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Abstract: Microglia play a critical role in both homeostasis and disease, displaying a wide variety in
terms of density, functional markers and transcriptomic profiles along the different brain regions as
well as under injury or pathological conditions, such as Alzheimer’s disease (AD). The generation
of reliable models to study into a dysfunctional microglia context could provide new knowledge
towards the contribution of these cells in AD. In this work, we included an overview of different
microglial depletion approaches. We also reported unpublished data from our genetic microglial
depletion model, Cx3cr1 C”"ER/Csfl A% in which we temporally controlled microglia depletion by
either intraperitoneal (acute model) or oral (chronic model) tamoxifen administration. Our results
reported a clear microglial repopulation, then pointing out that our model would mimic a context of
microglial replacement instead of microglial dysfunction. Next, we evaluated the origin and pattern
of microglial repopulation. Additionally, we also reviewed previous works assessing the effects of
microglial depletion in the progression of A and Tau pathologies, where controversial data are
found, probably due to the heterogeneous and time-varying microglial phenotypes observed in AD.
Despite that, microglial depletion represents a promising tool to assess microglial role in AD and
design therapeutic strategies.
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1. Microglia: Micro in Size but Macro in Functions, Highly Important in
Alzheimer’s Disease

Microglia, the primary immune cells of the brain, not only survey the environment
for pathogens and debris, but also play other important roles in the central nervous
system (CNS), providing direct sustain to neurons and supporting myelinogenesis, synaptic
plasticity, and the neoformation of vessels [1,2]. These glial cells account for 10-15% of the
total cells in the adult CNS in humans [3] and 5-12% in mice [4]. Microglial cells derive
from myeloid progenitors of the yolk sac that at embryonic day 8.5 colonize the mouse
fetal brain, and actively proliferate at early postnatal days until reaching their definitive
brain density [3]. Although the number of microglial cells remains constant during lifetime
in mice and humans, a rapid turnover of microglia is maintained by a balanced coupling
of microglial proliferation and apoptotic death [5]. In adult life, a 28% of microglia are
renewed daily, meaning the lifespan for these cells 4.2 years [6]. Spatial heterogeneity of
microglia has been observed in terms of density, functional markers and transcriptomic
profiles. Moreover, microglia suffer transcriptional, morphological, and functional changes
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during aging, injury or pathological conditions, as multiple sclerosis, Parkinson’s disease
(PD), and Alzheimer’s disease (AD), among others.

In this review, we specifically focused on the role of microglia in AD. In patients, AD
pathology develops along a continuum process (ATN), in which the amyloid deposition is
considered the earlier event, preceding and triggering Tau pathology and neurodegenera-
tion [7-9]. However, microglial role in the ATN continuum remains unsolved. Microglial
activation and the loss of their homeostatic functions are considered as critical features
in AD pathogenesis. Recent single-cell transcriptomic studies have identified different
microglial subpopulations involved in AD [10-14], although the functional significance
of this microglial diversity is not clearly understood. Moreover, microglial activation has
been widely described in AD transgenic mice, but depending on the models, timing of
pathology development and brain region, activated microglia can adopt a protective role
or may acquire a cytotoxic phenotype, mediating neuronal damage. In amyloidogenic AD
mouse models, a subset of activated microglial cells, named “disease-associated microglia”
(DAM), cluster around amyloid plaques establishing a protective barrier [15,16]. This
phenotype, characterized by the upregulation of genes involved in lysosomal, phagocytic,
and lipid metabolic pathways, is ApoE-Trem2 dependent [15-17] and requires an oxidative
metabolism [18]. Similar microglial transcriptomic profiles have also been described in
several tauopathy models such as P301S and P301L mice [19,20]. However, microglial
response is diverse in transgenic Tau models as, for instance, ThyTau22 mice manifest
mild microglial activation, whereas P301S mice exhibit a strong microglial response [20].
Although the contribution of microglial cells to the progression and spread of pathogenic
Tau species is still a matter of debate, it has recently been described that TREM2 loss of
functions increases neuritic pathology and Tau spreading in amyloidogenic models [21].

Although microglial activation has been reported in several brain regions of AD
patients [22-24], it is important to point out that, in the hippocampus, the microglial
response is not as strong as reported for amyloidogenic mice and several Tau models [20,25].
Apart from the individual and regional heterogeneity, this apparent discordance between
transgenic models and AD patients may be associated to the aging process itself, the
main risk factor for late-onset AD, and/or to the chronic pathology of AD. Mouse models
bearing familial AD mutations are frequently examined at relatively young ages compared
to the elderly AD patients. Nevertheless, our results and others show that microglial
activation increases with age in animals models with amyloid or Tau pathologies [20,26].
Then, other comorbidities present in AD patients as vascular deficiencies, hypertension,
inflammatory diseases, obesity or diabetes mellitus could be involved in this distinct
microglial response. What is more, transcriptomic studies from purified microglia showed
few overlaps in differentially expressed genes during aging between humans and mice,
hinting that microglia may age differently in both species [27].

Several evidences point to the decline of microglial defensive functions in AD. In
this sense, we have described a microglial degenerative process in the hippocampus of
AD patients, mainly mediated by pathological Tau species [25,28]. Other works have
demonstrated how some variants in microglial specific genes, such as Trem2 or Cd33,
may alter microglial survival and function [29]. In the same line, a reduction in oxygen
availability due to vascular alterations—typical of AD brains—may compromise microglial
oxidative metabolism and, consequently, microglial activation [18]. In addition, we have
reported that soluble phospho-Tau species may be toxic for microglial cells in vitro [20,28].
In short, all these factors may contribute to microglial dysfunction. However, it is still a
matter of debate whether this phenomenon is a cause or a consequence of the typical AD
pathological hallmarks. In view of this, it is essential to generate reliable mouse models
mimicking the human defective microglial phenotype [25,30] to study the progression of
A and Tau pathologies in a context of microglial dysfunction.

