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Abstract: Over the last years, different nanomaterials have been investigated to design highly
selective and sensitive sensors, reaching nano/picomolar concentrations of biomolecules, which is
crucial for medical sciences and the healthcare industry in order to assess physiological and metabolic
parameters. The discovery of graphene (G) has unexpectedly impulsed research on developing cost-
effective electrode materials owed to its unique physical and chemical properties, including high
specific surface area, elevated carrier mobility, exceptional electrical and thermal conductivity, strong
stiffness and strength combined with flexibility and optical transparency. G and its derivatives,
including graphene oxide (GO) and reduced graphene oxide (rGO), are becoming an important class
of nanomaterials in the area of optical and electrochemical sensors. The presence of oxygenated
functional groups makes GO nanosheets amphiphilic, facilitating chemical functionalization. G-based
nanomaterials can be easily combined with different types of inorganic nanoparticles, including
metals and metal oxides, quantum dots, organic polymers, and biomolecules, to yield a wide range
of nanocomposites with enhanced sensitivity for sensor applications. This review provides an
overview of recent research on G-based nanocomposites for the detection of bioactive compounds,
providing insights on the unique advantages offered by G and its derivatives. Their synthesis process,
functionalization routes, and main properties are summarized, and the main challenges are also
discussed. The antioxidants selected for this review are melatonin, gallic acid, tannic acid, resveratrol,
oleuropein, hydroxytyrosol, tocopherol, ascorbic acid, and curcumin. They were chosen owed to
their beneficial properties for human health, including antibiotic, antiviral, cardiovascular protector,
anticancer, anti-inflammatory, cytoprotective, neuroprotective, antiageing, antidegenerative, and
antiallergic capacity. The sensitivity and selectivity of G-based electrochemical and fluorescent
sensors are also examined. Finally, the future outlook for the development of G-based sensors for
this type of biocompounds is outlined.

Keywords: bioactive compound; graphene; graphene oxide; melatonin; gallic acid; tannic acid;
resveratrol; oleuropein; hydroxytyrosol; tocopherol; ascorbic acid; curcumin

1. Introduction

Carbon is an essential element on earth, which can be found in several structures
in nature. The most usual and stable ones are diamond and graphite. Diamond has a
rigid 3-D structure with sp3 carbon atoms arranged in a lattice, which is a variation of the
face-centered cubic crystal structure. It has superlative physical qualities, most of which
originate from the strong covalent bonding between its atoms. Graphite consists of a layered
structure made of hexagonal rings of carbon atoms with sp2-hybridization. These layers are
linked by Van der Waals forces that generate an exfoliating structure. Due to the weak forces
between the graphite layers, it is possible to isolate one of these layers to obtain graphene
(G), an atomically thick 2D sheet comprising sp2 carbon atoms arranged in a honeycomb
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structure. It has superior electronic, thermal, optical, and mechanical properties with values
that surpass those obtained in any other materials [1,2]. For instance, it has exceptional
thermal conductivity, in the range of 3000–5000 W·m−1·K−1 [3], superior to that of copper,
which is around 400 W·m−1·K−1, very high electron mobility (25,000 cm2 V−1 s−1) [4],
the highest electrical conductivity known at room temperature (6000 S cm−1) [5], a very
large specific surface area (2640 m2 g−1) [6], and it is impermeable to gases. Further, it is a
zero-gap semiconductor material, is electroactive and transparent, absorbing only 2.3% of
the incident light. Moreover, G presents a Young’s modulus close to 1 TPa and an ultimate
strength of 130 GPa, thus being the strongest material ever measured, stiffer than steel [7,8].
These unique properties make G an ideal candidate for a wide range of applications such
as sensors, supercapacitors, fuel cells, photovoltaic devices, batteries, nanocomposites,
flexible electronic devices, and so forth [9–13].

G is the starting point of other structures like fullerenes, nanotubes, or graphene
quantum dots. It should be noticed that the term “graphene” used in the literature includes
a broad range of graphene-like structures which differ in the preparation method and
consequently in the chemical structure (usually the oxidation level), shape, size, and the
number of layers. G synthesis is based on two general approaches, i.e., bottom-up and
top-down approaches, as shown in Scheme 1. In the first approach, the starting material
is graphite, and the aim is to exfoliate it via mechanical, liquid phase, or electrochemical
exfoliations. Another approach in this group is to exfoliate graphite oxide to graphene
oxide (GO), followed by chemical or thermal reduction. The bottom-up method is based on
making graphene from molecular precursors building blocks by chemical vapor deposition
(CVD) or epitaxial growth.
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Scheme 1. Representation of bottom-up and top-down approaches for G synthesis. GDQ: graphene quantum dots.

Mechanical exfoliation is the simplest technique, in which G is isolated by peeling it
off from graphite flakes using tape. The main concern of this method is the low graphene
quality and the limitation for large-scale production [2]. CVD is a scalable and cost-effective
technique to produce high-quality graphene films, hence it is the most used to fabricate G
at a large-scale, although it is difficult to attain a proper control of the G thickness. CVD
uses the saturation of carbon by a high-tempered hydrocarbon gas on a transition metal
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substrate [14]. When the metal becomes cold, carbon solubility decreases, and carbon atoms
precipitate, forming a G layer. Epitaxial growth enables control over the layer thickness by
modifying the time and temperature throughout the process. However, it is one of the most
expensive synthesis methods since a silicon carbide has to be heated between 1080 ◦C and
1320 ◦C to lead the growth of G; thus, it is not affordable at a large-scale. Moreover, the face
of SiC used, Si-terminal or C-terminal, highly influences the thickness, mobility, and density
of graphene [15]. Chemical oxidation of graphite is frequently used to obtain a graphene
derivative, GO. Different oxidizing reagents can be used, like concentrated acids, such as
KMnO4 or K2CrO4. The yield of graphene oxidation depends greatly upon the graphite
source (flake size, crystallinity, purity, etc.) and can be tuned with other parameters such
as oxidation time, acid ratios, mixing, washing, removal of non-oxidized material, etc.
Subsequently, a reduction stage has to be applied to reduce the GO, although the resulting
product differs significantly from raw G, and it is commonly named reduced graphene
oxide (rGO) [16,17]. Another method to get a G layer is unfolding carbon nanotubes (CNTs)
via chemical or plasma etching [18]. Other approaches include liquid-phase exfoliation
(LPE), which uses specific organic molecules, or electrochemical exfoliation, which relies on
the penetration of graphite by ions from the electrochemical solution using a potential [19].
Depending on the synthesis method, graphene features are different, as well as the yield
and the costs [20,21]. In addition, it should be noted that due to graphene forces, it tends to
fold or join with other G layers, leading to an agglomerated nanomaterial. For this reason,
surfactants are usually required to attain stable G monolayers in solution [22,23].

Some researchers have discovered that GO and rGO have better properties for some
applications than graphene. GO is a modified form of G that comprises carboxylic groups
on the edges and epoxy and hydroxyl groups on the layer plane (Scheme 2). It can be
obtained via chemical oxidation graphite [24], as we mentioned before, via oxidation of
G using the Hummers’ method [17,25] or by electrochemical exfoliation of graphite oxide
GO [26,27], leading to a larger surface, which allows keeping compounds in the interlayer
space. This property is especially useful for biomedical applications.
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On the other hand, rGO is obtained via the thermal treatment of GO to remove
functional groups [24] or by chemical reduction of GO (Scheme 2). Reduction of the
epoxide groups of the GO can be conducted by using hydrazine or sodium borohydride as
reduction agents, but the dehydroxylation and decarboxylation need heat treatment (as
an endothermic reaction). However, these components are corrosive, combustible, and
highly toxic, which may be dangerous for personnel health and the environment. Hence,
eco-friendly, natural reducing agents are sought, such as aminoacids (i.e., ascorbic acid) or
plant extracts (i.e., Ginkgo biloba leaves).

GO is removed more easily, both kinetically and thermodynamically; rGO has im-
proved the electric properties compared to GO, due to the reduced amount of functional
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groups, although its retention capability is lower [17]. The functional groups of both G and
GO enable them to be functionalized and to interact with other materials [28].

On the other hand, graphene quantum dots (GQDs) have recently emerged amongst
the family of carbon nanomaterials. They are 0D graphene sheets, with circular planar
geometry and very small size, about 3–20 nm (Figure 1). Due to the confinement of the
excitons and the quantum effect, GQDs exhibit many excellent properties such as chemical
inertness, photobleaching resistance, and stable luminescence. Thus, photoluminescence
can be induced in graphene material when the size, structure, and surface property are
controlled properly as for traditional QDs [29]. Fluorescent GQDs have great potential
for application in bioimaging, diagnosis, and drug delivery and can be used in Föster
resonance energy transfer (FRET) optical sensors as donors [30]. Further, GQDs combined
with conventional plasmonic material such as noble metals can significantly improve
the absorption (and interaction) with visible and IR light, which is only 2.3% for bare G.
Besides, GQDs exhibit low toxicity, high conductivity, and good biocompatibility, which
combined with their cost-effectiveness make them suitable and efficient in both optical and
electrochemical sensing applications [31,32].
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A chemical sensor is innately defined as a device that responds to changes in the local
chemical environment via an electrical, electrochemical, and/or optical signal. It transforms
the chemical information of a sample (concentration of one or more of its components) into
an analytically useful signal. The main parts of a chemical sensor shown in Scheme 3.
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(1) A receptor zone has the role of transforming the chemical information into a form
of primary energy or signal. It is the chemical part of the sensor and generally contains a
reagent immobilized on a solid support. If the receptor is not capable of generating the
primary signal by itself, it also contains an indicator. If the reagent is biological in nature
and is called a biosensor, if it is synthetic, the term chemoreceptor is often used. It should
be pointed out that, traditionally, the term biosensor also applies to chemoreceptors that act
in a similar way to affinity bioreactants; that is, they have both the ability to recognize the
analyte (molecular recognition) as well as to chemically interact with it, as is the case with
Molecularly Imprinted Polymers (MIPs), or with non-natural reagents but of biological
origin (aptamers or plastic antibodies). The selectivity, sensitivity, and precision of the
sensor depend essentially on this component.

(2) A transducer zone, which transforms the primary signal into the final analytical
signal, generally an electric current or a potential difference directly or inversely propor-
tional to the analyte concentration. It is the most technical part of the sensor since, together
with the transducer itself, it contains the necessary components for the transformation
and treatment of the signals. Although there are different types of primary signals (mass,
conductivity, magnetic, etc.), the most common transducers are electrochemical and optical.
In the latter, the transducer is called a detector.

(3) A membrane to separate the whole sensor from the outside.
For a chemical sensor to be useful, its response must be reproducible, stable, sensitive,

and selective. Over the last years, a change in sensor technology towards more sensitive
elements, complex architecture, and size reduction has arisen due to the emergence of
nanotechnology, that is, the science that deals with the manipulation of matter on the scale
of atoms and molecules. Nanomaterials such as graphene [33], carbon nanotubes [34],
metal oxide nanoparticles [35], and their polymeric composites [36] have been used to
develop sensors to detect a variety of analytes.

Bioactive ingredients of natural products can protect the human body from harm, as
well as prevent and treat disease. Screening bioactive compounds from natural products is
attracting particular attention in a broad range of applications, including pharmacology,
cosmetics, the food industry, biomedicine, and so forth. It is a very promising research area
in full development, which has resulted in many studies devoted to diversify the resources
of bioactive compounds and improve their synthesis or recovery pathways. However,
despite all this significant research in various fields, the definition of bioactive compounds
remains ambiguous and unclear. The term “bioactive” arises from bio- from the Greek
(βίo-) “bios”, which means life, and active from the Latin “activus”, which means: dynamic
or full of energy. In a strictly scientific sense, the term “bioactive” is an alternative term for
“biologically active” [37]. Thus, a bioactive compound is just a substance that has biological
activity [38]. These compounds contain chemicals that are found in small amounts in
plants or certain foods such as fruits, vegetables, nuts, oils, and whole grains; further, they
typically have an associated beneficial effect on health. It should be noted that in addition
to natural bioactive substances [39], there are also synthetic bioactive molecules [40].

