, the NADH is
not only oxidized by CI of the RC, but also sarcoplasmic reticulum (SR) NADH-oxidising enzymes.
In the absence of specific inhibitors of the “non-mitochondrial” NADH-oxidase activity, this stain is
not specific for CI, and any CI defect is invariably masked [38]. The advantage is this stain can be
used as a general marker of mitochondria and SR, and thereby is excellent in highlighting structural
defects such as cores or mini-cores. SDH stain can demonstrate CII activity. Na-succinate is used as
the substrate, which gets oxidized to fumarate by CII in the presence of NBT, which is reduced to
insoluble blue formazan at the reaction site [38]. In the modified SDH reaction, 1-methoxyphenazine
methosulphate (mPMS) or phenazine methosulphate (PMS) are added to the incubation medium as
exogenous electron carriers and azide or cyanide as inhibitors of cytochrome oxidase. The mPMS
and azide substitution results in substantial reduction in the non-specific reduction of NBT and
a linear reaction rate, thereby allowing better histochemical quantitation [39]. Nuclear genes encode
all sub-units of CII; therefore, CII is rarely affected in diseases with primary mtDNA defects. COX
stain demonstrates cytochrome C oxidase activity. In this reaction, diaminobenzidine (DAB) acts as
the electron donor to reduce cytochrome C. The haeme units of CIV catalyse the transfer of electrons
from reduced cytochrome C to molecular oxygen to form water. In turn, the oxidized DAB forms
a brown coloured indamine polymer that is deposited at the reaction site. As continuous reoxidation
of cytochrome C is required for the accumulation of the visible oxidized DAB, the reaction serves to
visualize CIV activity [40]. Addition of catalase prevents contamination from endogenous peroxidase
activity. In keeping with their physiological properties, in skeletal muscle, type I fibres show the
darkest staining, type IIA fibres intermediate staining and type IIB (IIX) fibres show the weakest
staining for all three reactions, commensurate with mitochondrial enrichment in these fibres. As the
SDH and COX reactions specifically demonstrate CII and CIV activities, they are regarded as specific
mitochondrial markers, and the intensity and distribution of staining allows simultaneous assessment
of complex activity, mitochondrial mass and distribution at the single cell level as well as within
a spatial two-dimensional context of the section. A further refinement in technique is the development
of the sequential COX-SDH reaction, with early studies dating back to 1968, and now widely regarded
as the optimal technique for demonstrating CIV defects, particularly in instances of heteroplasmic
mtDNA defects. The technique relies on the preserved activity of CII (being entirely nDNA encoded)
in cells with mtDNA defects. In cells with functional CIV, the brown indamine polymer product will
localize in and saturate mitochondrial cristae. Those cells with reduced or absent CIV activity will not
be saturated by the brown indamine polymer product, allowing for visualization of CII activity by
deposition of the blue formazan end product [41–43]. Thus, in a normal skeletal muscle cross-section,
the brown COX staining overshadows the blue SDH staining in all three fibre types. However, CIV
deficient fibres will stand out as varying intensities of blue, depending on the deficiency being partial
or complete. A number of variations in protocols for these histochemical reactions exist, and no
attempt has been made yet to standardize protocols, at least amongst larger reference laboratories.
Furthermore, these tests are highly susceptible to a variety of artefacts arising from poor sampling and
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processing, contributing to ambiguous results, or worse, false-positives and false-negatives. Excessive
trauma to fibres, excess saline contact, drying out, repeated cycles of freeze-thawing, and drawing the
hydrophobic barrier pen too close to the section can cause loss of activity. Hypercontracted fibres can
cause fibres to appear darker. The sequential COX-SDH reaction should not be substituted for, but
rather be run in parallel with individual COX and SDH reactions. Several quality control measures to
preserve the integrity of the COX-SDH reaction have been outlined [44].

5. Canonical Pathological Features

Pathological changes in skeletal muscle biopsies from individuals with mtD can be varied,
depending on the underlying genotype. Although not entirely specific, ragged red fibres
(RRF) and COX-negative fibres are widely regarded to be the canonical features of mtD
pathology [6,7,12,21,22,26,45–48]. Another useful diagnostic feature is SDH deficiency, although rare.