In the last years, microglial depletion mouse models have provided new insights
into the role of these cells in physiological and pathological conditions. Here, we review
different mouse models of microglial depletion, both in health and in AD, evaluating how
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reliable they could be as tools to study a context of microglial dysfunction or a context
of microglial renewal. We recapitulate previous published data on the main microglial
depletion strategies and, importantly, we also include unpublished data from our recently
developed mouse model of conditional microglia depletion (Cx3cr1CeER /Csf1#1*/x). We
also comment on the origin and pattern of microglial repopulation process. Additionally,
we review previous works in regards to the effects of microglial depletion and repopulation
in the progression of Af and Tau pathologies. Outcomes are diverse and sometimes
contradictory, but they open new research lines regarding the mechanisms underlying
microglial proliferation and migration capabilities. Selective ablation of harmful microglia
within suitable time windows and their replacement by protective microglia may be a
promising therapeutic strategy for AD and other neurodegenerative diseases.

2. Pharmacological and Genetic Microglial Depletion Models

Microglial viability and proliferation depend on signaling through the colony-stimulating
factorl receptor (CSF1R) [5,31-33] that belongs to the type III tyrosine kinase family, and
is activated by two different cytokine ligands, colony stimulating factor-1 (CSF1) and
interleukin-34 (IL-34) [34-36]. However, Csf1r is expressed on all myeloid cells [37,38], so
the signaling interference through this receptor will not only affect microglial cells, but also
peripheral macrophages, probably mediating an immunosuppressive effect. As it is widely
known, Csflr knock-out (KO) mice do not reach adult stage [3,39] so the suppression of
this receptor should be carried out in adulthood, either through the administration of
pharmacological inhibitors or through controlled genetic systems. As previously revised,
different approaches give rise to variable depletion percentages, also dependent on the
dose and length of treatments [40,41].

The first pharmacological approach trying to deplete microglial populations used a
bisphosphonate drug, clodronate, packed in liposomes (Clo-Lip), which is rapidly taken up
by phagocytic cells inducing their apoptotic death. Clo-Lip does not cross the blood-brain
barrier (BBB), and consequently, needs to be administered by either intraparenchymal
or intraventricular injection. Intraparenchymal Clo-Lip injection depletes between 30
and 60% of microglia 24 to 72 h after injection, but also produces astrocytic activation,
releases proinflammatory cytokine and alters blood vessel integrity (reviewed in [42]).
A better pharmacological strategy for microglial elimination was achieved by highly
potent CSFIR tyrosine kinase inhibitors as PLX3397 and PLX647 that, after crossing the
BBB, lead to microglia depletion without consequent inflammation, cytokine storm, or
BBB damage, and no negative effects on mice behavior and cognition [43]. Depending
on the dose and inhibitor used, different degrees of microglia depletion were reached
and maintained throughout the treatment. Additional specific CSF1R inhibitors as JNJ-
40346527, GW2580 and BLZ945 are available, and different studies have shown their
dose-dependent effects on microglial number and phenotype [43,44]. Recently, a new
and highly specific inhibitor for CSF1R, PLX5622, has been developed, improving BBB
penetrance compared to PLX3397 [45]. However, and unexpectedly, the effect of these
small CSFIR inhibitors is not restricted to microglia, but also affects the whole macrophage
population and hematopoiesis [46]. Moreover, all these inhibitors are not specific for CSF1R,
as they also inhibit three other kinases as FLT3, PDGEFR, and KIT [47] and leads to broad
myelosuppression, affecting macrophages, osteoclasts, and mast cells, among other cells.
Additionally, it should be considered that PLX treatments may have a detrimental effect
on neurons as CSF1R signaling has been demonstrated to enhance neuronal survival [48].
Actually, Shi et al. showed that PLX3397 inhibit neurite outgrowth and mildly reduce
neuron number in vitro [49]. Further experimental approaches are still necessary in order
to specifically deplete microglia using these small CSFIR inhibitors without affecting other
cell types or tissues.

A more selective microglial depletion, with little effects on peripheral tissues, can
be achieved by genetic manipulations based on the combination of cell type specific
promoters coupled to suicide genes [50]. The initial approach was based on the expression
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of the suicide herpes simplex virus thymidine kinase (HSV-1 TK) transgene under the
Cd11b promoter [51]. The administration of ganciclovir to Cd11b-TK mutant mice induces
apoptosis of microglia, but also of CD11b+ bone marrow cells. To avoid myelotoxicity and
the consequent mouse death, it is mandatory to combine this model with a bone-marrow
chimera system, or alternatively administrate ganciclovir intraventricularly. Other genetic
approaches to deplete myeloid population used diphtheria toxin (DT)-based models, in
which myeloid promoter-driven Cre recombinase mouse lines (Cx3cr1¢¢) were crossed
with transgenic mice harboring genes for diphtheria toxin receptor (DTR) downstream
of loxP-flanked STOP sequences. In this model, the administration of DT originated the
acute cell death of all myeloid cells expressing DTR [52], although reached only short-lived
depletion, less than 5 days.

On the other hand, the inducible Cx3cr1¢"*ER line allows the targeting of microglia in a
cell-type-specific and tamoxifen inducible fashion [53]. Two main Cx3cr1“*ERT2 inducible
lines were created separately in which a tamoxifen-inducible Cre-recombinase is expressed
under the control of the Cx3cr1 promoter: Cx3cr1CTeERA+:R26IDT-A/+ qnd Cx3er] CreER/+R26IDTR/
When activated by tamoxifen, nuclear translocation of the CreER fusion protein is transient
and recombination occurs only for a limited period, so only long-lived cells as microglia,
but not peripheral macrophages with a shorter lifespan, will be depleted. Later, the gener-
ation of conditional knockout mice harboring a loxP-flanked exon within the Csflr gene
(Csf1r*/*) has allowed spatial and temporal control of microglia upon combination with
the appropriate Cre lines [54]. Additionally, the targeting of a more specific microglia-
signature gene, as Tmem119, has allowed the generation of Tmem119"°ERT? lines [55].
These new genetic models considerably represent an improvement in the manipulation
of microglia providing a valuable tool for the functional study of these cells (reviewed
in [40,41]).

3. Characterization of Cx3cr1"ER/Csf1/™/f* Mice. Is It a Good Approach to Study
Microglial Dysfunction?

Following the development of microglial depletion models and given the above-
mentioned need of studying the role of microglia in AD progression, we and others aimed
to study Ap and Tau pathologies in AD microglia-depleted mice. Specifically, it will be
of interest to mimic a context of microglial dysfunction, previously observed in the AD
brain [28]. However, achieving significantly reduced levels of microglia for long periods is
still a challenge in the field.