The benefits of G-based sensors can be summarized as follows: the high specific sur-
face area and atomic thickness of G layers enable direct contact between the carbon atoms
and the analytes; as a result, graphene-based sensors have better sensitivity compared to
silicon [41]. In addition, the flexibility combined with the high optical transparency and
electrical conductivity of G enables the acquisition of high-quality signals without motion
artifacts or visual disturbances. Furthermore, a high signal-to-noise ratio can be achieved
in electrophysiological signals due to the efficient signal transmission attained by the high
electrical conductivity [42]. Besides, the large specific surface area, the feasibility of func-
tionalization, and a high electron transfer rate enable receptors such as enzymes, antibodies,
and DNA to be effectively immobilized on a G surface [43]. Consequently, many sensors
based on G nanocomposites and their derivatives have been reported, including wearable
sensors and implantable devices, that enable performing quick, real-time analysis [44]
and are also applied in biomedicine for diagnosis, prognosis, prediction, and treatment
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methods. It is a novel technology, increasingly employed, in which it is completely essential
to work at the nanoscale.

Although a number of reviews dealing with G-based sensors for the detection of
biomolecules have been published, most of them are too general and deal only with elec-
trochemical sensors. Further, they are devoted mainly to target biological molecules such
as DNA, urea, glucose, and so forth. In this review, an attempt is made to show the state-
of-art in the synthesis and performance of G-based fluorescent and electrochemical sensors
for the specific detection of bioactive compounds, providing insights into the unique
advantages offered by graphene and its derivatives. Their synthesis process (including
functionalization routes), novel structures, and main properties are summarized, and the
main challenges are also discussed. The reported works try to improve the conventional
procedures via the use of cheaper, faster, more effective, or more eco-friendly methods.

2. Bioactive Compounds: Properties and Applications

Bioactive compounds are substances that typically occur in small quantities in food
and can be beneficial for health. They are intensively studied to evaluate their effects,
including antioxidant, antiallergic, antimicrobial, antithrombotic, antiatherogenic, hypo-
glycaemic, anti-inflammatory, antitumor, cytostatic, immunosuppressive properties, and
hepatoprotective activities [45]. Unlike essential macro- and micronutrients, they are not
essential for life, and the body can function properly without them.

Among the most common bioactive compounds found in our diets are polyphenols,
which are well known for their antioxidant properties [46]. They inhibit or interfere with
the process of free radical formation, preventing the oxidation of cells. Dietary antioxidants
can protect the body from oxidative damage that may result over time in many pathologies
such as cancer or cardiovascular disease. It is believed that polyphenols may exert a
cardio protective effect via several paths. They may enhance the functioning of the inner
lining of blood vessels, hinder platelet aggregation (preventing blood accumulations in
the arteries), and positively influence blood lipids and insulin sensitivity [47]. Typical
dietary antioxidants are vitamin C, vitamin E, and carotenoids, and most of them come from
vegetables like olive, rice, broccoli, eggplant, ginger, onion, citrus, coffee, tomatoes, etc.

The antioxidant potential of phenolic compounds depends on the number and ar-
rangement of the hydroxyl groups [48]. Phenolic antioxidants can give hydrogen atoms to
lipid radicals and produce lipid derivatives and antioxidant radicals (Equation (1)), which
are more stable and less readily available to promote autoxidation. The antioxidant free
radical could then interfere with the chain-propagation reactions (Equations (2) and (3)).

R ∗ /RO ∗ /ROO ∗ + AH → A ∗ + RH/ROH/ROOH (1)

RO ∗ /ROO ∗ + A∗ → ROA/ROOA (2)

ROO ∗ + RH → ROOH + R∗ (3)

As the hydrogen bond energy in a free radical scavenger (FRS) decreases, the hydrogen
transfer to the free radical is energetically more favorable, hence faster. Any compound
that has a reduction potential lower than that of a free radical (or oxidized species) is able
to donate its hydrogen atom to that of the free radical unless the reaction is kinetically
unfeasible. For instance, FRS including α-tocopherol (E◦′ = 500 mV) that have a reduction
potential lower than that of peroxyl radicals (E◦′ = 1000 mV) is able to donate their
hydrogen to the peroxyl radical to form a hydroperoxide [49]. The phenoxyl radical is then
stabilized by the delocalization of its unpaired electron around the aromatic ring.

The influence of the antioxidant concentration on the autoxidation rate is conditioned
by many factors such as the antioxidant structure, oxidation conditions, and nature of the
sample being oxidized [50]. Frequently phenolic antioxidants lose their activity at high
concentrations and are more effective in extending the induction period when added to
any oil that has not deteriorated to any great extent. Thus, to attain the best protection
against oxidation, antioxidants should be added to foodstuffs as early as possible during
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processing and storage. Nonetheless, the effect of polyphenols on humans is still not clear,
and many studies claim that the beneficial effect arises from the polyphenol-rich foods
rather than the isolated polyphenols. Up to date, the European Food Safety Authority
(EFSA), which evaluates health statements made on food products, has rejected all claims
on polyphenols except for olive oil, which contains hydroxytyrosol, and contributes to the
protection of blood lipids from oxidative stress.

Among natural phenolic antioxidants are phenolic acids, flavonoids, coumarins, stil-
benes, hydrolyzable and condensed tannins, lignans, and lignins, and contain one or
more hydroxyl groups attached directly to an aromatic ring. The antioxidants selected
for this review were red wine polyphenolic compounds, including gallic acid, tannic acid,
resveratrol, oleuropein, hydroxytyrosol, tocopherol, and ascorbic acid (the last two found
in lower amounts). Further, melatonin, an indole amine also present in wine that shows
a wide range of anticancer activities, and curcumin, a polyphenol with multiple health
benefits, has also been addressed. All these antioxidants are either autofluorescent or can
be derivatized to form a fluorescent compound. Their chemical structure is displayed in
Scheme 4.
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2.1. Melatonin

Melatonin, N-acetyl-5-methoxytryptamine (MLT), is a pleiotropic neurotransmitter
with cellular and physiological actions, widely distributed in nature [51]. MLT is a hormone
released primarily by the pineal gland that regulates the sleep-wake cycle. As a dietary
supplement, it often is used in the short-term treatment of insomnia. This molecule is
involved in circadian rhythms, hematopoiesis, angiogenesis, metastasis, sexual behavior,
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hypertension, oxidative stress, metabolic syndrome, and immune function. Furthermore,
one of its most important activities is that it is a potent free radical detoxifier and regulator
of redox-active enzymes [52]. The hydrophilic and lipophilic character of MLT has allowed
it to cross the blood-brain barrier and to enter into cells, which have given this hormone
the capacity of developing all the mentioned implications in animals [53]. Moreover,
MLT improves the antioxidant reaction stimulating other antioxidative molecules such as
glutathione peroxidase, glutathione reductase, SOD, and catalase [54]. Recent studies have
shown that MLT deficiency causes a gradual acceleration of aging [55]. Furthermore, it
presents immunomodulatory, thermoregulatory, and antitumor properties and appears to
be an excellent candidate for the prevention and treatment of various cancers such as skin,
breast, prostate, and colon [56].

2.2. Gallic Acid

Gallic acid (GA, 3,4,5-trihydroxybenzoic acid) belongs to the group of hydrolyzable
tannins, and to the subclass, gallotannins. It is considered one of the strongest natural
antioxidants. Gallic acid name is derived from oak galls, which are historically used to get
tannins. It is distributed in different families of the vegetable kingdom, such Anacardiaceae,
Myrtaceae, and Fabaceae, as well as the fungi genus such Aspergillus, Penicillium, and
Termitomyces [57,58].

Its synthesis can be performed via three possible routes. One starts with the conversion
of phenylalanine in caffeic acid, later in 3,4,5-trihydroxycinnamic acid, and then in gallic
acid. Another starts from the artificial production of 3,4,5-trihydroxycinnamic acid, and its
side chain comes from the formation of protocatechuic acid, which is derived from caffeic
acid [57]. The third route uses 3-dehydroshikimate, in which the action of the enzyme
shikimate dehydrogenase produces 3,5-didehydroshikimate. This compound tautomerizes
to form a redox gallic acid equivalent, which is converted into GA due to its spontaneous
aromatization [59,60]. Several beneficial effects are reported for gallic acid, including
antioxidant, anti-inflammatory, and antineoplastic properties. Further, this compound
has been reported to have therapeutic activities in gastrointestinal, neuropsychological,
metabolic, and cardiovascular disorders.

2.3. Tannic Acid

Tannic acid (TA, penta-m-digallolyl glucose) is one of the main tannins in plants. It has
multiple applications in medicine due to its antioxidant, antimutagenic, antiallergenic, and
anticarcinogenic capacity [61]. Further, it is widely used in the wine and food industries.
However, in Europe is not considered a food additive due to its toxicity in large amounts
in animals [62]. Conversely, TA with magnesium was used as a treatment for many
toxic substances in the early twentieth century. During that time, tannic acid was also
applied to treat burn injuries. Nowadays, it is used in pharmacology to develop numerous
applications.

It has bactericide action since it reacts with proteins irreversibly, thus complexing
within bacterial membranes, neutralizing their activity [63], and has effective anticaries
properties. Its antiviral effectiveness is also well documented. Besides, it is used for the
treatment of intestinal problems, owed to its complexation ability with other molecules
and antioxidant behavior, and has been proven to be effective against ulcers by functioning
as a protective coating of the gastrointestinal tract [64]. TA is extracted from several plant
species like Caesalpinia spinosa, Rhus semialata, Quercus infectoria, and Rhus coriaria.

2.4. Resveratrol

Resveratrol (3,5,4′-trihydroxystilbene, RSV), a natural member of the stilbene family,
has been reported to have numerous health benefits. It is present in several plants and
fruits, such as peanuts, mulberries, blueberries, and, above all, in grapes, specifically in
their skin, seeds, and woody parts [65–67]. Drinking red wine, unlike white wine where
these rich parts in resveratrol are removed, could be responsible for health-promoting
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properties [68,69]. It is a phytoalexin, that is, an antimicrobial and antioxidative substance
synthesized by a plant in response to environmental stresses, and it is used for the treatment
of various diseases, including dermatitis, gonorrhea, fever, hyperlipidemia, arteriosclerosis,
and inflammation. Furthermore, the antiproliferative and proapoptotic effects of resveratrol
in tumor cell lines have recently been documented in vitro [70]. For all these reasons, RSV
is one of the most studied antioxidants.

Its structure was not characterized until 1940 when Taraoka isolated it from Veratrum
grandiflorum roots [71]. However, its properties have been used in medicinal preparations
for 2000 years [72]. RSV has two isomers, one trans and another cis, being the first more
stable and, thus, more abundant in nature. The RSV synthesis starts with phenylalanine,
which after being modified by three enzymes, it is turned to cumaril-CoA. This product
interacts with three molecules of malonil-CoA thanks to a stilbene synthetase, the resvera-
trol synthetase, generating the trans-resveratrol molecule [73]. A remarkable fact is that the
synthesis of resveratrol decreases with the grape maturation, because of the lower genetic
expression induction.