5.1. Ragged Red Fibres (RRF)

The recognition of RRF as a morphological hallmark of mtD predates the molecular era.
Mitochondrial myopathies were described in the 1960s when systematic histochemical and
ultrastructural studies revealed excessive proliferation of normal or abnormal-looking mitochondria in
skeletal muscle of patients with weakness or exercise intolerance [30,49,50]. With the development of
the modified Gomori Trichrome (MGT) stain allowing visualisation of connective tissue (light green),
nuclei (red/purple), mitochondria, sarcoplasmic reticulum, sarcolemma (red) and myofibrils (green)
in frozen sections, the abnormal fibres in these conditions showed up as bright red accumulation of
staining and “cracking” of the fibre edges, corresponding to the massive irregular proliferation of
mitochondria, and were dubbed “ragged red” [51]. The reason for the red staining is the affinity of
chromotrome-2R, one of the MGT constituents that is lipophilic, and binds to sphingomyelin that
is in abundance in mitochondrial membranes [21]. RRF usually show ultrastructurally abnormal
mitochondria that frequently contain paracrystalline inclusions [47]. RRF are difficult to identify
with MGT in formalin-fixed tissue as normal myofibrils stain red post-fixation. The red proliferative
zones can be identified in Haematoxylin and Eosin-stained sections as subsarcolemmal areas of
amorphous, basophilic staining [21]. SDH histochemistry shows increased staining in RRF, and such
fibres appear as ragged blue fibres [22]. The term ragged red fibre equivalents (RRF equivalents) has
been used to describe muscle fibres with mitochondrial accumulation showing positive staining with
the modified SDH reaction, and the modified SDH reaction was demonstrated to be more sensitive
than MGT in highlighting myofibres with increased mitochondrial proliferation [52]. RRF accumulate
a very high percentage of mutant mitochondrial genomes >80% [53]. In longitudinal sections, RRF
appear as segmental abnormalities, and there is a correlation between defective OXPHOS and the
segmental abnormality suggesting that the abnormal proliferation is consequent to the defective
OXPHOS [45,54]. RRF are seen in syndromic presentations of defects in mitochondrial protein synthesis
(mtDNA rearrangements and point mutations), being more prevalent in MELAS, MERRF, KSS, and
less frequently in CPEO [7,12]. RRF are usually absent in patients with syndromic presentations of
defects in mitochondrial protein coding genes (LHON, NARP), however, few RRF may be seen in
myopathic forms with isolated defects of CI, CIII and CIV due to mutations in mtDNA genes encoding
ND subunits, cytochrome b, and COX subunits respectively [7]. In patients with mutations in nDNA
genes encoding subunits or ancillary proteins of the RC, RRF are usually absent, e.g., in autosomal
recessive Leigh syndrome due to mutations in CI or CII subunits, and Mendelian defects in assembly
factors of CIV causing COX-deficient Leigh syndrome [7,30]. RRF are present in myopathic and
encephalomyopathic forms of primary CoQ10 deficiency [55]. RRF are also present in myopathic forms
of mtDNA depletion syndromes [56]. COX-negative (ragged blue) RRF are typically seen in MERRF,
KSS and CPEO, when wild type mtDNA genomes fall below the threshold required to maintain
CIV activity. In contrast, in classic MELAS due to the A3243G tRNALeu gene mutation, RRF are
mostly COX-positive due to an even distribution of mutant and wild-type mtDNA genomes in these
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fibres [12,48,57,58]. RRF are COX-positive in mtDNA encoded CI and CIII subunit gene mutations,
and COX-negative in CIV subunit gene mutations [7,12]. COX-negative RRF have also been observed
in mtDNA depletion syndromes [59].