In our research group, we have generated Cx3cr1"*ER/Csf1** mice by crossing
Cx3cr1CeER x Csf1r™/f¥ mice (both from Jackson laboratories) and we have firstly charac-
terized them, in order to cross them with mice bearing A3 and/or Tau pathology thereafter.
By intraperitoneal tamoxifen injections (75 mg/kg for 7 days), we have achieved a 98%
microglia depletion (Figure 1A,B), a similar percentage to the one achieved in previous
published studies that used high PLXs doses (1200 mg/kg of pellet) [42]. The rapidity
(7 days) of the depletion leaves no doubt that it is due to microglial death and not to an
inhibition of proliferation. Furthermore, Elmore et al. (2014) showed that after CX3CR1
inhibition, not only is there no dedifferentiation of microglia towards other cell types,
but apoptosis, through caspase 3 activation, seems to be the main mechanism underlying
microglial death [32]. Additionally, Spangenberg et al. (2016) demonstrated, by using mice
that constitutively express YFP under the Rosa26 locus in all CSF1R expressing cells, that
microglia are being eliminated and not simply downregulating their expression of specific
markers [56].
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Figure 1. Microglial depletion is followed by a rapid repopulation, mediated by microglial activation, in 2-month-old

Cx3cr1CeER /Csf11% mice. (A). Representative flow cytometry images for the analysis of microglial cells (Cd45+Cd11b+)
in WT and CxSCrIC”ER/Cst X mice subjected to acute tamoxifen treatment (7 days) and sacrificed 0, 7, or 14 days after
the end of the treatment. (B). Quantification of microglial population after tamoxifen acute treatment, by flow cytometry, in

cortical regions. The 1st cycle: 7 days tamoxifen; 2nd cycle: 7 days of tamoxifen administration after 14 days of the end of

the first cycle. Mice were sacrificed 0, 7, or 14 days after the end of the corresponding cycle. (C). Microglial population,

quantified by flow cytometry, in WT and Cx3cr1 Cr"’ER/Csflrﬂ"/ﬂ" mice subjected to oral tamoxifen administration for 1, 2 or

4 months. Animals were sacrificed at the end of the treatment. (D-F). Quantification, by qPCR, of mRNA expression of

the proliferation marker Ki67, normalized by Gapdh (D); microglial activation markers Clec7a, Trem2, Cd45, normalized by

Tmem119 (E); and immune infiltration markers Cd3, Cd163, Ccr2 and Ly6c, normalized by Gapdh (F); in the hippocampus of
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WT and Cx3cr1ER /Csf17f* mice subjected to acute tamoxifen treatment and sacrificed 7 days after. (G). Correlation

between Tmem119 (microglial homeostatic marker) and Cd3 (lymphocytic marker) mRNA expression, quantified by qPCR

and normalized by Gapdh, in the hippocampus of Cx3cr1<"ER /Csf1/¥/f* mice subjected to acute tamoxifen treatment and

sacrificed 7 days after the end of the treatment. See Supplementary Table S1 for Antibodies, Probes and Methods used.
Statistical significance was analyzed using the t-test or the ANOVA test, followed by the Fisher LSD test.

Our results, in accordance with other reports [32,52,57], showed that acute microglial
depletion (obtained after 7 days of tamoxifen treatment) is followed by a rapid and complete
repopulation, reached 14 days after the end of the treatment; similar to PLX treatments [58].
Once the efficacy of acute depletion in our Cx3cr1“*ER/Csf1/*//* model was confirmed, we
planned to perform several cycles of acute treatments in order to analyze the repopulation
capacity of microglia. Our final goal was to exhaust this proliferative capacity in order
to achieve long-term sustained low microglial levels. Therefore, we evaluated microglial
repopulation capacity in Cx3cr1"ER /Csf1/¥ mice after a second cycle of acute tamoxifen
treatment. For that, after completing the first cycle of injections, we waited 14 days
for recovery and again injected tamoxifen for 7 days. Flow cytometric quantification of
microglial cells at the end of the second cycle indicated that microglial depletion was lower
than that occurring in the first cycle (Figure 1B). This may be due either to the fact that
we start from a slightly higher number of microglial cells (the percentage of microglial
cells on day 14 of recovery after the first cycle is scarcely higher than the WT condition),
and/or to the proliferation of a CSF1R-independent microglial population. Then, 14 days
after the end of the second tamoxifen cycle, we observed a more pronounced peak of
repopulation compared to the first cycle, revealing that a second depletion treatment did
not dwindle microglial proliferation capacity. Moreover, a second tamoxifen-injection cycle
increased mouse lethality up to 28% (data not shown), which prevented us from prolonged
intraperitoneal treatments.

In general, due to different reasons, few models achieve full chronic microglial de-
pletion. In the Cx3cr1C"¢ER /Csf111% model, as DT administration is required, treatment
is limited to acute periods (5 days) [52,59]. In the same line, the Cd11b-TK model allows
a constrained microglial depletion (approximately up to 4 weeks) since ganciclovir ad-
ministration induces BBB damage and myelotoxicity [60]. Likewise, the use of clodronate
liposomes is not valid for long-term depletion since, due to its short half-life and BBB
impermeability, it must be administered by intraparenchymal injections [61]. Then, the use
of PLXs may be the most successful option, although microglia depletion only reaches a
30-50% in most of cases [62-65]. On the other hand, Zhu et al. (2020) have achieved a 60%
of microglial depletion for 3 months by using the Cx3cr1¢"/R26PTA model and tamoxifen
chow [66]. Most of authors associated all changes observed after depletion treatment to
the absence of microglia, but it should be kept in mind that there was still a 40 to 70% of
non-depleted microglia by using these approaches. Then, it should be considered that
observed effects might also be due to changes in remaining microglia.