Some of the species with more quantity of resveratrol, besides the grapes, are Poly-
gonum cuspidatum [74], Bauhinia racemose [75], Veratrum grandiflorum [76], Veratrum for-
mosanum [77], Pterolobium hexapetallum [78], eucalyptus [79,80], and fir species [81]. RSV
protects them from infections, UV radiation, chemical substances or stress [73,82,83].

2.5. Hydroxytyrosol and Oleuropein

Hydroxytyrosol (2-(3,4-dihydroxyphenyl)ethanol, HT) is a diphenolic compound
naturally occurring in olives and olive oil, frequently occurring in the Mediterranean diet,
with proven benefits for health [84–86]. It was first recognized by Stoll et al. as a component
of echinacoside, a phenolic glycoside showing antibiotic activity against Staphylococcus
aureus extracted from the roots of Echinacea angustifolia [85,87]. HT is considered the
most powerful antioxidant after gallic acid. It has been most studied and used in food,
cosmetic, and pharmaceutical industries [88] after being demonstrated that HT produces
a wide range of biological properties besides antioxidant such as hepatoprotective [89],
cytoprotective [90], neuroprotective [91], cardioprotective [92], anti-inflammatory [93],
antiviral [94], anticancer [85], and anti-obesity effect [95]. Some studies affirm that the
composition of olive leaves extracts rich in several phenols and flavonoids and that it
varies with the harvesting season, the leaves maturity, storage conditions, and extraction
method [96].

The antioxidant activity of HT in vivo is directly linked to its high bioavailability, and
several works have reported a high degree of absorption, fundamental to exert its metabolic
and pharmacokinetics properties [97]. HT behaves as an antioxidant acting as a free radical
scavenger and radical chain breaking as well as a metal chelator. With its catecholic
structure, it is able to scavenge the peroxyl radicals and break peroxidative chain reactions,
leading to very stable resonance structures. On the other hand, the protection against the
genotoxic action of reactive oxygen species (ROS) is one of the mechanisms explaining
the anticancer effects of HT [98]. In addition, it may also act via the modulation of pro-
and anti-oncogenic signaling pathways, resulting in cell apoptosis and growth restriction
of tumor cells, which may be mediated by their capability to induce the accumulation of
hydrogen peroxide in the culture medium [99]. A decrease in ROS production, derived
by iron or copper-induced oxidation of low-density lipoproteins, has also been found,
suggesting a chelating action on such metals.

HT can be obtained in several ways differing in the starting molecule and the synthetic
route. The first synthesis path was reported by Schöpf et al. in 1949. It started with 2-(3,4-
dimethoxyphenyl)ethanol that was demethylated by 48% HBr, leading to the corresponding
bromide, which was converted into the triacetoxy derivative and subsequently hydrolyzed
by methanolic NH3 to give hydroxytyrosol [85,100].

One of the derivates of hydroxytyrosol is oleuropein, which presents very similar prop-
erties: antioxidant, antimicrobial, antitumoral, and cardioprotective. Oleuropein (2-(3,4-
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dihydroxyphenyl)ethyl(2S,3E,4S)-3-ethylidene-2-(β-D-glucopyranosyloxy)-5-methoxycarbonyl)-
3,4-dihydro-2H-pyran-4-yl)acetate) arises from the union of hydroxytyrosol and an oleo-
sidic skeleton. It is a glycosylated seco-iridoid that can be found in green olive skin,
flesh, seeds, and leaves [101]. During its maturation, the β-glucosidases present inside
transforms the oleuropein to extra virgin olive oil, a form in which it is protected from
natural oxidation. Similar to HT, it shows a beneficial effect on the reduction in cholesterol
and the decrease in coronary heart diseases [102]. Besides, its consumption, mostly in
the Mediterranean diet, reduces the risk of breast, prostate, and colon cancer, owed to its
potential antitumoral activity [103–108].

2.6. Tocopherol

Tocopherol (TCP or TOH) is the name of a class of organic chemical compounds
having some vitamin E activity. It is one of the 13 essential vitamins in humans that is not
produced by the organism. Four forms of tocopherol with vitamin E activity and different
degrees of methylation have been described: alpha-, beta-, gamma- and delta-tocopherol.
α-tocopherol is a component integrated into the European diet because it is present in olive
and sunflower oils [109]. Conversely, γ-tocopherol is more common in the American diet,
where soybean and corn oil are intaken [109,110]. Fortunately for Europeans, α-tocopherol
is the most absorbed form of vitamin E in humans [111].

One of the main functions of TCP is the capacity of donating an H atom to free radicals
that could generate damage [112], resulting in a less reactive tocopheryl radical. Besides,
TCP has anti-inflammatory, antiageing, anticancer, and cardioprotective properties, and its
aids in preventing macular degeneration, platelet aggregation, and Alzheimer’s disease. It
is widely used in moisturizers, creams, and as a food additive.

Unlike vitamins A and D, α-tocopherol (which is also a fat-soluble vitamin) does
not accumulate to “toxic” levels in the liver or extrahepatic tissues; however, an excess
of vitamin E arises few problems if the doses overcome 400 mg/day. It can be a topic
allergic, normally seen in cosmetic products, although the incidence is quite low. It could
generate a drug interaction such as tamoxifen, an anti-breast cancer drug, or cyclosporine
A, an immune-suppressant drug, or aspirin and warfarin, potentiating an anti-blood-
clotting action [113]. For some of these interactions, its co-administration together with a
chemotherapy drug is completely forbidden.

The natural biosynthesis of TCP in plants comes from the reaction of homogentisate
(HGA) with homogentisate phytyltransferase (HPT), giving a molecule that reacts with
tocopherol cyclase (TC) to get δ-tocopherol or with methyltransferase (MT) and then
tocopherol cyclase (TC) to get γ-tocopherol. Subsequently, if these two tocopherols react
with γ-tocopherol methyltransferase (γ-TMT), β-tocopherol and α-tocopherol are obtained,
respectively [114].

α-tocopherol can be extracted and purified from seed oils. In addition, γ-tocopherol
can be extracted, purified, and methylated to produce α-tocopherol. It has been found
that rats can convert γ-tocopherol to α-tocopherol, methylating it in their tissues. On the
other hand, α-tocopherol can be obtained synthetically, although with only 50% of the
effectiveness of natural α-tocopherol.

2.7. Ascorbic Acid

Ascorbic acid ((R)-3,4-dihydroxy-5-((S)-1,2-dihydroxyethyl)furano-2(5H)-one, AA) is
an organic acid with antioxidant properties. The S enantiomer (L-ascorbic acid) has vitamin
C activity. AA is very common in the diet, and it is usually sold as a dietary supplement. It
prevents illnesses such as scurvy [115], which gave it the name of ascorbic acid or ascorbate.
Vitamin C is an essential nutrient in humans that acts as a cofactor of several enzymes,
promotes carnitine and collagen synthesis, and plays a crucial role in cell division and
growth regulation, in the maintenance of the immune system, in the reparation of skin
and tissues and in the production of neurotransmitters. Further, it presents antiageing,
anticancer, neuroprotective, and wound-healing properties. Vegetables and fruits represent
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a great source of vitamin C, and its recommended ingestion is established as 90 mg/day
for males and 75 mg/day for females [116].

The history of AA started with James Lind demonstrating that citrus fruit consump-
tion had positive effects on scurvy prevention and treatment, and it was named as an
antiscorbutic factor. Its structure was elucidated by Albert Szent-Györgyi in 1932 [117],
who was awarded the Nobel Prize for Medicine in 1937.

The ascorbic acid biosynthesis has many routes. In mammals, it can be generated
from D-glucose, which is converted to D-glucuronic acid, and later to L-gulonic acid by
glucuronate reductase. This molecule is then turned to gulono-1,4-lactone by aldono-
lactonase. Finally, ascorbic acid is converted through the action of gulono-1,4-lactone
oxidase in gulono-1,4-lactone, producing 2-keto-gulono-γ-lactone, which spontaneously
converts to l-ascorbic acid or vitamin C [118]. On the other hand, plants synthesize
L-ascorbic acid from L-galactose, which comes from D-mannose. L-galactose is converted
to L-Galactono-1,4-lactone via oxidation by NAD-dependent L-galactose dehydrogenase.
L-ascorbic acid is finally formed via oxidation of L-Galactono-1,4-lactone by L-galactono-
1,4-lactone dehydrogenase [119,120].

2.8. Curcumin

Curcumin ((1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl, CU) hepta-1,6-diene-3,5-dione,
also known as diferuloylmethane) is a non-polar diarylheptanoid, natural, bright and
yellow polyphenol from the Curcuma genus. It is the principal curcuminoid of turmeric
(Curcuma longa), a member of the ginger family, Zingiberaceae, that is obtained mainly from
its rhizome [121,122]. Curcuma has been used for years due to its beneficial properties for
human health. Nowadays, it is an authorized food additive, labeled as E-100i (curcumin)
and E-100ii (curcuma). It is used as an herbal supplement, cosmetics ingredient, food
flavoring, and food coloring [123]. CU is present in at least two forms, the keto and enol
tautomers, which are solid and liquid, respectively.

CU has anti-cancer [124,125], anti-arthritis, anti-inflammatory [126], and neuropro-
tective capacity, besides its antioxidant properties [127]. It aids in the management of
oxidative and inflammatory conditions, metabolic syndrome, arthritis, anxiety, and hyper-
lipidemia. It may also help in the treatment of exercise-induced inflammation and muscle
soreness, thus promoting recovery and subsequent performance in active people [128].
However, there are some factors that limit the bioactivity of curcumin, such as chemical
instability, insolubility in water, absence of potent and selective activity, low bioavailability,
limited tissue distribution, and extensive metabolism [129,130]. The bioavailability of
curcumin depends on the delivery format, age, health condition, and human gender [131].
Some studies have shown its increased biodisponibility and its reduced degradation upon
encapsulation [132,133].

The biosynthesis of curcumin remains still unclear. Peter J. Roughley and Donald
A. Whiting proposed two possible mechanisms for its biosynthesis in 1973. One involves
a chain extension reaction by cinnamic acid and 5-malonyl-CoA, that arylize into a cur-
cuminoid. The second possible mechanism involves two cinnamate units coupled by
malonyl-CoA. On the other hand, it is believed that plants start with p-coumaric acid
instead of cinnamic acid [134].

A summary of the most important properties of all the selected antioxidants is pro-
vided in Table 1.

Given that G is a zero-gap semiconductor and an electroactive and transparent ma-
terial, there are many possibilities for its application in biosensing applications. Its out-
standing electrical conductivity and large specific surface have demonstrated the accurate,
rapid, sensitive, and selective sensing ability of bioactive compounds. It presents enhanced
sensitivity for a wide range of biomolecules when compared with other carbon materials
such as CNTs, fullerenes, or amorphous carbon.
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Table 1. Biological and physical properties of the antioxidants, their nutrient sources, and medical uses.

Antioxidant Biological Properties Physical Properties Nutrient Sources Functions and Medical Uses Ref.