5.2. COX-Negative Fibres

A majority of individuals with mitochondrial myopathies that cause isolated or combined CIV
deficiency due to mtDNA mutations harbour a mix of wild-type and mutant mtDNA molecules within
each myofibre giving rise to heteroplasmy, a unique aspect of mitochondrial genetics. The proportion
of mutant mtDNA can vary between individual myofibres [60,61]. A myofibre segment will develop
biochemical OXPHOS deficiency when the mutant mtDNA exceeds a critical threshold, i.e., the level
to which the cell can tolerate defective mtDNA molecules [62,63]. Heteroplasmic mutations have
a variable threshold in different tissues. Furthermore, for unknown reasons, the threshold varies
among mutation types and in skeletal muscle the mutation load for any particular tRNA (~90%) is
typically higher than that for large-scale partial deletions of mtDNA (~70–80%) [61,64]. The threshold
for mutation load in polypeptide-coding genes can be similarly broad, with low levels of mutation
causing one type of clinical presentation and higher levels causing another, e.g., m.8993T→G mutation
in the ATP synthase 6 (ATP6) gene: at mutation loads above 90%, manifests as maternally inherited
Leigh’s syndrome (MILS), at mutation loads in the range of 70–90%, manifests with neuropathy, ataxia
and retinitis pigmentosa (NARP), and by contrast, patients with 70% mutation in a tRNA will rarely
display overt disease [48]. The consequent biochemical OXPHOS deficiency can be demonstrated
histochemically in transverse sections of frozen skeletal muscle as a mosaic pattern of COX-positive and
COX-negative fibres, which equally affect slow-twitch (oxidative) and fast-twitch (glycolytic) muscle
fibres [63,65], and is considered a hallmark of mitochondrial disease [66]. In the stand-alone COX
reaction, the COX-negative fibres appear unstained amongst the brown COX-positive fibres. In the
SDH reaction, they often stain intense blue due to compensatory mitochondrial proliferation increasing
the mitochondrial mass, and the fact that CII being entirely nuclear-encoded, its biochemical activity is
usually intact in primary mtDNA defects. In the sequential COX-SDH reaction, COX-negative fibres
appear blue amongst the brown COX-positive fibres. The broad genotypic correlations described
above for RRF are also true for the presence of COX-negative fibres in mitochondrial myopathies.
A mosaic pattern of COX-negative fibres is a robust marker of heteroplasmic mtDNA mutations
affecting mitochondrial protein synthesis (rearrangements and point mutations in mitochondrial tRNA
or ribosomal RNA genes), or rarely, affecting one of the three mtDNA encoded CIV sub-units [12,22,31].
A notable exception to this rule is a homoplasmic mutation in mitochondrial tRNAGlu that is associated
with a severe but reversible infantile mitochondrial myopathy and profound, though not exclusive,
biochemical and histochemical COX deficiency, often accompanied by RRF in skeletal muscle [67,68].
The biopsy features in reversible and irreversible, fatal COX deficiency in the neonatal period are
identical, and in both conditions the histochemical defect is restricted to extrafusal myofibres, sparing
intrafusal muscle fibres and vascular smooth muscle [68–71]. Fatal infantile COX deficiency also
affects the heart and brain, and has been linked to autosomal recessive mutations in COX assembly
factors (SCO2, COX15, COA5, and COA6) [72–75]. Muscle biopsies from patients with defects in
mtDNA maintenance will also show a similar mosaic COX-negative pattern due to overlapping
influence of Mendelian and mitochondrial genetics, especially in cases of PEO with multiple mtDNA
deletions [31,76,77]. In contrast, Mendelian disorders such as COX-deficient Leigh syndrome, e.g.,
due to mutations in COX assembly factors such as SURF1, will show diffuse COX-deficiency [78–80].
A mosaic COX deficiency is also found in cardiac muscle [81,82], renal cells [83] and the central
nervous system [84]. The percentage of COX-negative fibres often correlates with disease severity and
progression [85]. The biochemical defect develops within individual muscle fibres independent
of the status of adjacent myofibres, likely due to the clonal expansion of mutant mtDNA, and
appears to be an intrinsic property of the intracellular mitochondrial genome, largely independent
of the nuclear genome [86,87]. Heteroplasmic mtDNA mutations are unevenly distributed along
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longitudinal syncytial muscle fibres, such that adjacent segmental sections can have widely varying
amounts of mutant mtDNA [31]. Defined regions of COX deficiency have been documented in
biopsies from patients with CPEO and MERRF [88,89]. There can be a striking variation in the
length of COX-negative segments in the same biopsy, and the same muscle fibre can contain multiple
non-contiguous COX-negative segments [60]. The latter suggests that the COX deficit may appear at
multiple sites along a diseased fibre, with the length of the COX-negative segments expanding over
time to coalesce with other COX-negative segments [90]. This could be due to continuous mtDNA
replication in syncytial myofibres leading to changing proportions of mutant mtDNA through random
intracellular genetic drift, and its lengthwise propagation over time [87]. Long COX-negative segments
may eventually cause fibre atrophy, but do not lead to acute myonecrosis. It is also apparent that in
biopsies from patients with various mtDNA mutations, a spectrum of deficiency exists with presence
of fibres that show staining properties between completely COX-negative (blue) and COX-positive
(brown) fibres, so called COX-intermediate fibres. COX-intermediate fibres, in part, represent the
transition zones between COX-positive and COX-negative segments [91]. A significant difference
was observed between COX-intermediate fibres and COX-positive as well as COX-negative fibres for
mutant mtDNA, even more significant for wild-type mtDNA, but not for the total mtDNA copy number,
suggesting that it is the wild-type mtDNA that is the critical determinant in determining the COX
activity status [92,93]. The prevalence of RRF and COX-negative fibres may vary in biopsies depending
on the genotype. Frequencies of RRF and COX-negative fibres are reported to be lower in MELAS and
MERRF due to mtDNA point mutations than in CPEO due to mtDNA deletion, and are usually absent
in LHON due to mtDNA point mutations [94–96]. COX-negative fibres have been noted to occur more
frequently than RRF in CPEO patients associated with mtDNA point mutations and single deletions,
and multiple mtDNA deletions due to POLG1 mutations [97]. Levels of mtDNA heteroplasmy
appear to directly correlate with the frequencies of RRF and COX-negative fibres [98]. In patients
with primary mtDNA mutations, despite high levels of mutant mtDNA genomes in mature muscle,
myogenic progenitor satellite cells have low to undetectable levels of the causative mutation [85,99,100].
Resistance exercise strength training in a group of mitochondrial myopathy patients due to a single
large mtDNA deletion led to improved muscle strength, exercise induced necrosis and regeneration,
increased numbers of NCAM+ satellite cells, and increased oxidative capacity including decreased
percentage of COX-negative fibres and increased percentage of COX-intermediate fibres. This likely
reflects a satellite cell-derived genetic drift in favour of wild-type mitochondrial genotype [91]. Taken
together, it appears that, in addition to the absolute number of COX-negative fibres, the length of
COX-negative segments, as well as COX-intermediate fibres, are important phenotypes to assess
mitochondrial disease severity, progression and the effects of therapeutic interventions on mtDNA
mutation levels and biochemical activities.