As it is widely known, Af and Tau pathologies, unlike stroke or acute injury, are
associated to slow progressive diseases, which would require a longer microglia depletion
in order to study microglial contribution. To this end, and in order to avoid the high toxicity
of repeated acute tamoxifen cycles, we performed chronic oral tamoxifen administration
(an estimated ingested dose of 40 mg/kg per mice; 250 mg/kg of tamoxifen in chow,
Envigo), in our Cx3cr1“ER/Csf1*/1* mouse model. As shown in Figure 1C, this treatment
was insufficient to maintain low levels of microglia. The 1-month tamoxifen treatment
led to a non-significant reduction of microglial population (with high sex-independent
variability), but after 2 and 4 months of treatment, microglial levels reached WT values.
Likely, a proliferation of CSF1R-independent cells was taking place, as it will be lately
discussed. Although we could consider combining tamoxifen treatments with specific
proliferation inhibitors, it is still possible that there is a repopulation mediated by infiltration
of peripheral immune cells.
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To summarize, thanks to the high microglial depletion obtained by acute tamoxifen
treatment in our Cx3cr1"ER /Csf1*/7 model, we can assess that observed microglia after
14 days of repopulation correspond to an emerging population, in contrast to chronic
models where remaining and emerging microglia constantly coexist. However, we failed
in our attempt to achieve a maintained microglial depletion, and given the results obtained
in chronic tamoxifen treatment, we consider that our model is not suitable to evaluate an
environment of microglial degeneration, senescent or dysfunction. In contrast, it may be
an appropriate model to study a context of continuous microglial replacement.

4. Origin and Pattern of Microglial Repopulation

Assessing the efficacy of emerging microglia will contribute to validate the potential
success of microglial replacement therapies. To this end, we focused on the characterization
of the origin and pattern of microglial repopulation. We compared unpublished data
from our Cx3cr1ER /Csf11¥/1* model to previous works, and we contemplated different
possibilities such as microglial proliferation and/or peripheral immune infiltration. As pre-
viously mentioned, we (Figure 1A) and others [67] have described a pronounced microglial
repopulation process after selective microglial depletion. In our Cx3cr1C"ER /Csf1H¥/f1x
model, we observed that, 14 days after tamoxifen retrieval, microglial levels were similar to
WT animals. More important, in spite of feeding Cx3cr1“"ER /Csf17/*/f1% mice with tamoxifen
for several months, microglial levels were similar to WT, suggesting that a continuous
microglial replacement is taking place.

The origin of repopulating cells has not been unequivocally determined yet. Elmore et al.
(2014) proposed that after microglial depletion, local progenitor microglial cells (nestin*)
proliferated [32], while Bruttger et al. (2015) supported that remaining microglial cells
increased their proliferative rate themselves [52]. Recent mapping studies, single cell se-
quencing analysis, and parabiosis experiments supported this second mechanism [5,68-70].
Our results also trend towards this hypothesis since we observed (Figure 1B) that the
lower the depletion, the greater the repopulation. When Cx3cr1“"ER /Csf1¥/* mice were
subjected to a second cycle of intraperitoneal tamoxifen, microglial percentage at 0 days of
repopulation is higher than after first cycle, and this correlated with a more pronounced
microglial repopulation peak. Therefore, if there are more remaining microglia that can
proliferate, repopulation is faster and more forceful. Konishi et al. (2020) have identified
the expression of Ki67 in microglia after depletion treatments [69], and we also observed
a non-statistically significant increase in Ki67 mRNA expression in Cx3cr1<ER /Csf11/f
hippocampus after 7 days of repopulation (Figure 1D).

In addition, we observed a significant increment in the expression of the microglial
activation marker Clec7a and a trend of increase in Trem2 and Cd45 markers after 7 days of
repopulation (Figure 1E), which may allow the remaining microglia to be less dependent on
CSF1R signaling. In this sense, Lodder et al. (2021) have shown that active A3-associated
microglia were more resistant to PLX3397 treatment [71]. Additionally, it has been described
in vitro that TREM2 signaling induces the activation of Syk pathway (downstream to
CSF1R), in such a way that it synergizes with the CSF1-CSF1R axis [72]. Therefore, the
increased expression of Trem2 in the remaining/repopulating microglia could favor their
tolerance to tamoxifen and would explain the moderate microglial levels recorded during
chronic treatments. Furthermore, Zhan et al. (2020) have described that there is a MAC2*
microglial subpopulation, sharing similarities with microglial progenitors from the yolk
sac and with immature microglia in early embryos, which survive to CSF1R inhibition and
mediate microglia repopulation [73].

On the other hand, we may consider that niche repopulation may also be mediated
through infiltration of peripheral immune cells. The fact that CNS-associated macrophages,
monocyte-derived cells, and microglia display general macrophage markers hinders the
differential study of these populations. Moreover, although macrophages remain tran-
scriptomically different, they can acquire a microglial identity (such as morphology and
clonal expansion) after being exposed to CNS environment [74,75]. Monocyte infiltration
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has been described in Cd11b-TK [76] and Cx3cr1<"eER+ /R26PTA+ depletion models [77]. In
fact, Lund et al. (2018) demonstrated that the transcriptomic signature of infiltrated cells
(F4/80M) [77] did not coincide with that of the local microglia characterized by Bennett et al.
(2018) [63]. Regarding CSFIR inhibition models, in studies using PLXs, no changes have
been reported in infiltration markers such as Ccr2 [32], while in the Cx3cr1C™eER /Csf114/fx
model, macrophage infiltration has been observed when microglial self-renewal is pre-
vented [54]. In this sense, microglia could be responsible for the maintenance of CNS
immune privilege in pathological situations [78].

As shown in Figure 1F, our data revealed a non-significant increment of Cd3 expression
in the hippocampus of Cx3cr1¢"*ER /Csf1/f¥ mice during repopulation compared to WT,
which may suggest lymphocytic infiltration. Additionally, as higher microglia depletion
(lower expression of Trmem119 marker), higher Cd3 expression (Figure 1G), supporting
microglial role in avoiding peripheral immune cells infiltration. On the other hand, we
reported a statistically significant increment of Cd163 expression. Although in post-mortem
tissue from AD patients (Mufioz-Castro et al., manuscript in preparation) and in some
animal models [79,80], CD163 seems to be associated with CNS-associated macrophages
and infiltration of monocytes-derived cells, in APP and TAU P301S mouse models we
have not observed a clear infiltration of CD163* cells in brain parenchyma (data not
shown). In fact, other authors postulated that certain microglial subpopulations may
express CD163 [1,81]. Taking into account that there was not an increment in the expression
of the monocytic markers Ccr2 or Ly6c (Figure 1F), the significant increase in Cd163 observed
after 7 days of repopulation could be associated to a microglial subpopulation. Thus, we
postulate that microglia repopulation may be mainly mediated by microglial self-renewing,
although the mechanisms and molecular events mediating it have not been clarified so far.
It has been proposed that signaling through II-1p [52], NF-KB [70] and Lgals3 [73] could be
critical factors in microglial repopulation.