Melatonin

Immunomodulatory
Thermoregulatory

Anti-aging
Anticancer

Photo-and radioprotective
Cardioprotective

Antiarrhythmic agent

Off-white powder
Mw = 232.28 g/mol
d25 ◦C = 1.175 g/cm3

Tm = 117 ◦C
b.p. = 512.8 ◦C
S20 ◦C = 2.0 g/L

Coffee, Tea
Red wine, Beer Banana

Tomatoes
Rice, Wheat
Corn, Oat

Control of hypertension, obesity, and
metabolic syndrome

Modulation of inflammatory markers
Modulation of oxidative stress

Sleep disorders/Insomnia treatment
Parkinson and Alzheimer diseases

[52]

Gallic Acid

Antimicrobial
Anticancer
Antifungal
Antiviral

Astringent
Antiallergic

Antiinflammatory
Antimelanogenic
Antiulcerogenic

Crystalline white
powder

Mw = 170.12 g/mol
d25 ◦C = 1.694 g/cm3

Tm = 260 ◦C
b.p. = 501 ◦C
Td = 237.5 ◦C

pKa = 4.40
S20 ◦C = 11.9 g/L

Blueberries
Apples

Flax seeds
Tea, Coffee

Walnuts
Watercress

Grapes, Wine Grenade

Control of periodontal disease
Cell death in e human cancer cells

Regulation of the genes involved in
the cell cycle

Prevention of degenerative diseases
Prevention of cardiovascular diseases

Inhibitor of diabetes dysfunction
Inflammation suppressor

[57]

Tannic Acid

Astringent
Chemotherapy drug
enhancer Antiallergic

Anticarcinogenic,
Antimutagenic

Antiinflammatory

Light yellow
amorphous powder
Mw = 1701.19 g/mol
d25 ◦C = 2.12 g/cm3

Tm = 218 ◦C
Td = 199 ◦C

pKa = 10
b.p. = 218 ◦ C

S20 ◦C = 250 g/L

Red wine
Coffee, Tea

Guava
Spinach

Black raisins
Oaks
Nuts

Persimmon

Inhibitor of NO2 production
Clarifying agent in wine and beer

Flavoring agent in foods
Treatment of diarrhea

Topical to dress skin burns
Treatment of rectal disorders.

[135]

Resveratrol

Anticancer
Antiallergic

Antiinflammatory
Cardioprotective

Inmunostimulatory
Antimicrobial

Antiplatelet agent
Antifungal

White to yellow powder
Mw = 228.25 g/mol
d25 ◦C = 1.40 g/cm3

Tm = 263 ◦C
Td = 222 ◦C

b.p. = 449 ◦ C
S20 ◦C = 0.03 g/L

Peanuts
Pistachios

Grapes, Wine
Blueberries,
Cranberries

Cocoa
Chocolate

Natural reducing agent
Prevention of cardiovascular disease
Parkinson and Alzheimer diseases

Regulation of triglycerides
Inhibitor of platelet

aggregationInhibitor of DNA
duplication in cancer cells

[21,25,136]

Hydroxytyrosol

Immunostimulant
Antimicrobial

Antifungal
Cardioprotective

Anticancer
Antiinflammatory
Hepatoprotective
Neuroprotective

White powder
Mw = 154.16 g/mol
d25 ◦C = 1.30 g/cm3

Tm = 55 ◦C
Td = 361 ◦C

b.p. = 355 ◦ C
S20 ◦C = 50 g/L

Olive leaves
Olive oil

Wine

Prevention of sexual dysfunctions
Prevention of atherosclerosis

Inhibitor of platelet aggregation
Inhibitor of human LDL oxidation
Stabilizer and antioxidant in foods

[88,137]

Tocopherol
(Vitamin E)

Antiageing
Anticancer

Cardioprotective
Antiinflammatory

Yellow- brown liquid
Mw = 430.71 g/mol
d25 ◦C = 0.95 g/cm3

Tm = 2 ◦C
b.p. = 220 ◦ C
S20 ◦C = 0 g/L

Nuts
Avocado
Salmon
Mango
Tomato
Spinach
Seed oils

Prevention of macular degeneration
Prevention of Alzheimer’s disease

Prevention of cardiovascular diseases
Inhibitor of platelet aggregation

Moisturizers/creams

[138]

Ascorbic acid
(Vitamin C)

Antiageing
Wound healing

Anticancer
Immunostimulant
Neuroprotective

white powder
Mw = 176.12 g/mol
d25 ◦C = 1.65 g/cm3

Tm = 190 ◦C
b.p. = 553 ◦C

S20 ◦C = 330 g/L)

Guava
Pepper
Citrus

Broccoli
Grape

Cauliflower
Strawberry

Mango

Prevention of Hepatitis
Promotion of collagen synthesis

Prevention of Alzheimer’s disease
Reparation and maintenance of skin,

blood vessels, scars, tendons,
ligaments, etc.

Cofactor in many enzymes
Natural reducing agent

Cell division and growth regulation

[118]

Curcumin

Anticancer
Antiarthritis

Antiinflammatory
Neuroprotective

yellow crystalline solid
(keto-) or liquid (enol-)

Mw = 368.38 g/mol
d25 ◦C = 1.3 g/cm3

Tm = 183 ◦C
b.p. = 591 ◦C
S20 ◦C = 0 g/L

Curcuma
Curry

Tea

Colitis and stomach ulcer protection
Inhibitor of diabetes dysfunction

Inflammation suppressor
Treatment for viruses and pulmonary

fibrosis
Prevention of cancers
Cosmetics ingredient

Food flavoring and coloring

[128]

S20 ◦C = solubility in water at 20 ◦C; Mw = Molecular weight; d25 ◦C = density at 25 ◦C; Tm = melting temperature; b.p. = boiling point;
Td = decomposition temperature.

3. Graphene Functionalization Approaches

Pristine G sheets are hydrophobic in nature, so they cannot be dissolved in polar
solvents. To make it soluble in common solvents, avoiding stacking between adyacent
sheets, and hence to expand its range of applications, it can be functionalized via interac-
tion with other molecules or polymers. Noncovalent functionalization by π-interactions
is an attractive synthetic method because it offers the possibility of attaching functional
groups to G without disturbing the electronic system. These include H-π, π–π, anion-π and
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cation-π interactions [139]. Complexes exhibiting the H−π interaction (190, 201–207) are of
great interest since this type of interaction is also one of hydrogen bonds [140]. On the other
hand, the π–π interaction is one of the most important driving forces for supramolecular
self-assembly. When the countermolecule is a metal cation, a combination of electrostatic
and induction energies dominates the cation−π interaction. Recently, anion−π interactions
have been reported as a novel approach towards a new type of anion recognition, host archi-
tecture, and supramolecular self-assembly [141]. Overall, by controlling the relationships
of several noncovalent interactions, novel organic nanostructures can be designed.

Typically, non-covalent strategies include solution mixing or in situ polymerization.
The first requires both G and the functional molecule or polymer to be stably dispersed in a
common solvent; it involves the dispersion of G in the appropriate solvent, the adsorption
of the molecule (or polymer) to delaminated G sheets in solution, and the elimination of
the solvent, resulting in sandwich-like nanocomposite [12]. On the other hand, in in-situ
polymerization, G is first swollen within the liquid monomer, the initiator is subsequently
added, and the polymerization begins either by heat or radiation. Nanocomposites with
conductive polymers can also be produced via in situ electrochemical polymerization [142],
which yields mechanically stable composite films that can be directly used as electrodes or
energy devices.

The key aim of the covalent functionalization of pristine G with organic molecules
or polymers is to improve its dispersibility in common organic solvents. Furthermore,
groups such as chromophores provide novel properties that could be combined with G
properties such as conductivity. In most cases, when organic molecules are covalently
linked to the G surface, their aromaticity is perturbed, enabling the control of its electronic
properties. The functionalization reactions include two general approaches: (a) formation
of covalent linkages between free radicals or dienophiles and C=C bonds of G and (b)
formation of covalent bonds between organic functional groups and the oxygenated groups
of GO. On the one hand, free radicals and dienophiles can react with sp2 carbons of G
via 1,3 dipolar cycloaddition, aryne, or nitrene addition [143]. On the other hand, organic
functional groups can be anchored to the epoxy, carboxylic acid, ketone, or hydroxyl
groups onto a GO surface. In particular, chromophores, including azobenzenes, porphyrins,
and phthalocyanines, with outstanding optoelectronic properties, have been covalently
attached to G nanoplatelets. [144]. Thus, GO can be functionalized with porphyrins through
the formation of amide bonds between amine-functionalized porphyrins and carboxylic
groups of GO. Besides, GO can be grafted to polymeric chains that have reactive species
like hydroxyls and amines, in particular poly(ethylene glycol), polylysine, polyallylamine,
and poly(vinyl alcohol). The polymer provides improved dispersibility in certain solvents
and morphological characteristics, while G offers electrical and thermal conductivity and
reinforcement of the stiffness and strength.

Grafting of polymeric chains onto G nanosheets can be carried out via “grafting-to”,
“grafting-from”, and “grafting-through” approaches (Figure 2) [145]. The first consists
of synthetizing G and polymers individually and connecting them. Here, physical and
chemical interactions play a role in modifying the G layers. In the “grafting-from” method,
the polymer chains grow in situ from an initiator that has been previously anchored to the
G surface. In the “grafting-through” approach, the polymerizable groups are anchored onto
the G surface. Then, the polymerization begins in the solution that contains an initiator,
monomers, and G. Polymerization of monomers takes place, and G is incorporated inside
the polymer chains.
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4. Graphene-Based Sensors for Bioactive Compounds

Due to its outstanding electrical, chemical, optical, and electrochemical properties,
G has excellent potential for use as a transducer in optical sensors based on fluorescence,
chemiluminescence, and colorimetric detection systems [35]. G derivatives, in particular
GO and rGO, have valuable characteristics to be employed in these optical sensors. On
the one hand, GO has tailorable luminescent properties. On the other hand, GO and
rGO have been reported to be strong fluorescence quenchers via Föster resonance energy
transfer (FRET) [146]. Based on this property, two types of G-based fluorescent sensors
have been described: (1) signal-on ones, in which the fluorescence intensity rises with
the addition of the analyte, hence the signal can be directly correlated with the analyte
concentration reaching detection limits as low as ng/L. (2) signal off sensors, based on
fluorescently labeled probes that adsorb onto GO in the presence of the analyte and quench
its fluorescence, though have lower sensitivity than signal on sensors [30].

Furthermore, the application of G-based materials as sensors involves two approaches:
one is based on G-biomolecule interactions via van der Waals, π-π stacking, cation−π,
anion−π interactions, and electrostatic forces, leading to electrical variations in the pristine
G. The other is based on the chemical functionalization to immobilize the molecular
receptors onto the surface of GO, rGO, or GQDs [147].

From an electrochemical viewpoint, the potential of G-based electrodes is huge given
that they preserve the properties of other carbon-based materials, including chemical
inertness and good electrocatalytic activities for many redox reactions, and simultaneously
they offer new properties like high surface area and ultrarapid charge mobility, which
guarantee high sensitivity and quick response. Further, it presents an electrochemical
potential window of ~2.5 V in 0.1 M PBS (pH 7.0) [148], which is better than that of
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graphite, glassy carbon, and even boron-doped diamond electrodes. Besides, the charge-
transfer resistance on G is considerably lower than that of graphite or glassy carbon
electrodes, indicating that the electronic structure of G is beneficial for electron transfer,
making it suitable for the detection of biomolecules that have high oxidation or reduction
potential. The key aspects of G electrochemistry are beyond the scope of this review and
have been recently reviewed [149]. Furthermore, some former reviews have focused on the
interactions of G, GO, and rGO-based biosensors with their analyte targets [150–153].

In the following section, we review the most recent advances in the development of
optical and electrochemical sensors based on graphene and its derivatives for the detection
of bioactive compounds. We discuss the processing and detection method, the linear range
and limit of detection (LOD), as well as the advantages and improvement of properties
due to the presence of graphene. Although the number of papers related to this type of
sensor is still scarce, very promising results have already been obtained.