5.3. SDH Deficiency

Isolated CII deficiency is a rare Mendelian mitochondrial disease due to autosomal recessive
mutations in the nuclear-encoded structural sub-units and assembly factor genes of CII (SDHA,
SDHB, SDHD, and SDHAF1) [101–104]. Most reported cases are of early onset, presenting with Leigh
syndrome, cardiomyopathy, leukodystrophy or encephalomyopathy, with the exception of autosomal
dominant mutation in SDHA presenting with late onset optic atrophy, ataxia and myopathy [105].
Biochemical measurement of CII in muscle is the most reliable means of diagnosis, with levels reduced
to 50% or greater compared to reference mean levels. Histochemically a diffuse reduction in SDH
staining with normal COX staining is demonstrable [102,106]. CII deficiency with histochemically
demonstrable diffuse reduction in SDH staining in skeletal muscle, but sparing of intramuscular
blood vessels is reported with autosomal recessive mutations in ISCU encoding for iron sulphur
cluster scaffold protein, presenting with myopathy, exercise intolerance and lactic acidosis. Additional
features include increased iron deposition in mitochondria and aconitase deficiency [107,108].
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6. Associated Pathological Features

Muscle biopsy may appear histologically normal, e.g., in patients with CI deficiency due to
recessive mutations in nuclear-encoded subunits, in patients with mild RC defects, or early on in the
disease course. Even in cases with heteroplasmic mtDNA mutations, there may be little abnormality
apart from the presence of canonical features. Myopathic changes such as increased fibre-size variation
and internal nucleation when present are typically of mild-to-moderate severity. Inflammation is
absent, and necrosis and regeneration are not seen, except in mitochondrial myopathies presenting
with rhabdomyolysis. Rhabdomyolysis has been associated with mutations in CoQ2, mtDNA encoded
CIV subunit genes (MT-CO1, MT-CO2, MT-CO3), and tRNA genes (MTT1, MT-TL1 m.3243 A > G
MELAS mutation) [109–120]. Even late in the disease course, overtly dystrophic features with necrosis,
fibrosis and fatty infiltration are not seen, with the exception of TK2-related myopathic form of mtDNA
depletion syndrome [121,122]. Variable slow/type I fibre predominance and fast/type II atrophy may
be present. Increased lipid may be present in fibres with or without ragged red change and COX
deficiency, e.g., in KSS and PEO due to mtDNA rearrangements [21], mtDNA depletion syndrome due
to mutations in TK2, RRM2B, SUCLA2 and SUCLG1, and CoQ2 [31,56,123–125]. Secondary carnitine
deficiency with lipid storage can occur in patients with primary RCE defects [126]. The lipid storage
is generally less florid when compared to primary lipid storage myopathies with massive lipidosis
(primary carnitine deficiency, neutral lipid storage disease and multiple acyl-coA dehydrogenase
deficiency) [127], and the presence of RRF and/or COX-negative fibres is not typically seen in the latter,
although rare exceptions are reported [126]. The distinction between primary mtD and primary lipid
myopathy is not possible based on muscle pathology alone, particularly in the absence of canonical
mitochondrial pathology, and mild or inconstant lipidosis in the biopsy.

7. Myopathology in Novel Mitochondrial Diseases

Recessive loss-of-function mutations in CHKB that encodes choline kinase β, an enzyme that
catalyses the first de-novo biosynthetic step of phosphatidylcholine, the most abundant mitochondrial
membrane phospholipid that is formed through a pathway within the mitochondria-associated
endoplasmic reticulum membrane (MAM), cause a congenital muscular dystrophy with raised serum
CK, severe intellectual disability with skeletal and cardiac muscle involvement, and characteristic
biopsy appearances that include enlarged mitochondria at the periphery, and loss of mitochondria in
the centres of myofibres, probably as a result of elimination through mitophagy and compensatory
enlargement [128]. The relationship between phospholipid and mitochondrial abnormalities could
be mediated via the MAM, as several proteins involved in mitochondrial dynamics are an integral
part of MAM, and MAM dysfunction may mediate increase in size and intracellular displacement of
mitochondria [31,129,130]. In most cases, mild dystrophic changes are consistently present in biopsies.
There is variable biochemical RCE deficiency. Muscle choline kinase activity and phosphatidylcholine
content are markedly reduced with aberrant remodelling of phosphatidylcholine. Loss-of-function
mutations in MICU1, a regulator of the inner mitochondrial complex MCU, responsible for regulating
mitochondrial CA2+ uptake and preserving normal mitochondrial CA2+ concentration are reported to
cause a childhood-onset disease with raised CK, relatively static proximal myopathy, variable CNS
involvement, and distinctive biopsy features including preserved fibre typing, mild central nucleation,
mini-cores and clustered regeneration. Biochemical or histochemical RCE defects are not yet reported.
There is significant loss of MICU1 mRNA and protein in muscle, with dysfunctional mitochondrial
CA2+ uptake in fibroblasts resulting in CA2+-induced fragmentation of mitochondrial networks [131].
More recently, dominant heterozygous and recessive compound heterozygous loss-of-function
mutations in MSTO1 have been characterised by whole exome sequencing in patients presenting with a
multisystem disease characterized mainly by myopathy, ataxia, endocrine dysfunction and psychiatric
symptoms. Serum CK ranges from normal to moderate elevation, and biopsies show myopathic or
dystrophic changes, without histochemical and biochemical RC OXPHOS deficiency. Reduced levels of
MSTO1 mRNA and protein in fibroblasts is associated with abnormalities of the mitochondrial network
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including fragmentation, aggregation, decreased network continuity and fusion activity, pointing to a
putative role for MSTO1 in mitochondrial morphogenesis by regulating mitochondrial fusion, and
loss-of-function mutations linked to a multisystem mitochondrial disease [132,133]. Defects in CHKB,
MICU1 and MSTO1 are examples of novel pathomechanisms and overlapping clinicopathological
features involving muscular dystrophy, lipid metabolism, congenital myopathy and mitochondrial
biology, with unique and recognizable muscle pathology signatures in absence of primary OXPHOS
defects involving the RCE.