Intriguingly, as shown in Figure 2, we observed a high variability in microglial levels
during the repopulation process after acute and chronic (1-month) tamoxifen treatment.
In Figure 2A, we showed four different Cx3cr1“*ER /Csf1+*/i% mice sacrificed 7 days af-
ter tamoxifen acute administration, which displayed important differences in microglial
(Ibal*) staining. Similarly, in Figure 2B, we compared the hippocampus of two female
Cx3cr1CTeER Csf1/f* mice subjected to 1-month tamoxifen treatment; they showed oppo-
site microglial levels. So far, we have not been able to associate this variability to any factor,
as they were same-age animals and there was not a sex-correlation. As far as we know,
a high variability between animals has not previously been reported when using other
depletion models. As an exception, Shi et al. (2019) reported higher levels of microglial re-
duction in male compared to female mice using PLX3397, associated with reduced PLX3397
levels in the plasma [49]. Our genetic microglia depletion model avoids variable PLXs
pharmacokinetics, but different tamoxifen CNS bioavailability should be considered. At
the same time, there may be differences in CreER recombination efficiency. Microglial cells
that do not undergo CSFIR ablation at the beginning of the treatment may proliferate, get
more active and, then, become independent of CSFIR signaling. Consequently, they would
be resistant to future tamoxifen administration and contribute to a higher repopulation. In
short, the marked variability made us question the validity of our model and prevented us
from obtaining consistent data. New efforts should be made to determine the mechanism
underlying this shifting repopulation degree.
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A Acute tamoxifen treatment — 7 days of repopulation
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B 1-month oral tamoxifen treatment

~3 Te ) i

C Acute tamoxifen treatment — 7 days of repopulation

Figure 2. Microglial repopulation in Cx3cr1"ER/Csf1¥/f* mice. (A,B). Microglial immunostaining (Ibal+ cells) in brain
sections of Cx3cr1 CTEER/Csﬂ X mice subjected (A) to acute tamoxifen administration (7 days) and sacrificed 7 days after the
end of the treatment (n = 4 animals); (B) oral tamoxifen treatment for 1-month (n = 2 animals). (C). Consecutive brain sections
immunostained with Ibal+ from a Cx3cr1"*ER /Csf1:/1*/1* mouse subjected to 7-days tamoxifen treatment and sacrificed
7 days after the end of the treatment. See Supplementary Table S1 for Antibody and Method used. RSA, retrosplenial
agranular cortex; RSG, retrosplenial granular cortex; PRh, perirhinal cortex; Pir, piriform cortex; S1 primary somatosensory
cortex; S2 secondary somatosensory cortex; Th, thalamus; Hp, hypothalamus; CA1, field CA1 of hippocampus; CA3, field
CA3 of hippocampus; DG, dentate gyrus; so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum; m, molecular
layer; g, granular layer; h, hilus. Scale bars: (A,C) 50 mm; B 200 pum.

On the other hand, our results revealed a peculiar pattern of repopulation, with some
areas totally depopulated compared to full-replenished regions (Figure 2A,C). A high
variability in the repopulation pattern was again detected among mice, with some of them
showing microglia cells mainly in the thalamus (Figure 2(A2)) while others displayed a
more pronounced microglia replenishment in the cerebral cortex (Figure 2(A3)). Addition-
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ally, as shown in Figure 2(A4), there were some totally microglia-empty cortex portions,
with a marked boundary separating them from fully-replenished cortex regions. More
surprisingly, a rostro-caudal dynamic microglia repopulation pattern was detected in se-
quential immunostained sections from the same animal (Figure 2C). Varvel et al. (2012)
reported a similar repopulation pattern in Cd11b-TK transgenic mice one week after 90%
of microglia depletion [76]. However, in this study, authors showed that blood-derived
monocytes were responsible of CNS repopulation.

Casali et al. (2020) observed a variation in the percentage of microglia depletion
across regions, achieving a 30% microglia depletion in subiculum, a 50% in hippocampus,
and a 70% in cortical and thalamic regions in 5xFAD mice after 28 days of PLX5622
treatment [62]. In contrast, Spangenberg et al. (2019) reported more than a 99% microglia
depletion in cortex after 10 weeks of PLX5622 in WT and 5xFAD mice, but a fraction of cells
remained in the thalamus [45]. Up to date, we have no clear explanation for our striking
repopulation pattern. However, Zhan et al. (2019) demonstrated, by dual-color labelling,
that newborn microglia recolonized the parenchyma by forming distinctive clusters that
maintained stable territorial boundaries over time, with minimal migratory diffusion [70].
It is possible that this regional heterogeneity in microglia repopulation could be related
to a distinct origin of microglial precursors in each brain region during development [82].
Therefore, microglia from each brain region might show different rates of cell proliferation.
In addition, the space and time pattern of microglia repopulation in the cerebral cortex
recall how microglia colonize the developing neocortex, invading first the deeper layers
and then progressing to the upper ones [83].

In short, although further work is required, the most supported hypothesis for mi-
croglial repopulation is microglia self-renewal, with a minor contribution of peripheral
immune cells. In a novel way, our results open new key research lines in regards to
addressing the mechanism underlying the variability in the degree and pattern of re-
population, which may shed light into our understanding of microglia proliferation and
migration capabilities.

5. Microglial Depletion as a Model of Microglial Replacement

Due to high mouse microglial proliferation capacity, these depletion models do not
mimic a situation of microglial degeneration, as previously desired, but a context of
microglial renewal. The characterization of emerging microglia’s capabilities will allow
us to validate the efficacy of microglial depletion-repopulation strategies as potential
therapeutic tools. This approach will be beneficial when microglia are hyperactive as
well as in a context of microglial degeneration [28] or senescent [84], because in both
cases microglia may contribute to neuron toxicity. As microglial chronic activation is
sustained by an oxidative metabolism [18], this may compromise oxygen availability for
other cellular populations. Additionally, an excessive microgliosis may induce microglial
mitochondrial damage and be a major source of reactive oxidative species [85], leading
to oxidative damage in neurons, to astrocyte reactivity [86] and to an exacerbation of the
inflammatory cascade.