4.1. Melatonin

A lot of techniques to determine low concentrations of MLT in biological samples
have been reported, including HPLC with electrochemical and fluorometric detection, gas
chromatography-mass spectrometry, micellar electrokinetic chromatography, spectroflu-
orimetry, chemiluminescence, radioimmunoassay, and colorimetry [154–158]. However,
some of these techniques have many drawbacks, such as the use of expensive instruments,
regular maintenance, tissue destruction, tedious and complicated processes, and the use
of organic solvents which are not biocompatible and generate pollution. Researchers in
their investigations try to improve at least one of these disadvantages. Niu et al. [159]
focused their work on the development of an optical sensor to detect MLT via a simple,
cost-effective, and sensitive method. For such a purpose, they first synthesized GO via a
modified Hummer´s method. Subsequently, it was dispersed in an aqueous medium and
reacted with phenyl triethoxysilane (PTEOS) and tetramethoxysilane (TMOS) via a sol-gel
method to yield a GO@SiO2 nanocomposite which was used as a sorbent in dispersive
solid-phase extraction (dSPE). The detection of MLT was performed via HPLC combined
with DAD, and a detection below 0.1 µg mL−1 was attained.

However, most of the graphene-based sensors for MLT detection are based on electro-
chemical techniques, which are typically more sensitive, accurate, faster, miniaturizable,
eco-friendly, and cheaper compared with optical ones. In this regard, Apetrei et al. [160]
developed a novel sensor based on graphene-coated carbon screen-printed electrode (G-
CSPE) prepared via sonication of G followed by drop-casting onto the electrode. These
screen-printed electrodes (SPEs) consist of a single device with three different electrodes
(Figure 3): (1) Working electrode, which response is sensitive to the analyte concentration.
(2) The reference electrode, which potential is constant, and the working electrode potential
is measured against it. Auxiliary or counter electrode, which completes the circuit of the
cell, as it allows the passage of current. The voltammetric behavior of the SPEs (unmodified
and modified with G) was studied in order to evaluate the electroactive surface area of the
working electrode (using K4[Fe(CN)6] as benchmark redox system) and to quantify the
rate constant obtained from cyclic voltammetric (CV) curves. The method was applied to
the analysis of commercial pharmaceutical formulations.

The G-CSPE showed better performance, with a higher degree of reversibility, lower
separation between the anodic and cathodic peaks, and the ratio between the current for
the catodic and anodic peak (Ic/Ia) was close to 1. Good sensitivity in small samples was
obtained with a detection limit of 0.87 µM and a response time of about 4 s.
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Figure 3. Graphene-coated carbon screen-printed electrode (G-CSPE) with the three-electrode system:
a reference electrode, a working electrode, and an auxiliary or counter electrode.

A very similar approach was reported by Miccoli et al. [161] to detect MLT in food
supplements using differential pulse voltammetry (DPV) with a G-CSPE. Graphene was
suspended, and the electrodes were modified by drop-casting. Again, the electrode modi-
fied with CVD graphene led to better results than the unmodified one. Since the solution
pH is crucial for the stability of melatonin molecules, studies were carried out at different
pHs. They demonstrated how pH affects the relation between the signal peak and the
amount of MLT. The detection limits for pHs at 6.4, 7.0, and 7.4 were 15, 30, and 60 µg/L,
respectively, lower than those attained with the unmodified electrode.

Analogously, Gomez et al. [162] tested several carbon nanostructures to modify a
CSPE and detect MLT and serotonin simultaneously in tablets and herb extract capsules. In
particular, graphene oxide nanoribbons (GON) and graphene reduced nanoribbons (GRN)
were synthesized from multi-walled carbon nanotubes (MWCNTs) via the longitudinal
unzipping method, followed by chemical reduction with hydrazine, ultrasonication in
aqueous media, and drop-casting onto the CSPE. The electrochemical behavior of the
different electrodes was examined by DPV, reaching a LOD of 1.1 µM, with a low sample
consumption (50 µL), good reproducibility, a response time of 120 s, and a recovery of
94–103%. The excellent performance obtained makes this approach promising not only in
the pharmaceutical field but also in the determination of neurotransmitters in urine and
other related samples.

Gupta et al. [163] prepared a sensor for the selective and sensitive determination of
melatonin in human biological fluids based on the combination of rGO and a molecularly
imprinted polymer (MIP). The rGO was synthesized from graphite powder via a modified
Hummers´ method followed by hydrazine reduction. Then, the rGO was ultrasonicated in
a mixture of distilled water and DMF (1:9) and dropped on the surface of a glassy carbon
electrode (GCE). Subsequently, the MIP film was prepared by the electropolymerization
on the surface of the modified electrode. The synergistic effect of graphene and the MIP
enlarged the number of recognition sites, resulting in an improved MLT detection, with a
linear range from 0.05 to 100 µM, and a LOD of 6 nM.

Another approach to improve the sensitivity of this type of sensor and enable the
simultaneous determination of related molecules coexisting in biological systems is the
combination of rGO with inorganic nanoparticles. In this regard, Bagheri et al. [164]
developed an electrochemical sensor to detect MLT and dopamine, based on rGO decorated
with Fe3O4 magnetic nanoparticles on a carbon paste electrode (CPE). The nanocomposite
was prepared using a modified Hummers´ method followed by hydrazine reduction and
then hydrothermal growth of the nanoparticles. Electrochemical studies revealed that the
surface modification of the electrode considerably increased the oxidation peak currents,
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although it reduced the peak potentials of MLT and dopamine. The synergistic effect
between the nanocomposite components enhanced the signal response, leading to a linear
range of 0.02–5.80 µM and a LOD of 8.4 nM. Further, no significant effect on the recovery
was found in the presence of interferences such as glucose, AA, pyridoxine, serotonin, or
uric acid, among others.

Other researchers such as Zeinali et al. [165] followed a similar method to detect
tryptophan and melatonin at the time. They developed an electrochemical sensor with an
ionic liquid carbon paste electrode modified with rGO and SnO2-Co3O4 nanoparticles. This
SnO2-Co3O4@rGO/IL/CPE sensor worked linearly in the range of 0.02 to 6.00 µM, with a
LOD of 4.1 nM, good selectivity, stability, and repeatability, besides its cost-effectiveness
and simple fabrication. Furthermore, Tadayon et al. [166], based on the previous works,
synthesized a sensor to detect dopamine, melatonin, and tryptophan. It was a nanocom-
posite based on nitrogen-doped reduced graphene oxide (N-rGO)/CuCo2O4 nanoparticles,
deposited onto a CPE via a solvothermal method. The N-rGO improved the reactivity
and electrocatalytic performance of the electrode, providing multiple binding sites, as well
as enhanced biocompatibility and sensitivity. Both CV and DPV studies revealed that
the potential separations between the three compounds were large enough to allow their
simultaneous detection (Figure 4). Hence, it was employed for their analysis in human
urine, serum, and pharmaceutical samples. Recovery values ranging from 97–104% were
obtained, with a linear range of 0.01–3.0 µM and a detection limit of 4.9 µM for MLT. The
cost-effectiveness and easy preparative method are valuable advantages of this sensor.
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oxide (rGO)/CuCo2O4/carbon paste electrode (CPE) in the presence of 2 mM dopamine and tryptophan. Taken from
Tadayon et al. [166].

In the case of Liu et al. [167], a CuO−poly(L-lysine) (PLL)/graphene-sensing electrode
for the detection in situ of MLT and pyridoxine (vitamin B6) was prepared via electrochem-
ical deposition. CuO and PLL acted as linkers for the bioactive molecules, which were
helped by a 3D graphene, grown via CVD, that amplifies the sensitivity. MLT was detected
in a concentration range of 0.016−110 µM, with a LOD of 12 nM.

There are also a few articles that used MLT to reduce GO via an eco-friendly method [168,169].
Conventionally, GO is reduced by strong chemical agents, like hydrazine; however, they are
not able to be produced at a large-scale due to their toxicity and harm to the environment.
MLT has many advantages; the surface of MLT-reduced GO suspension presents more
amount of nitrogen, attributed to the π–π adsorption, which triggers more stability; besides,
when MLT is oxidized, it cannot be reduced back to its initial state, as lots of antioxidants
do, protecting the rGO from oxidation. Ultimately, the efficiency obtained by MLT is
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comparable to the hydrazine one, although the deoxygenation process requires 600%
more time.

4.2. Gallic Acid

Most of the reported studies focused on the determination of GA via electrochemical
techniques (Table 2), which are simpler and provide higher sensitivity and selectivity. For
instance, Al-Ansi et al. [170] synthesized a 3D nitrogen-doped porous graphene aerogel
(NPGA) via one-step hydrothermal reduction by mixing graphene oxide (GO) with p-
phenylenediamine (PPD) and ammonia solution and then followed by freeze-drying. The
NPGA electrode provided a new way to determinate GA and showed improved analytical
behavior compared to most of the electrodes reported in previous studies. It showed a
large specific surface area, excellent electrical conductivity as well as high nitrogen content,
and provided a linear range of detection from 2.5 to 1000 µM and a LOD of 67 nM.

Chikere et al. [171] used amorphous ZrO2 nanoparticles decorated onto G to mod-
ify a carbon paste electrode. ZrO2 has a high surface area, good biocompatibility, good
conductivity, and affinity for oxygen-containing groups, which resulted in an improved
GA detection compared to the unmodified electrode. Thus, the mixing of zirconia and G
produces an interaction that enhances the peak current of the oxidized GA. The electrode
worked linearly in the range of 1 µM to 1 mM, with a LOD of 124 nM. Moreover, it was suc-
cessfully applied for the determination of GA in red and white wines. A similar approach
was used by Puangjan et al. [172], who synthesized an rGO/ZrO2/Co3O4 nanocomposite
by a simple reflux method, as depicted in Figure 5. Thus, GO and ZrO2 nanoparticles were
dispersed in ethylene glycol followed by the addition of CoCl2 and hydrazine hydrate and
then refluxed at 80 ◦C. The hybrid nanocomposite exhibited a synergistic catalytic effect
towards oxidation of GA, caffeic acid (CA), and protocatechuic acid (PA), with LODs of
1.56, 0.62, and 1.35 nM, respectively. The modified electrode was successfully applied for
the simultaneous determination of the three species in fruit juice, rice and tea samples,
showing rapid response and satisfactory recoveries.
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On the other hand, Ganesh et al. [173] developed an MWCNT-rGO nanocomposite
electrode for the sensitive detection of Au nanoparticles (NPs) capped with GA. The syn-
thesis of this type of NPs capped with GA under low-temperature sonication conditions
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is depicted in Figure 6. The electrode was built by drop-casting an MWCNT-GO solution
onto a GCE surface, followed by UV irradiation for GO reduction. DPV measurements
were performed at different AuNPs-Ga concentrations, leading to a LOD of 2.57 pM, the
lowest reported for this type of sensor. Using CV and electrochemical impedance spec-
troscopy (EIS), it was found that this modification of the electrode surface resulted in a
10-fold increase in the current response compared to unmodified electrodes. Thus, the
capping of the nanoparticles allowed very sensitive and easy detection and prevented
nanoparticle agglomeration. This green approach is interesting for the progress in nan-
otechnology, electronic, biomedical, and material science, in which metallic nanoparticles
are increasingly used.
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Electrochemical sensors based on hybrid materials comprising polymers and graphene
derivatives have also been developed. Thus, Gao et al. [174] synthesized a nanocomposite
incorporating chitosan (CS), fishbone-shaped Fe2O3 nanoparticles, and electrochemically
reduced graphene oxide (ERGO) as the sensing matrix. The NPs were prepared via a
solvothermal method; then, they were mixed with GO via ultrasonication, and the disper-
sion was drop cast onto a GCE, followed by electrochemical reduction. The electrochemical
characterization experiments showed that the modified electrode had a large surface area,
excellent electronic conductivity, and high stability. A good linear relationship between the
oxidation peak currents in DPV and GA concentration was found in the 1–100 µM range,
with a LOD of 0.15 µM.