8. Vascular Pathology

Mitochondrial vasculopathy can manifest in large blood vessels (macroangiopathy) or small
blood vessels (microangiopathy) including small arteries, arterioles, venules and capillaries. The
clinical manifestations of macroangiopathy include premature atherosclerosis, arterial ectasia, vascular
malformation, spontaneous rupture and reduced flow-mediated vasodilation [134]. In a 15-year old
girl with the m.3243 A > G mutation, fatal spontaneous rupture of the aorta was associated with
disorganisation and reduced COX staining in the vascular smooth muscle cells (VSMCs) of the aortic
vasa vasora, and 85% mutation load in the arteries compared to 40% in blood lymphocytes [135].
Microangiopathy can manifest clinically as leukoencephalopathy, migraine-like headaches, stroke-like
episodes or peripheral retinopathy. Careful morphological assessment in skeletal muscle or other
tissues may reveal morphological abnormalities in VSMCs, pericytes or endothelial cells suggesting a
subclinical microangiopathy [136]. MELAS is a multisystem mtD with predominant involvement of
the brain, skeletal muscle and endocrine organs [137]. Unique to MELAS, particularly in association
with the m.3243 A > G mutation, are transient stroke-like episodes due to lesions in the temporal
and occipital lobes. Histologically, these lesions resemble true infarcts in that they are pan-necrotic
and demonstrate profound neuronal loss, microvacuolation, gliosis and eosinophilic change in
surviving neurons, but their topographic distribution does not follow major vascular territories
or their watershed [138]. However, the presence of a microangiopathy, both within the lesions and
in extra-CNS tissue like skeletal muscle, has long been recognised, manifesting as strongly SDH
reactive vessels (SSVs) containing increased mtDNA copy number and ultrastructurally enlarged
mitochondria. Similar SSVs can be found in MERRF, but angiopathy is less prevalent. Similar to RRF,
SSVs in MERRF are typically COX-negative, whereas in MELAS, they are COX-positive [57,58]. It is
postulated that the absolute amount of COX in SSVs in MELAS due to compensatory proliferation is
far greater than normal [58]. As COX binds to nitric oxide, a key molecular signal for vasodilation,
supernormal COX levels in these vessels titrate out nitric oxide, preventing cerebral vasodilation and
triggering the stroke-like episodes [139,140]. The microangiopathy is not restricted to m.3243 A > G
MELAS patients, but also documented in patients with m.8344 A > G, and autosomal recessive POLG
mutations [138]. In these patients, multiple ischaemic stroke-like lesions in the cerebellar cortex were
associated with microvascular abnormalities including loss of VSMCs and endothelial cells, evidence
of blood-brain-barrier breakdown with plasma protein extravasation and loss of endothelial tight
junctions, with accompanying high heteroplasmy levels of mutated mtDNA in the vessel wall. Despite
clear evidence of a structurally damaged or altered microvasculature in association with vascular
COX-deficiency, precisely how these deficiencies lead to the cerebral vascular events is not fully
understood. It is also not known if a more generalised sub-clinical microangiopathy is present in mtD
with diverse genetic backgrounds. In patients with mitochondrial myopathy, muscle capillary growth
was increased as a result of impaired OXPHOS by a hypoxia-independent mechanism, promoting
increased blood flow to respiration-incompetent muscles and a mismatch between systemic oxygen
delivery and oxygen utilization during cycle exercise. The capillary area was greatest in patients with
more severe oxidative deficits, and twice higher around fibres with oxidative defects compared to
fibres with preserved oxidative function [141]. Vascular proliferation is a characteristic pathological
feature of Leigh’s encephalopathy due to a variety of mitochondrial defects causing severe OXPHOS
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deficits in the developing CNS [142]. Therefore, capillary proliferation driven by impaired OXPHOS
may be a common consequence of mtD in highly oxidative tissues.