Repopulating microglia appear to fulfil functions of resident microglia and is capable
of monitoring the environment and responding to acute stimuli [58,76,87]. Adult newborn
microglia have been described to gradually regain steady-state maturity, transcriptionally
clustering close to control microglia 2 weeks after depletion [70]. Zhan et al. (2019) also
showed that the restoration of microglial homeostatic density requires NF-«B signaling as
well as apoptotic egress of excessive cells [70]. In accordance, Huang et al. (2018) found no
transcriptomic differences in repopulated microglia (2-month after depletion treatment)
compared to resident microglia, neither in resting conditions nor after LPS challenge [68].
More recently, Gratuze et al. (2021) also described a homeostatic gene signature and
equal ability to cluster around amyloid deposits in repopulated microglia in an AD mouse
model [88].
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In contrast, under 1-month continuous tamoxifen treatment in our Cx3cr1<"ER /Csf1H/f1x
model, we observed that emerging microglia displayed an active morphology, with a
thickening of cell body and shortening and thickening of microglial processes (Figure 3A).
Furthermore, the increased expression of Clec7a, Cd45, Trem2 and Lgals3 corroborated
microglial activation after 1-month treatment (Figure 3B). We should take into account
that, unlike previously mentioned publications, we maintained the depletion inductor, so a
continuous microglial depletion and repopulation was taking place. An active phenotype
is typical of phagocytic microglia, which could be eliminating cellular debris of dead
microglia [32]. In this sense, an upregulation of scavenger-associated proteins, such as
Cd36 [68], and of the phagocytic marker Cd68 [49] have been reported in repopulating
microglia. However, given the small remaining microglial population at some points (for
instance, at the end of our acute treatment (Figure 1A,B)), the CNS must count with an
additional mechanism to eliminate all cellular debris, among which phagocytic activity
of astrocytes has been proposed [69,89]. Konishi et al. (2020) demonstrated that, after
specific microglial depletion (using Siglech®®" mice), astrocytes, rather than CNS-associated
macrophages or circulating monocytes, clear microglial debris [69].
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Figure 3. Microglial activation after 1-month oral tamoxifen administration in Cx3cr1"ER /Csf1/¥/f1x
mice. (A). Ibal immunostaining in WT and Cx3cr1<"ER (Csf1*/¥ mice subjected to 1-month of tamox-
ifen treatment. CAl, field CA1 of hippocampus; CAS3, field CA3 of hippocampus; DG, dentate gyrus;
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so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum; m, molecular layer; g, granular
layer; h, hilus. Scale bars: Al, A3 200 pm; A2, A4 10 um. (B). mRNA expression of microglial
activation markers (Clec7a, Trem2, Cd45 and Lgals3), quantified by qPCR and normalized by Tmem119
(microglial homeostatic marker), in the hippocampus of WT and Cx3cr1<eER /Csf1/*/* mice treated
with tamoxifen for 1 month. See Supplementary Table S1 for Antibody, Probes and Methods used.
Statistical significance was analyzed using the t-test.

Finally, when drawing conclusion from chronic depletion models, we must be aware
that changes observed are difficult to be unequivocally addressed to one factor. They may
be due to: (i) a reduction in total microglial levels, (ii) a reduction of previous, sometimes
burnt out, microglia, or (iii) the presence of emerging microglia whose characteristics
are still not thoroughly described. Same challenges will occur with other state-of-the-
art microglial manipulation techniques, such as chimeric mice. These models have been
proposed as emerging tools to substitute exhausted microglia and/or to characterize human
microglial response in AD pathology. Under this approach, mouse microglia is depleted
to be replaced with human iPS-derived microglia in immunosuppressed mice [90]. After
this manipulation, alterations in the progression of AD pathologies could be addressed
to: (i) a reduction in the number of mouse microglia, (ii) the effect of human microglia,
(iii) the immunosuppression of mice, (iv) the interaction between mouse and human
microglia. Additionally, taking into account the stablished interaction between microglia
and astrocytes [91], in depletion as well as in chimeric mice, modifications in the pathologies
may also be caused by changes occurred in other glial cells. In essence, although they are
promising tools, we should be cautious when drawing conclusions from these models.

6. Do Microglia Refresh or Poison AD Progression?

In order to further characterize microglial role in AD, microglial depletion models
are being combined with AD mouse models bearing either A3 and/or Tau pathologies
(Table 1). Currently, controversial data are found and new studies are needed to clarify if
microglia is beneficial or detrimental to AD pathology.

Table 1. Relevant results in AD mouse models of microglia depletion. Mouse models used and main outcomes are shown.

Pathology Depletion Model Outcomes References
PLX5622 in 5xFAD mice. from 4- to 50% microglia depletion. Reduction of microgliosis

Ap ! and plaque burden, enhancement of [62]

5-month-old plad

’ neuritic dystrophies.

AB PLX3397 in 5xFAD mice, from 9- to Around 50% microglia depletion. Decrease in A3 [65]

10-month-old. deposition and rescue of dopaminergic signaling.
AB PLX5622 in APP/PS1 mice, from 12- Diminution of leukotriene biosynthesis and the [92]

to 13-month-old. neuronal 5-lipoxygenase.
PLX5622 in 5XFAD mice from 1.5 to 4- 97% mllc.rogha de.pletlon. Reduction of plaque
A or 7-month-olds deposition, but increase of cerebral amyloid [45]
’ angiopathy formation.
70-80% microglia depletion. Reduction of

AB PLX3397 in 5xFAD mice from 2- to intraneuronal amyloid, neuritic plaque deposition [93]

5-month-old. and improvement in cognitive functions (fear )

conditioning tests).
Diphtheria toxin in 15 months-old o . .
AB Cx3cr1CER/+ .R26DTR/* / APPXPS] 90% depletion. No Changes in the' number of AP [94]
mice, for 1-2 weeks. plaques, but an increase in size.
. . 30% reduction of microglia. No changes in the

Ap GWS2580 in APP/PSI mice from 6- to number of Af3 plaques. Improved performance in [43]

9-month-old.

memory and behavioral tasks.
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Table 1. Cont.