Ma et al. [175] developed a photoelectrochemical sensor based on polyaniline (PANI)-
rGO-TiO2 nanocomposite (Figure 7). PANI is an inexpensive and nontoxic conductive
polymer with excellent stability, corrosion protection, and high mobility of charge carriers,
hence highly suitable for photoelectronic materials. The nanocomposite was prepared via
solvothermal synthesis of TiO2, followed by aniline polymerization, mixing, and ultrasoni-
cation. GA was detected in the linear range of 4.17 to 250 µM, with a LOD of 1.72 µM. This
sensor showed a rapid response, high sensitivity, and excellent selectivity towards GA in
the presence of other species such as AA, glutathione (GSH), and L-cysteine (CYs).

An optical sensor based on GQDs obtained by pyrolysis of citric acid was reported
by Benítez-Martínez et al. [176]. GA was able to quench the GQDs fluorescence via π-π
stacking and non-covalent interactions. The emission band (at 474 nm) underwent a green
shift when GA from real samples is added. In addition, higher quenching was observed
when the polarity of the solvent tested increased. The applicability of the method was
evaluated on four different types of real olive oil samples, leading to a linear response over
the concentration range 2–30 mg L−1 and a LOD of 0.3 mg/L−1. The proposed method
was fast, very simple, sensitive, and reproducible.
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On the other hand, a few papers have been reported on the use of GA for the devel-
opment of sensors for the detection of other ions. For instance, Liu et al. [177] prepared a
3D-porous graphene-based hydrogel with good mechanical strength and large surface area,
fabricated by self-assembly of GO sheets reduced and modified by GA through π-π inter-
actions, to capture toxic Cr(III) ions generated by tannery wastewater. This GA-modified
hydrogel is able to capture the Cr(III) by coordination complexation with its deprotonated
carboxylic groups at pH around 4.0, with an average of nearly 97% of Cr(III) in 20 min. In
addition, this functionalized structure is reusable due to its desorption with HCl at pH 2.0,
releasing an average of 89% in 30 min. Both adsorption and desorption processes have
improved compared to the unmodified hydrogel. Otherwise, some researchers employed
the anticancer ability of this antioxidant. In this regard, Croitoru et al. [178] designed a
multifunctional platform based on GO, synthesized by the traditional Hummers´ method,
that acted as a nanocarrier where biologically active substances, such as GA could be
loaded. Experimental results showed about 70% release in less than one day, 75% in four
days, and 80% within 10 days. This novel nanocarrier could be useful to treat cancer or
severe infections.

4.3. Tannic Acid

Although TA is a widely investigated molecule, very few papers regarding graphene-
based sensors for TA determination have been published. Sinduja et al. [179] developed a
colorimetric and a spectrofluorimetric sensor based on graphene quantum dots (GQDs)
prepared via pyrolysis of citric acid. The mixture of GQDs and TA led to a new absorption
band in the UV-Vis spectra due to the hydrogen bonding with the surface oxygen functional
groups and π-π stacking interaction between aromatic groups of both compounds. On
the other hand, the fluorescence intensity of GQDs linearly decreases while increasing
TA concentration (Figure 8), from 0.1–1.0 µM with a LOD of 0.26 nM. Two quenching
mechanisms have been proposed: (i) fluorescence resonance energy transfer (FRET), in
which excited state electrons of GQDs return to the ground state via absorption of the
energy emitted by the ground state electrons of TA transit to excited state resulting in a
non-radiative process and (ii) simple charge transfer, in which the excited-state electron
of GQDs meet TA, they transfer an electron to the Lowest Unoccupied Molecular Orbital
(LUMO) of TA and then returns to ground state with a radiationless transition, which
results in fluorescence quenching.
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The electrochemical determination of TA using Zn-modified G electrodes has also
been recently reported by Palisoc et al. [180]. The characterization via DPV led to a sensitive
electrode, with a linear TA concentration range from 2 to 60 ppb and a LOD of 3.13 ppb.

On the other hand, several studies have been published on the use of TA as a stabilizer
and reducing agent for G synthesis. For instance, Zhao et al. [181] used TA as a stabilizer
for the preparation of high-quality graphene on a large scale through direct exfoliation
of graphite via a green, high-efficiency, and low-cost method. Since TA acted as both
dispersant and interfacial agent, G was uniformly dispersed and tightly integrated into
polymer matrices for the development of high-performance and multifunctional nanocom-
posites. This environmentally friendly technique avoids the use of synthetic surfactants or
organic solvents commonly employed for conventional G exfoliation in liquid media and
prevents long reaction times. Analogously, Luo et al. [182] used TA as a reducing agent and
stabilizer for GO synthesis and induced the self-assembly of rGO into a G hydrogel. The TA
retained in the skeleton of 3D G also endowed the modified hydrogel with good antibacte-
rial capability. Moreover, it showed excellent adsorption toward dyes, oils, and organic
solvents; hence it is a promising candidate for efficient adsorbents in water purification. In
another study, the same TA-modified hydrogel was used for the immobilization of Au-NPs.
The obtained nanocomposite exhibited much higher catalytic activities than the bare NPs
towards the reduction of methylene blue (MB). Overall, TA has been demonstrated to be an
effective stabilizer for one-step exfoliation and noncovalent functionalization of graphene
in aqueous media.

Another common application of TA is to aid in the development of several sensors.
Lim et al. [183] prepared a humidity sensor based on a polyvinyl alcohol (PVA) nanocom-
posite filled with rGO coated with TA, which acted as a reducing and stabilizing agent
and also increased the compatibility between rGO and the PVA matrix. The conductive
property of rGO provides long-term stability, and the incorporation of rGO-TA into the
PVA matrix enhanced mechanical strength. The PVA nanocomposite showed excellent
humidity sensing properties over a wide relative humidity range. Similarly, Yoo et al. [184]
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synthesized an NH3 sensor based on TA-functionalized rGO, which demonstrated a high
potential in gas sensing due to its high sensitivity, reversibility, and short response time.

4.4. Resveratrol

The development of optical and electrochemical sensors for resveratrol (RES) determi-
nation has been the aim of a few studies. Thus, Li et al. [185] used the quenching property of
GO to prepare a fluorescent FRET-based sensor via competitive supramolecular recognition
between p-sulfonated calix(6)arene (CX6)-modified reduced graphene oxide (CX6@RGO)
and a probe-resveratrol complex (Figure 9). The probe molecule, Rhodamine B (RhB) or
rhodamine 123 (R123), had a strong fluorescence signal, and its fluorescence was quenched
by CX6@RGO. However, if RES was added, the fluorescence reappeared proportionally
to the amount of RES added. This was due to the new CX6@RGO-resveratrol generated,
which inhibited the quenching. Fluorescence measurements were performed in the linear
range of 2–40 µM, with a RES LOD of 0.47 µM.
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Electrochemical methods have also been reported. Zhang et al. [186] used a direct laser-
induced graphene (LIG) technique, which transformed the commercial Kapton/polyimide
tape into 3D porous G. The prepared electrochemical sensor showed excellent repeatability,
stability, reproducibility, and reliability, with an excellent linear response within the RES
concentration range from 0.2 to 50 µM and a low LOD of 0.16 µM. Furthermore, the
developed sensor was applied for the evaluation of RES levels in red wines and grape
skins with outstanding results. On the other hand, Liu et al. [187] synthesized a sensor
by one-step electrodeposition of rGO onto a GCE, which was compared with the bare GC
electrode. The increased surface of rGO strongly enhanced the sensitivity of the sensor due
to the π-π interaction between the rGO and RES. The response was linear in the range from
0.8 µM to 32 µM. Further, the electrode was stored at pH 2.0 and 4 ◦C for one month, and
it retained a 95.6% of the original interaction. This approach of measuring RES using a G
derivative is a cost-effective, eco-friendly, and effective technique.

On the other hand, RES has been used as a reducing agent for G derivatives. As
mentioned earlier, GO is generally reduced by chemical methods; however, it results in
limited solubility and an irreversible agglomeration of rGO due to the strong π–π stacking
tendency between graphene layers. For that reason, surfactants are used. Another option to
overcome this trouble is to employ a green reduction. In this regard, Gurunathan et al. [188]
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synthesized rGO from GO using RES [189]. Then, a RES-rGO complex was prepared to
study its effect against ovarian cancer, and it exhibited much more cytotoxicity than just
rGO, which is also known to decrease cell viability [190,191]. The incorporation of RES
causes a significant toxicity increment, inducing cell death by promoting ROS generation.

RES and G nanocomposites have also been used for the treatment of other diseases.
He et al. [192] used RES for its neuroprotective effect and GO, due to its properties and cost-
effectiveness, to develop a structure able to recognize amyloid β (Aβ), closely implicated
in Alzheimer’s disease. The Res@GO composite sensitively captured both Aβ monomers
and fibers because RES is able to specifically bind with Aβ. Further, the fluorescence of
RES was decreased with the GO addition via FRET. When Aβ was added, the fluorescence
was restored due to RES removal. This approach based on the interaction between Aβ

and the Res@GO complex was applied to detect an Alzheimer indicator via a quick and
cost-effective method.

4.5. Oleuropein and Hydroxytyrosol

Oleuropein (OL) is the ester of elenolic acid and HT and is one of the most significant
components of the olive leaf extract. A few studies on the development of electrochemical
sensors for OL and HT detection have been reported. Gomez et al. [193] developed a
novel method for OL detection in complex plant matrices based on a Graphene Oxide
Pencil Graphite Electrode (GOPGE). The electrochemical behavior of OL was examined
using DPV, showing a signal enhancement of 5.3 times higher than the bare electrode. A
calibration curve was performed between 0.10 to 37 µM, with a LOD of 30 nM. In another
study, Kurtulbas et al. [194] developed an easy, accurate and sensitive detection method to
determine OL using a TiOx-modified rGO glassy carbon electrode (TiOx-RGO@GCE). The
rGO was prepared using AA as a reducing agent, and the nanocomposite via sol-gel method
followed by drop-casting. CV and square wave voltammetry (SWV) experiments showed
that the quasi-reversible reaction is the dominant mechanism on the electrode/electrolyte
interface. A linear concentration range of 1–12µM was obtained with a LOD of 18.7 nM. The
same authors developed another TiO-rGO based electrode for OL detection, optimizing the
synthesis conditions (Figure 10), and a linear concentration range of 5–30 nM was obtained
with a LOD of 0.57 nM [195].
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On the other hand, HT can be typically found in olive mill wastewater. For this
reason, several studies have been reported on developing new methods for HT recovery.
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Sahin et al. [196] used GO synthesized by Hummer’s method as an adsorbent of HT.
Adsorption of this bioactive compound from aqueous media onto GO was found to be
>85% under optimum conditions. The pH of the adsorption medium was found to be a
very important parameter affecting HT recovery. Increasing the pH from 3 to 9 increased
the amount of adsorbed substance per GO from 0.55 to 89.46 mg. The same authors [197]
also investigated a method to recover oleuropein and hydroxytyrosol from olive leaves
and olive oil. For such purpose, a Zr-based metal-organic framework (UiO-66) and another
based on graphene nanoplatelets (GNP/UiO-66). The use of GNP has been found to be
more efficient than single-layer graphene, with excellent adsorption for organic pollutants
because of its large, delocalized π-electron system. The particle size of UiO-66 was about
0.28 µm, which increased to 0.71 µm upon the addition of the GNP. Results showed that
most of the hydroxytyrosol was removed from the solution, with an adsorption capacity of
142.07 mg per g UiO-66 nanoparticles at pH 10 in 180 min.

HT can also be used to reduce and stabilize GO. Baioun et al. [198] developed a green,
low-cost, effective, and scalable method using an olive leaf aqueous extract rich in HT. It
provided a high-efficiency removal of functional oxygen groups in the GO, generating
and stabilizing rGO, which exhibited good solubility in aqueous solutions and some
organic solvents.