9. Ultrastructure: Pathological Features and Role in Diagnostics

A range of morphological alterations has been historically documented in patients with
mitochondrial myopathy with transmission electron microscopy (TEM). These include excessive
numbers of mitochondria in subsarcolemmal and intermyofibrillar locations; variation in size and
shape including bizarre forms, excessively large size or length exceeding 3–4 sarcomeres; abnormalities
of cristae including deficient cristae, abnormal stacking or whorling; a total absence of cristae with an
amorphous granular substance replacing the cristal space; electron-dense granules; and paracrystalline
structures with regular geometric periodicity [21]. Of all features, paracrystalline structures are
regarded as the most pathognomonic, and are frequently present in RRF. Paracrystalline structures
represent mitochondrial creatine kinase crystal formation due to upregulated activity in an attempt
to compensate for the energy deficit [22]. However, these morphological changes lack specificity
and may be seen in a range of myopathic and dystrophic conditions. They rarely ever provide clues
to the underlying biochemical and/or genetic defect [14,20–22,143]. Simplification of cristae with
accumulation of homogenous material is apparently a specific change seen in mtDNA depletion
syndrome [144]. In adult biopsies with normal light microscopic findings, ultrastructural examination
is unlikely to provide additional evidence of disease. Based on a small series of five patients, it has
been suggested that the earliest ultrastructural changes in infants are often noted in endothelial cells
of intramuscular blood vessels even when the myofibres themselves do not show histological or
ultrastructural abnormalities [145]. Given the overall lack of specificity and the time and expense
involved, the routine application of electron microscopy in the investigation of suspected mtD is
questionable, particularly in the era of advanced molecular diagnostics. A recent ultrastructural study
combining TEM with serial block face scanning EM (SBF-SEM) and 3D reconstruction techniques has
reported features not previously described in patients with mtD include linearisation and angular
arrangement of cristae, localised membrane distension, nanotunnels, and donut-shaped mitochondria.
Systematic assessment of mitochondrial morphology using quantitative EM methodologies sensitive
mitochondrial size, shape, and branching complexity and particularly three-dimensional reconstruction
methods such as serial block face (SBF-SEM) and focused-ion beam (FIB-SEM), could be used in the
future to ascertain the role of structural remodelling in certain mitochondrial and other musculoskeletal
diseases [146].

10. Secondary Mitochondrial Abnormalities

Neither presence of RRF nor focal COX deficiency is entirely specific for primary mtD. Similar
changes may be seen in skeletal muscle in the context of ageing, and in a range of genetic and
acquired disorders. These include infantile Pompe disease and adult-onset acid maltase deficiency [21],
occasionally in muscular dystrophies such as LGMD2A [147] and FSHD [148] rarely primary lipid
storage myopathies [126]. Muscle biopsies of patients with inclusion body myositis (IBM) may show
increased numbers of RRF and COX-negative fibres [149]. In IBM, the on-going inflammation and
cytokine environment, the associated production of reactive oxygen and nitrogen species, and the
associated endoplasmic reticulum stress have a role in the initiation of mitochondrial DNA damage,
leading to the accumulation of clonally-expanded mtDNA deletions and respiratory deficiency,
a phenomenon that is not compensated by the malfunctioning cell repair mechanisms [150]. Increased
numbers of COX-deficient and SDH-positive fibres within atrophic perifascicular zones are a common
feature in dermatomyositis [151]. Histochemical and biochemical OXPHOS dysfunction can be induced
by the toxic effects of a range of drugs on mitochondrial respiration, including antiretroviral agents and
statins [152], antiepileptics such as valproate, immunosuppressant and cytotoxic chemotherapeutic
agents [14,20]. Accumulation of multiple mtDNA deletions and tRNA point mutations has been
observed in ageing human tissues [153,154] with highest levels in post-mitotic tissues such as brain
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and skeletal muscle. Increased numbers of RRF and COX-negative fibres are seen in skeletal muscle of
older individuals and RRF comprise an average of 0.4% of all fibres by the eighth decade [155]. The
age-related mtDNA mutations appear to accumulate randomly in certain myofibre segments to very
high levels resulting in focal COX deficiency [156]. Overall, the amount of mutant mtDNA is very
low in ageing muscle compared to patients with mitochondrial myopathy and is unlikely to cause
a clinically significant OXPHOS defect [45]. Nevertheless, late-onset mitochondrial myopathy has been
documented in patients over 69 years of age with multiple mtDNA deletions and increased numbers
of RRF and COX-negative fibres in biopsies, possibly representing an exaggerated form of age-related
mitochondrial dysfunction [157].