Pathology Depletion Model Outcomes References
90% microglia depletion. No alterations in
AB PLX3397 in 5xFAD from 10- to -amyloid levels or plaque load, but rescue of [56]
11-month-old. dendritic spine loss and improvements in
contextual memory.

ABandTau  PLX5562 in 3xTg mice for 3 months. S0 Microglia depletion. No changes in total or [64]

phosphorylated Tau. Improvements in cognition.

81% microglia depletion. Higher reduction in
Ap and Tau PLX3397 from 5.5- to 7-month-old in  non-plaque-associated microglia. No changes in A [71]
5xFAD/PS19 Tau -injected mice. pathology, reduction in Tau pathology and
neurodegeneration.
AP and T: PLX3397 from 6- to 9-month-old in E;I?Iproved C(:grfu,}l Ve anc(li'n euror(;tlal deﬁ;l.t > [88]
and Tau 5xFAD mice injected with AD-Tau. ancement of Tau seeding and spreading
around plaques.

Cx3cr1CreER/R26DTA /hTAU mice, 60% microglia depletion. No changes in soluble

Tau treated with tamoxifen for 2-3 oligomeric, phosphorylated or total aggregated [66]
months at different ages. Tau levels.

PLX3397 in P301S APOE E4 mice Total microglia depletion. Prote.ctlon from b.ram

Tau volume loss and neurodegeneration. Reduction of [49]
from 6- to 9-month-old. .
Tau pathology progression.

Tau PLX3397 in rTg4510 mice, from 12- to  30% microglia depletion. No changes in Tau burden, [63]

15-month-old. cortical atrophy, blood vessels or glial activation.

(a) Clodronate liposomes and
PLX3397 in AAV-GFP/Tau injected o o . . .

Tau C57BL/6 mice. (b) PLX3397 in PS19 70-80% (a) and 90% (b) microglia depletion. [95]

mice. In both cases, from 3.5- to

Reduction of phospho-Tau.
4.5-month-old.

6.1. Microglial Interplay with AB Pathology Progression

Recently, it has been shown that immune cells located around A plaques are ex-
clusively microglia, without any contribution of infiltrating myeloid cells [96,97], so then
microglia would be essential in the containment of amyloid deposits and could have a pro-
tective role. Huang et al. (2021) have demonstrated that microglia, through TAM receptor
tyrosine kinases such as Axl and Mer, engulf amyloid plaques and promote dense-core
plaque development [98]. In this line, a diminution of A plaques has been reported when
CSFI1R inhibitors are administered before or at the beginning of the pathology [45,62].
These authors showed that total A charge did not vary, but there were changes in its
distribution, which supports the importance of microglia in the formation of Af3 plaques.
Actually, PLX3997 administration to 2-months-old 5xFAD mice for 3 months inhibited
plaque formation [93] and, more importantly, microglia repopulation in 5-6 months-old
5xFAD mice reverted plaque morphologies to control levels [62]. Additionally, microglia
may intervene by secreting aggregation factors that help with A clearance and by internal-
izing low concentrations of fibrillary A3, potentially more toxic [99,100]. However, most of
publications based on microglial depletion in A3 mouse models revealed no changes in
total AR burden (Table 1), indicating that microglia might not be the principal source of
-amyloid clearance from the CNS [56].

If these changes in A3 distribution directly affect neuronal pathology is still a matter
of debate. Casali et al. (2020) have reported that microglial depletion in 5xFAD animals
translated into an increase of neuritic dystrophies [62], while other studies observed a
decrease in intraneuronal A} and neuritic plaques, accompanied by an amelioration of
cognitive decline [93]. In the same line, an amelioration of spinal and neuronal loss [88] and
an improvement in memory tasks have been reported following microglia depletion [43,56].
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Distinct microglia populations may be mediating diverse effects in Af3 and neuronal
pathologies progression. While plaque-associated microglia may be protective, non-plaque-
associated microglia, also in the presence of Tau pathology, could display neurotoxic
functions. In this sense, it has been recently demonstrated that the preferential depletion of
microglia distal to amyloid deposits significantly attenuated Tau pathology and neuronal
atrophy in Tau-seeding 5xFAD/PS19 mice [71]. In this model, while A(3-associated DAM
microglia may compact amyloid plaques and limit its toxicity, non-plaque-associated
microglia may contribute to Tau spread and to a pro-inflammatory environment that could
mediate neuronal dysfunction. Furthermore, microglia surrounding amyloid deposits
may finally become exhausted due to local plaque-associated hypoxia [18] and, then, also
induce neurotoxicity. Therefore, some of the contradictory findings above described are
not surprising given the heterogeneity of microglial subsets described in the context of AD.

Once Af pathology is established (mice from 10- to 18 month-old), some works
showed an improvement in cognitive abilities when microglial population was reduced,
although it was not accompanied by a decrease in amyloid load [56]. In contrast, Zhao
et al. (2017) showed that, in spite of no changes in the number of Af3 plaques, there
was an increase in their size [94], once again giving microglia a fundamental role in A3
plaques compaction.

In short, despite further work is required, most of studies did not reveal significant
changes in total A3 load after microglial depletion. However, an improvement in neuronal
pathology has been frequently reported, which give us hope about the efficacy of microglia
replacement in AD therapy. It would be of great interest to determine specific markers
which allow the precise identification of highly neurotoxic and/or degenerated plaque-
associated microglia, in order to specifically deplete them. Microglial proliferation which
repopulate the depleted niche rapidly acquire mature characteristics [58,101] and may coun-
teract AD pathology by better containing amyloid deposits and diminishing pathological
phagocytosis of synapses, then contributing to the amelioration of AD cognitive decline.