4.6. Tocopherol

The determination of vitamin E has also been the aim of a few studies. Filik et al. [199]
designed a Nafion (NF)/ERGO-modified GCE electrode. This nanocomposite provided
excellent selectivity, sensitivity, stability, and reproducibility, and allowed the detection
of TOH in the concentration range of 0.5 to 90 µM with a LOD of 0.06 µM. The electrode
reaction of TOH is an irreversible process that takes place readily in the presence of water,
free from interferences of other compounds such as AA.

MIPs have been combined with ionic liquids (ILs) to fabricate a GO/QDs nanocom-
posite sensor for the selective detection of traces of vitamin E in real samples. ILs are
introduced on the GO surface by a one-pot room temperature synthesis strategy with
reverse microemulsion polymerization (Figure 11) since they provide surface binding
groups between GO and QDs, and also improve the fluorescence stability of GO due to
their high thermal and chemical stability [200]. The fluorescence intensity of MIP was
found to decrease with the increasing concentration of vitamin E in the range of 23–92 nM
with a LOD of 3.5 nM and high precision. FRET is a possible mechanism for fluorescence
quenching owing to no spectral overlap between the absorption spectrum of vitamin E and
the emission spectrum of MIP.
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4.7. Ascorbic Acid

Regarding AA determination, numerous methods have been reported in the litera-
ture; however, most of them present drawbacks such as high cost, operational complexity,
laborious sample treatments, and high waste generation. Therefore, novel approaches are
pursued. In particular, a few fluorescence sensors for AA determination have been reported.
For instance, Liu et al. [201] developed a photoluminescent glycine (GLY)- functionalized
GQDs by a simple and environmentally friendly pyrolysis method using ethylene gly-
col (EG) as a carbon source. The as-synthesized GLY-GQDs showed outstanding water
solubility with a fluorescence quantum yield of 21.7%. The fluorescence of GLY-GQDs
was quenched by Ce4+ via forming GLY-GQDs-Ce4+ non-luminescent complexes. Upon
addition of AA, the fluorescence was restored due to the reduction of Ce4+ to Ce3 +. Based
on this, a simple, fast, and inexpensive AA sensor was fabricated with a linear relationship
in the range of 0.03–17.0 µM and a LOD of 25 nM without interference from other molecules
such as uric acid dopamine, glutathione, and so on.

With regard to electrochemical methods, De Faria et al. [202] proposed a simple,
sensitive, and precise approach using Flow injection analysis (FIA) with amperometric
detection based on an rGO electrode prepared via simple dilution and drop-casting. The
FIA system allowed a high analytical frequency, approximately 96 injections per hour,
together with a linear concentration range of 65–253 µM and a LOD of 4.7 µM. Additionally,
Swamy et al. [203] fabricated a sensor by decorating the surface of graphite electrode
with NiO/G nanoparticles, which successfully separated the oxidation current signals of
AA, dopamine, and tyrosine compared to a single, overlapped oxidative peak on a bare
graphite electrode (Figure 12). The electrode has high selectivity and sensitivity (LOD of
50 µm) in addition to other factors like cost-effectiveness, convenience, and hassle-free
electrochemical performance.

1 
 

 
Figure 12. Cyclic voltammograms of (a) Bare graphite (b) Bare graphite with 5 mM ascorbic acid
(AA) (c) NiO/G electrode in 0.1 M phosphate-buffered saline (PBS), pH 7.0 (d) NiO/G with 5 mM
AA in 0.1 M buffer solution. Taken from Swamy et al. [203].

A very similar approach was applied by Kunpatee et al. [204], who used GQDs/IL-
modified screen-printed carbon electrodes (SPCE) to determine AA, dopamine, and uric
acid, which coexist in living systems. The GQDs/IL-SPCE exhibited excellent electrocat-
alytic activity for the oxidation of the three components in the mixture solution. Moreover,
the anodic peak responses of the three analytes were well resolved into defined peaks.
Under the optimal conditions, linear response for AA concentration was obtained in the
range of 25–400 µM, with a LOD of 6.64 µM. The sensor exhibited high sensitivity, cost-
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effectiveness and was successfully applied for the simultaneous detection of these analytes
in pharmaceutical products and biological samples. Analogously, Ji et al. [205] developed
a smartphone-based integrated voltammetry system based on SPCE modified with rGO
and electrochemically deposited. Experimental results corroborated that the system could
be used to detect the electrochemical activity of these biomolecules with high sensitivity,
linear and specific responses. Thus, AA was determined in the range of 20–375 µM, with a
LOD of 1.04 µM.

Fu et al. [206] also determined these three biomolecules using a G ink-coated glass
prepared via simple water immersing followed by electrochemical reaction. CV studies
revealed linear calibration curves in the range of 50–1000 µM, with a LOD of 17.8 µM.
This study corroborated that the elimination of additives of the G ink upon film coating
is a simple and cost-effective approach for sensor applications. Similarly, Shi et al. [207]
detected them using rGO/polydopamine (PDA)/AuNPs nanocomposites prepared via
reduction of GO nanosheets by PDA followed by mixing with the nanoparticles. The
modified nanomaterials showed a big surface area, as revealed by TEM images (Figure 13),
a high level of crystallinity according to X-Ray diffraction (XRD) analysis, exceptional
biocompatibility and outstanding conductivity that promoted the electrocatalytic oxidation
of the biocompounds, though the sensibility was not high. Thus, AA was only detected in
the linear range of 4.93–9.60 mM, with an LOD of 1.64 mM.
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Better sensitivity was attained by Li et al. [208], who developed a 3D nanocomposite
based on MoS2 nanospheres, polyaniline (PANI), and rGO via a one-pot hydrothermal
process. Thus, the peak currents obtained from DPV experiments varied linearly in the AA
concentration range from 50 µM to 8.0 mM, with a LOD of 22.2 µM. The MoS2/PANI/rGO-
based sensor exhibited high selectivity, reproducibility, good stability, and reliability for the
trace determination of these three biocompounds. Another nanocomposite incorporating
PANI was prepared by Salahandish et al. [209]. In particular, they synthesized a metal
nanoparticle (NP)-grafted N-doped functionalized G (NFG)/PANI nanocomposite on a
fluorine-doped tin oxide electrode (FTOE). The synthesis involved the coating of NFG
on the FTOE substrate, chronoamperometry of metal NPs on the NFG-coated FTOE, and
electropolymerization of PANI on AgNPs modified FTOE (Figure 14). A broad linear range
was found between 10–11,460 µM, with a LOD of 8 µM. Results demonstrate that this
nanocomposite is a suitable candidate for rapid, reproducible, and selective detection of
AA in clinical samples.
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Abraham et al. [210] developed a rGO/Pd-modified GCE to determine Epinephrine,
AA, and uric acid, biomolecules that co-exist in the extracellular fluid of the central nervous
system and serum. In this case, GO was synthesized via improved Hummer’s method and
subsequently subjected to solar exfoliation by exposure to solar rays, which resulted in
the formation of rGO. Then, it was suspended in methanol, drop cast on a GCE followed
by electrodeposition of Pd. The metal incorporation resulted in improved electrochemical
performance in terms of surface area and roughness. CV and DPV experiments were
repeated at intervals of one, three, and six days giving reproducible results with an RSD
of 2.4%. Thus, a linear range was attained from 300 to 1300 µM, with an LOD of 22 µM.
Besides, the influence of pH on the oxidation behaviour was investigated, and it was found
that the current increased to up a maximum at pH of 7. The sensor can be effectively used
in real systems such as human blood serum and urine.

A more sensitive, inexpensive and reliable sensor was prepared by Kucukkolbasi
et al. [211] based on a GO/CdTeQDs/GC electrode prepared via hydrothermal synthesis of
the CdTeQDs followed by drop casting. CV and EIS experiments revealed that the modified
electrode showed better performance than the bare GC one. The influence of pH buffer
concentration, deposition potential, deposition time, and the presence of electroactive
interferents on the response of the electrode was investigated. A linear response of the
modified electrode was obtained over the concentration range of 32.3–500.0 µM with a
LOD of 6.1 µM for AA.

The best sensitivity in the detection of AA has been reported by Chen et al. [212]
using three-dimensional holey graphene (3D-HG), a 3D porous network prepared via
wet-chemical etching with in-plane nanopores and a very large surface area that favors
electrochemically active sites and increases electron-transfer rate. This sensor showed
excellent properties for AA, uric acid, and nitrite detection using DPV, with a linear range of
3.2–0.2 µM and a LOD as low as 15 nM. Moreover, the applicability of the 3D-HG modified
electrode was tested in real samples, showing very good accuracy and recovery. All the
reported results corroborated that G-based materials are great candidates for the individual
or simultaneous detection of dopamine, AA, uric acid, or nitrite, with high potential for
future diagnosis. However, the real challenge still remains, that is, the development of an
economical, reliable, and practical sensor with high sensitivity and selectivity.
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On the other hand, several studies regarding the potential of AA as reducing agent
for rGO environmentally friendly synthesis have been published. The first study that used
AA for the non-toxic and scalable production of rGO was reported by Gao et al. [213], who
employed this antioxidant to compete with the six traditional methods to prepare graphene
from graphite oxide, in which toxic agents were used. L-AA was used as a reductant
together with L-tryptophan, which acted as a stabilizer to avoid the agglomeration and
precipitation of the resulting graphene sheets. AA reduces the reactive oxygen species
in water, leading to a stable and unreactive process that does not cause cellular damage.
Similarly, Fernández-Merino et al. [214] and Zhang et al. [215] developed novel green
methods that lead to comparable reduction yields to hydrazine. Stable suspensions of
AA-rGO can be prepared not only in water but also in common organic solvents; thus, this
bioactive compound represents an ideal substitute for hydrazine in large-scale production.
Another potential advantage of using AA as a reductant is that it is only composed of
carbon, oxygen, and hydrogen, therefore minimizing the risk of introducing heteroatoms
in the reduced products that were not present beforehand.

4.8. Curcumin

Electrochemical sensors have been used as worthy tools for the detection of CM
due to their simplicity, accuracy, high sensitivity and selectivity, and reasonable price.
Nevertheless, owing to the poor response of this compound, it is difficult to detect it
directly at the surfaces of bare electrodes. In this regard, different modifiers have been used
to solve this issue and to increase the sensitivity and selectivity of CM detection sensors.
Rahimnejad et al. [216] developed a sensitive and accurate sensor based on rGO/CPE
prepared via pulverization followed by drop-casting. Measurements via CV and DPV
indicated a linear concentration range of 10–6000 µM, with a LOD of 3.183 µM. A similar
approach was developed by Zhang et al. [217], who prepared a more sensitive voltammetric
method for CM determination using an electrochemically reduced graphene oxide (ERGO)-
modified GCE. The modified electrode showed much better electrocatalytic activity towards
CM compared with bare GCE and GO/GCE electrodes. A linear voltammetric response
was found from 0.2 µM to 60.0 µM, with a LOD of 0.1 µm. Similarly, Li et al. [218] prepared
a more sensitive, selective, and accurate G/GCE sensor, which was characterized via
CV, EIS, and linear sweep voltammetry (LSV). The currents measured by LSV displayed
presented a good linear relationship with CM concentrations in the range of 5.0 × 10−8 to
3.0 × 10−6 µM, with a low detection limit of 0.03 µM.