11. Myopathology of Paediatric mtD

In contrast to adults who more often present with well-defined syndromic mtD, paediatric
presentations of mtD are harder to define. Neonatal or early infantile disease onset is often associated
with severe progressive encephalomyopathy, with multi-organ involvement such as cardiomyopathy,
hepatopathy, and myopathic involvement suggested by hypotonia, muscle weakness, wasting and
arthrogryposis [123,158–160]. Over 90% of paediatric patients with mtD carry mutations in their
nuclear genes causing defective OXPHOS [66]. This explains the long-held observation that mosaic RRF
and/or COX-negative fibres are uncommon in biopsies of these patients. RRF and/or COX-negative
fibres were demonstrated in 89% of biopsies with mtDNA mutations but only in 17% of biopsies
without detectable mtDNA mutations in a large series of 117 children with mtD [161]. RRF and
COX-negative fibres, and increased lipid are usually present in biopsies from children with mtDNA
depletion syndromes secondary to defects in nuclear gene involved in mtDNA maintenance and in
the myopathic form of CoQ10 deficiency [158]. COX-deficient fibres may outnumber RRF and may
be the only abnormal finding in the muscle biopsy [162]. In neonates, there may be no detectable
light microscopic abnormality [163]. This suggests that the compensatory proliferative response may
develop over time to form RRF. The small size of fibres in biopsies from neonates and infants may make
recognition of the morphological abnormality more difficult. It has been suggested that SDH-positive
subsarcolemmal mitochondrial aggregates (SSMA) representing a milder form of mitochondrial
proliferation is more prevalent in paediatric mtD [12]. More than 2% SSMA in patients under 16 years
has been listed as a minor diagnostic criterion [23]. The sensitivity and specificity of this marker
has been questioned. Such mitochondrial proliferation was absent in 35% of paediatric patients with
proven mitochondrial dysfunction [164]. In 95 patients under 16 years of age, there was no difference in
the frequency of SSMA between patients with and without definite mtD. Large SSMAs were observed
to be more frequent in the group with definite mtD [165]. A large-scale retrospective study evaluating
factors associated with SSMA in paediatric biopsies with suspected mtD found an inverse relationship
between the percentage of myofibres with SSMA and RCE deficiency. Patients with low %SSMA
(≤4%) were significantly more likely to develop RCE deficiency than patients with higher %SSMA
(≥10%) [166]. However, it is important to note that the morphology of mitochondrial networks changes
from birth to adolescence and SSMAs appear to develop over time, even in biopsies from patients in
whom a primary neuromuscular disease has been excluded. Therefore, any diagnostic cut-off must
take into account the confounding effect of age, and assessment of multi-centre large-scale cohorts will
be necessary to develop age-stratified SSMA cut-offs with sufficiently high sensitivity and specificity
to serve as a useful histological diagnostic indicator of RC deficiency in children.

12. Consensus Diagnostic Criteria

To facilitate the diagnosis of mitochondrial diseases, various expert groups have proposed
consensus criteria and classification systems incorporating clinical, physiological, biochemical,
morphological and molecular genetic criteria. Given the overlap in morphological findings associated
with primary mtD and mitochondrial abnormalities secondary to ageing and various inherited and
acquired non-mitochondrial neuromuscular disorders, morphological criteria essentially involve
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a quantitative evaluation of RRF, COX-negative fibres and SSMA in diagnostic muscle biopsies. Varying
diagnostic cut-offs have been proposed including: >2% RRF and/or >2% COX-negative fibres for
individuals <50 years, or >5% COX-negative fibres for individuals > 50 years [23,167–169]. Occasional
COX-negative fibres are regarded normal > 40 years and the proportion increases with age. Any RRF <
30 years is regarded as being suspicious to warrant investigation of mtD [169]. A major limitation of
the studies used to formalise such cut-offs is the lack of standardized methodology: differing biopsy
sites, differing histological techniques and differing methods of quantitative assessment [52,170,171].
Age-matched control groups included patients with chronic myopathies and myositis confounding
assessment due to prevalence of secondary mitochondrial abnormalities [157]. In a post mortem
study evaluating biopsies from patients with and without mtD [172], <0.1% abnormal fibres were
present in controls before the fifth decade. The proportion of abnormal fibres increased with age and
there were regional differences (deltoid > quadriceps). Most patients with mtD had more than 0.5%
abnormal fibres. Overall, COX-negative fibres were more numerous than RRF or SDH-positive fibres
and provided a sensitive measure of mitochondrial abnormality. This study brings into question the
widely used 2% cut-off given that the levels of abnormal fibres in controls were well below 1%. In the
absence of other neuromuscular disease, mitochondrial abnormalities in muscle biopsies below the
current 2% cut-off may be significant. Similarly, in paediatric biopsies, there are studies with findings
challenging the currently used 2% SSMA cut-off as a minor diagnostic criterion; these are alluded to
in the preceding paragraph. Notwithstanding various formal quantitative diagnostic cut-offs, it is
important to remember that normal muscle morphology, especially in children, does not exclude
mtD [173].