6.2. Microglial Contribution to Tau Pathology

In spite of being Tau pathology the one that best correlates with AD cognitive decline,
the role of microglia in the progression of Tau deposits is far from being elucidated. A
direct interaction between microglia and Tau forms has been widely proposed, but neither
the underlying mechanisms nor the specific Tau species of interaction are clearly described.
It has been revised how microglia could phagocytose extracellular Tau by the CX3CR1
receptor, as the aminoacidic sequence of Tau display a 37% homology with the CX3CL1
sequence [102]. However, this will be hampered at late AD stages due to Tau hyperphos-
phorylation and CX3CL1 overexpression [103]. On the other hand, Nagamine et al. (2016)
suggested an interaction between neurofibrillary tangles and microglial cells through CD33
receptor, which is capable of recognizing the sialic acid residues that appear in the neu-
rofibrillary tangles [104]. Additionally, more and more evidences suggest a contribution
of microglia in the spreading of Tau seeds [95,105,106]. In contrast, Tau antibodies boost
microglial phagocytosis of Tau in vitro [107,108] and passive immunization reduced Tau
deposits in an AD model [109].

Due to controversial data, it is of great interest to evaluate the influence of microglial
depletion and repopulation on the onset and progression of Tau pathology (see Table 1).
Zhu et al. (2020) have not observed variations in Tau pathology after microglial depletion
or engraftment of peripherally-derived macrophages [66], but the 'TAU model used is less
aggressive than most transgenic murine models which express the mutant Tau form associ-
ated with frontotemporal dementia: JNPL3 [110,111], PS19 [112] or rTg4510 [113]. In fact, in
the h'TAU model, a homeostatic microglial phenotype was described even at later ages [66].
On the other hand, no changes were observed in Tau pathology in the rTg4510 [63] or
3xTg-AD [64] models after a 30% microglial depletion using the pharmacological inhibitors
PLX3397 and PLX5562, respectively.
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Although deficiencies in specific microglial genes involved in their survival and
proliferation, such as Cx3crl or Trem2, worsened Tau pathology [114-116], microglial
depletion in PS19 mice coursed with an amelioration of Tau pathology [95]. In the same
line, Shi et al. (2019) have reported an amelioration of Tau pathology and brain volume loss
in P301S APOE E4 mice after 3 months of PLX3397 treatment [49]. In contrast, Gratuze et al.
(2021) have recently showed that microglia depletion and even repopulating microglia
enhance Tau seeding and spreading around plaques in a Tau-injected amyloidogenic
model [88]. This discrepancy may suggest that amyloid pathology modifies the role of
microglia in Tau spreading. Then, further experiments are required to stablish if microglia-
mediated inflammation may influence Tau progression and subsequent neurodegeneration.

Studies of microglial depletion in other CNS pathologies showed similarly controver-
sial results. Rice et al. (2017) and Acharya et al. (2016) described significant improvements
subsequent to microglial depletion in neuronal damage models [59,117]. In the same
line, Li et al. (2017) showed neuroprotection following microglial depletion in a model of
intracerebral hemorrhage [118]. However, other publications reported an increase in neu-
roinflammation and brain damage after microglial depletion in ischemia models [119,120].

6.3. Is Microglia Renewal a Promising Therapeutic Approach for AD?

If the microglial depletion—repopulation phenomenon was able to slow down the
progression of AP and Tau pathologies, therapies based on microglial turnover should
be designed. In both, microglia hyperactivation or dysfunction, microglial replacement
would improve CNS homeostasis. Recently, different strategies for microglial replacement
in murine models were reviewed [90]. In humans, CSF1R inhibitor PLX3397 has shown
some efficacy in microglial depletion and has been approved by the FDA for recurrent
glioblastoma treatment [121]. Although microglia proliferation is quite limited in the
adult human brain, it has been estimated that a 28% of microglia is renowned daily,
being the lifespan of these cells 4.2 years [6]. Actually, Olmos-Alonso et al. (2016) have
reported a significant increment in microglia proliferation in AD samples compared to
controls, being the proliferation rate 2.63% in grey matter in AD brains [43]. This increase
could be trying to compensate microglial degeneration at late Braak stages [28,122]. In
addition, the Trem2 agonist AL002, which enhances microglial proliferation in murine
models [123], is being tested in phase I to treat mild and moderate AD stages (https:
/ /clinicaltrials.gov/ct2/show /NCT03635047, accessed on 5 July 2021), so it would be
a candidate to favor the repopulation of the depleted niche, thus promoting the scarce
microglial proliferation that takes place in humans.

Furthermore, microglial activation has been proposed as responsible for A3 clearance
under anti-Ap immunotherapy treatments in AD. In fact, Aducanumab, recently approved
by the FDA, increases microglial number around A plaques in Tg2576 mice, suggesting
phagocytosis of antibody-A{3 complexes as a clearance mechanism [124]. This microglial
recruitment has also been described for Gantenerumab, another anti-A {3 immunotherapy
in clinical phase III [125-127].

Therefore, novel approaches to increase microglial renewal may be a promising tool
to assess microglial role in the ATN continuum and to design potential therapies for AD.

7. Concluding Remarks

Different approaches to deplete microglia in the mouse brain are based on pharma-
cological or genetic manipulation methods. Although generating new transgenic models
takes longer, cell-targeted genetic strategies are more specific and avoid mainly undesired
effects in other cell types or tissues. So far, diverse strategies have given rise to a vari-
able percentage of depletion, which should also be taken into account before selecting a
depletion model. Our research group has generated Cx3cr1“"ER /Csf1r/fX mice, which
provided temporal control of microglia depletion by using tamoxifen, either by intraperi-
toneal injection (acute depletion) or by chronic oral administration. Our results reported
an important microglial repopulation, so remaining and emerging microglia constantly
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coexist in chronic models. Although we cannot totally reject a peripheral origin, the most
accepted hypothesis is that a rapid microglial self-renewal is occurring. Further studies are
required to exactly determine the mechanisms underlying microglial recolonization and to
explain the intriguing repopulation pattern that we observed.

A sustained microglial depletion would be essential to study a context of microglial
dysfunction in AD and other chronic neurodegenerative diseases. However, due to the high
microglial proliferation capacity observed, depletion models may better represent a context
of microglial renewal. Up to date, controversial data from AD microglial depletion models
have hindered the specific contribution of microglia on the ATN continuum. However, if
we were able to slow down AP and Tau progression by enhancing microglial turnover,
microglial depletion and repopulation strategies would be a promising therapeutic strategy
for AD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/1jms22189734 /1.
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