13. Recent Advances in Diagnostic and Research Tools: Immunoassays, Transcriptomics
and Biomarkers

The absence of reliable histochemical assays to evaluate complex I, which is the largest and most
commonly affected OXPHOS complex, as well as CIII and CV is a serious limitation to the histochemical
analysis of RC defects in mtD. Catalytic deficiency of RC is most often associated with a decreased
amount of the assembled complex. This fact underlies the application of immunohistochemistry as
a tool for investigating RC defects [174–179]. Secondly, an ever-increasing array of highly specific
monoclonal antibodies is available against components of the mitoproteome spanning the nDNA
and mtDNA-encoded compartments. A severe and selective reduction of immunolabelled mtDNA
encoded COXI and COXII subunits with normally labelled nDNA encoded COXIV and COXVa
subunits in histochemically COX-negative fibres were observed in patients with mtDNA mutations.
nDNA-encoded COXVIc immunostaining was however also reduced. This was thought to relate to
the holoenzyme’s quaternary structure with close interaction between COXII and COXVIc, while other
nDNA encoded subunits with preserved immunoreactivity could form stable partial complexes in
absence of mtDNA encoded subunits [180]. Different patterns of subunit expression were reported in
the same study in mtDNA depletion syndrome including selective and non-selective loss of mtDNA
encoded CIV subunits, suggesting differences in genetic background or the disease stage. Rapid
protocols have been developed for fluorescent or peroxidase labelled immunostaining of cultured
fibroblasts on coverslips or as cytospins using monoclonal antibodies [179,181]. Heteroplasmic
mitochondrial tRNA mutations gave a heterogeneous immunostaining pattern for CI, CIII and CIV
subunits as opposed to the uniformly reduced immunostaining seen in cell lines from patients with
nuclear DNA defects [181]. Normal immunostaining despite reduced histochemical/biochemical
activity of the corresponding complex may be due to the subcomplexes remaining active despite
failure to assemble the holoenzyme, or formation of the holoenzyme with a kinetic defect. Activity
dipstick assays, a type of lateral flow immunocapture assays that measure electron transfer activity of
CI and CIV were developed as rapid, accurate and reproducible tests that combined the specificity
of immunocapture monoclonal antibodies with the functionality of enzyme activity assays [182].
Immunolabelling for anti-DNA antibodies has been applied as an alternative to in situ hybridization
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to study mtDNA localization and distribution in cells. In mtDNA depletion, cytoplasmic labelling
for mtDNA is either absent or reduced while the intensity of nDNA labelling is unchanged [183].
Subunit-specific immunohistochemistry can also provide insights into developmental regulation
of tissue specific expression of respiratory chain complexes and their relevance in understanding
disease mechanisms. Using a combination of isoform-specific antibodies (COX6AH, COX6AL,
COX7AH, and COX7AL) for protein expression studies by immunohistochemistry on sections and
immunoblotting muscle homogenates in combination with gene expression profiling, Boczonadi et
al. demonstrated evidence for an isoform switch of COX6A and COX7A in skeletal muscle that
occurs around three months of age, but there was no causative link between the isoform switch
and clinical recovery in reversible infantile respiratory chain deficiency [184]. Rocha et al. have
developed a quadruple immunofluorescent technique enabling quantification of key subunits of
respiratory chain CI and CIV together with an indicator of mitochondrial mass and a cell membrane
marker enabling protein quantitation in large numbers of fibres [185]. This technique is also able
to demonstrate distinct biochemical signatures in association with specific genotypes providing
insights into molecular mechanisms. For instance in patients with the common m.3243A > G MT-TL1
mutation it was observed that CIV deficiency occurs only after CI deficiency is already established,
and the defect is smoothly graduated from the normal to deficient levels of both complexes in contrast
to the polarised pattern seen in the MT-ND1 mutation. Several recent studies have shown that
fibroblast growth factor 21 (FGF21), a growth factor with pleiotropic effects on regulating lipid and
glucose metabolism is upregulated in patients with mtD, mice with RC deficiency, and mice with
defective muscle autophagy/mitophagy [186–188]. mRNA and protein levels of FGF21 were robustly
increased in patients with mitochondrial myopathy or MELAS. The increased FGF21 expression was
shown to be a compensatory response to RC deficiency, effecting enhanced mitochondrial function
through an mTOR-YY1-PGC1α-dependent pathway in skeletal muscle [189]. The accuracy of FGF21
to correctly identify muscle-manifesting mtD appeared to be higher than conventional biomarkers
in one study [186]. Kalko et al. analysed the whole transcriptome of skeletal muscle in patients with
TK2 mutations and compared it to normal muscle and muscle in other mitochondrial myopathies.
Bioinformatics pathway analysis identified the tumour suppressor p53 as the regulator at the centre of
a network of genes responsible for a coordinated response to TK2 mutations including induction of
growth and differentiation factor 15 (GDF15), leading to its identification as a potential novel biomarker
of mitochondrial dysfunction [190]. This was soon validated in two subsequent studies. One study
measured the serum levels of (GDF15) against FGF21 and other conventional biomarkers in patients
with mtD and healthy controls, and showed that the area under the receiver operating characteristic
curve was significantly higher for GDF15 than FGF21 and other biomarkers [191]. Another study
showed that elevated levels of GDF15 and FGF21 correctly identified a greater proportion of patients
with mtD than GDF15 or FGF21 alone [192].

14. Conclusions

Despite rapid advances in genetic technologies and the increasing use of high-throughput
next-generation-sequencing (NGS) platforms in the diagnostic pipeline for patients with suspected
mtD, the laboratory investigation of mtD is still complex, and muscle biopsy remains a key tool that
provides tissue for diagnostic and functional studies to direct molecular genetic testing. Demonstration
of histochemical mosaic COX deficiency provides crucial evidence for a heteroplasmic mtDNA
disease. The pathologist must take into account developmental, ageing-associated and secondary
mitochondrial changes whilst interpreting mitochondrial pathology in muscle biopsies. Optimal
handling and processing of tissue maximises the diagnostic yield in biopsies. With increasing adoption
of NGS platforms in diagnostic laboratories comes the challenge of functional testing to determine
pathogenicity for variants of uncertain significance found with increasing frequency. In this context,
it is incumbent upon pathologists to develop novel pathology tools incorporating advances in tissue
multiplexing and imaging; enabling more objective and informatics-based assessment of OXPHOS
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deficiency to improve the diagnostic outcome in mtD; understand pathomechanisms of mitochondrial
dysfunction in primary mtD as well as in other diseases; monitor mitochondrial disease progression;
and serve as biological outcome measures in clinical trials.
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