A comparative assessment of the potential of GO and rGO for electrochemical de-
termination of CM was undertaken by Dey et al. [219]. GCE modified with these two
nanomaterials was characterized using SEM, XRD, FTIR, and Raman techniques to un-
derstand their morphology and structure. rGO/GCE showed a lower limit detection of
0.9 pM and good signal quality. Further, the repeatability was checked for seven cycles, and
interference studies corroborated the selectivity of the method. Even better sensibility was
found by Kotan et al. [220], who synthesized L-cysteine functionalized rGO composites
were prepared via activation of the carboxylic groups of rGO with ethylcarbodiimidehy-
drochloride (EDC) (Figure 15) followed by mixing with the Ru@AuNPs and ultrasonication
and then drop-cast onto a GCE using an IR heat lamp. The electrochemical determination
was studied using SWV with a linearity range of 0.001–0.1 nM and an unprecedented LOD
of 0.2 pM.
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On the other hand, other studies have been reported on the development of G/CM
hybrids with antibacterial activity. Marković et al. [221] presented a G/CM nanomesh
with antibacterial activity against Gram-positive bacteria like Staphylococcus aureus, with a
minimum inhibitory concentration (MIC) of 1 mg mL−1. It was found that its cytotoxicity
was concentration-dependent. At concentrations higher than 100 mg mL−1 some slight
cytotoxic effects were observed. In this work, G was exfoliated from highly oriented
pyrolytic graphite (HOPG) through an electrochemical exfoliation process with ammonium
persulfate as an electrolyte, leading to CM/EHOPG nanomesh hybrids. Similarly, Bugli
et al. [222] and Palmieri et al. [223] presented a method using Cm and Go to kill methicillin-
resistant Staphylococcus aureus (MRSA).

Conversely, Yang et al. [224] developed a β-cyclodextrin (CD) functionalized GO
nanocomposite, which displayed excellent antiviral activity and could load curcumin
efficiently. Their aim was to find a new strategy to treat respiratory syncytial virus (RSV).
Other researchers have employed CM to help in antitumoral treatments. Thus, Hatamie
et al. [225] combined CM with rGO sheets, linked by π–π attachment, and studied its
effects on human breast cancer cell lines and a normal cell line. Curcumin was utilized for
simultaneous reduction of chemically exfoliated GO sheets and functionalization of the
rGO ones. The interaction of the rGO sheets and cells resulted in apoptosis as well as a
morphological transformation of the cells; thus, it could be used for nanotechnology-based
bioapplications against cancer.

The most representative examples reported to date on optical and electrochemical
sensors based on graphene and its derivatives for the detection of bioactive compounds
are collected in Table 2.

Overall, G-based nanomaterials with high specific surface area, excellent electrical
conductivity, good stability, and unique mechanical properties have been found to have
enormous potential for the determination of bioactive compounds. Compared to other
carbon-based nanomaterials, they can provide more active sites, increase the electrochemi-
cal active surface area, improve the mass transport rate, and accelerate the electron transfer
rate; hence, better and more reliable results have been obtained.
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Table 2. Characteristics of graphene-based sensors for the detection of bioactive compounds.

Bioactive
Compound

Carbon
Nanomaterial Processing Method Detection

Method Linear Range LOD Properties Ref.

Melatonin
(MLT)

GO@SiO2
nanocomposite

Modified Hummers´ +
Sol-gel with PTEOS and
TMOS

dsPE + HPLC
with DAD - <0.1 µg/mL Cost-effective, simple,

selective and sensitive. [159]

G-CSPE G Sonication +
Drop-casting CV and FPA - 0.87 µM Good sensitivity,

reversibility, Ic/Ia ≈ 1. [160]

CVD G-CSPE G Suspension +
Drop-casting DPV - 15 µg/L

Good sensitivity,
reproducibility, versatility,
better results than the
electrode without G

[161]

GON-CSPE
GRN-CSPE

Longitudinal unzipping
+ hydrazine reduction +
ultrasonication +
drop-casting

CV and DPV - 1.1 µM
Good reproducibility
and response time,
recovery of 94%–103%.

[162]

rGO/MIP

Modified Hummers´ +
hydrazine reduction +
rGO Suspension +
Drop-casting +
electropolymerization.

CV and SWV 0.05–100 µM 6 nM Stable and highly sensible. [163]

rGO/Fe3O4

Modified Hummers´ +
hydrazine reduction +
hydrothermal growth

SWV 0.02–5.80 µM 8.4 nM

Good selectivity,
repeatability,
reproducibility, and
biocompatibility.

[164]

rGO/SnO2-
Co3O4
nanocomposite

Modified Hummers´ +
SnO2 reduction +
hydrothermal growth

CV and SWV 0.02–6.00 µM 4.1 nM

Good sensitivity,
selectivity, stability, and
repeatability;
cost-effective and simple
fabrication.

[165]

N-
rGO/CuCo2O4
nanocomposite

Modified Hummers´ +
hydrazine reduction +
solvothermal method

DPV and SWV 0.01–3.0 µM 4.9 nM
Enhanced selectivity,
sensitivity, and
biocompatibility.

[166]

CVD
G/CuO-PLL
nanocomposite

CVD growth +
electrochemical
deposition

CV and SWV 0.016–110 µM 12 nM Good sensitivity and
biocompatibility. [167]

rGO Modified Hummers´ +
MLT reduction CV - - Simple, reproducible and

biocompatible. [168]

Gallic acid (GA)

NPGA
hydrothermal reduction
of GO with PPD +
freeze-drying

DPV and SWV 2.5–1000 µM 67 nM
Large specific surface area
and excellent electrical
conductivity.

[170]

G/ZrO2
Hydrothermal growth +
physical mixing DPV and SWV 1µM–1 mM 124 nM

High surface area, good
biocompatibility, and
electrical conductivity.

[171]

rGO/ZrO2/Co3O4

Modified Hummers´ +
hydrazine reduction +
ultrasonication + drop
casting

CV and DPV 6.2–478 nM 1.56 nM

Good sensitivity,
selectivity, reproducibility,
and stability vs.
interferences.

[172]

MWCNT/rGO
nanocomposite

Drop-casting + UV
reduction CV and EIS 29–329 pM 2.57 pM

Excellent sensibility,
reproducibility, and
long-term stability.

[173]

CS/Fe2O3/ERGO
nanocomposite

Solvothermal synthesis
of Fe2O3 +
ultrasonicaction + drop
casting electrochemical
reduction

DPV and EIS 1–100 µM 0.15 µM

Large surface area,
excellent electronic
conductivity, and high
stability.

[174]

PANI–rGO–TiO2

Solvothermal synthesis
of TiO2 + aniline
polymerization +
mixing +
ultrasonication

CV and PC 4.17–250 µM 1.72 µM
Rapid response, high
sensitivity, and excellent
selectivity.

[175]

GQDs Pyrolysis of citric acid LLE +
Fluorescence 5–40 mg/L 1.08 mg/L

Simple, sensitive, and
reproducible. Fast
response.

[176]

Tannic acid (TA)
GQDs Pyrolysis of Citric Acid UV-Vis and

Fluorescence 0.1–1 µM 0.26 nM Good selectivity and
applicability. [179]

Zn-G Electrolysis of graphite
rods DPV 2–60 ppb 3.13 ppb Sustainable and

cost-effective. [180]

Resveratrol
(RSV or RES)

CX6@RGO Ultrasonication +
mixing+ freeze drying.

UV-Vis and
Fluorescence 2–40 µM 0.47 µM Fast, simple, sensitive and

selective. [185]

Porous G

Laser-induced
conversion of
Kapton/PI tape into 3D
porous G

DPV 0.2–50 µM 0.16 µM
Excellent repeatability,
stability, reproducibility,
and reliability.

[186]

rGO-GCE
Sonication +
electrochemical
deposition

CV and DPV 0.8–32 µM 0.2 µM
Long-term stability;
low-cost, eco-friendly, and
effective.

[187]
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Table 2. Cont.

Bioactive
Compound

Carbon
Nanomaterial Processing Method Detection

Method Linear Range LOD Properties Ref.

Oleuropein (OL)
and
Hydroxytyrosol
(HT)

GOPGE Sonication + drop
casting DPV 0.10–37 µM 30 nM Good sensitivity and

selectivity. [193]

TiOx-RGO@GCE
Hummer´s + reduction
with AA + sol gel +
drop casting

CV and SWV 1–12 µM 18.7 nM Good sensitivity, simple
and accurate. [194]

TiO-rGO
Hummer´s + reduction
with AA + sol gel +
drop casting

CV and SWV 5–30 µM 0.57 nM Good sensitivity and
selectivity. [195]

GONs
Ultrasonication +
unzipping of MWCNTs
+ drop casting

CV, EIS, and
DPV - - Excellent performance

and is fast. [226]

Tocopherol
(TOH)

NF/ERGO/GCE
ultrasonicaction + drop
casting electrochemical
reduction

DPV 0.5–90 µM 0.06 µM

Excellent selectivity,
sensitivity, and
reproducibility. Fast and
cost-effective.

[199]

ILs/MIP/GO/QDs one-step
polymerization Fluorescence 23–92 nM 3.5 nM Excellent photochemical

stability and sensitivity. [200]

Ascorbic acid
(AA)

GLY-GQDs pyrolysis with EG Fluorescence 0.03–17.0 µM 25 nM High sensitivity and
selectivity. [201]

rGO Dilution + drop casting
FIA with
amperometric
detection

65–253 µM 4.7 µM Simple, sensitive and
accurate, and precise. [202]

NiO/G

Coprecipitation
synthesis of NiO +
ultrasonication + drop
casting

CV and DPV+
chronoamperom-
etry

- 50 µM

Good selectivity and
sensitivity, and
cost-effective, easy to
handle.

[203]

GQDs/IL-SPCE Pyrolysis of Citric Acid
+ drop casting CV and EIS 25–400 µM 6.64 µM

High sensitivity and
conductivity, good
biocompatibility,
cost-effective.

[204]

rGO/AuNPs/SPE
G suspension + mixing
electrochemical
deposition

CV and DPV 20–375 µM 1.04 µM High selectivity and
sensitivity. [205]

Graphene ink
coated glass

Water immersion +
electrochemical reaction CV 50–1000 µM 17.8 µM Simple and cost-effective. [206]

rGO/PDA/AuNPs GO reduction by PDA +
mixing CV + EIS 4.93–9.60 mM 1.64 mM Good biocompatibility

and conductivity. [207]

MoS2-
PANI/rGO

one-pot hydrothermal
synthesis + drop casting CV and DPV 8 mM–50 µM 22.2 µM

High selectivity, good
reproducibility, and
stability.

[208]

NFG/AgNPs/PANI
NFG coating on FTOE +
electropolymerization
of PANI

CV 10–11460 µM 8 µM Good reproducibility and
excellent selectivity. [209]

GCE/Pd/rGO Sonication +
electrodeposition CV, DPV, and EIS 0.3–1.3 mM 22 µM Fast response, good

selectivity. [210]

GCE/GO/CdTeQDs Hydrothermal synthesis
+ drop casting CV + EIS 32.3–500 µM 6.1 µM Inexpensive, reliable, and

sensitive. [211]

3D-HG/GCE Wet-chemical etching +
drop casting DPV 0.2 µM–3.2

mM 15 nM
High sensitivity and
selectivity, excellent
electrocatalytic activity.

[212]

Curcumin

rGO/CPE Pulverization + drop
casting CV and DPV 10–6000 µM 3.18 µM

Good replicability
catalytic activity, and
storage stability.

[216]

ERGO/GCE
Electrochemical
reduction + drop
casting

CV 0.2 µM–60 µM 0.1 µM Good replicability and
catalytic activity. [217]

G/GCE Drop casting CV, EIS 0.05–3.0 µM 0.03 µM High selectivity and
accuracy. [218]

rGO/GCE Drop casting CV, DPV 0.1 nM–10 nM 0.9 pM Exceptional sensibility. [219]

NSrGO/Ru@
AuNPs

L-cysteine
functionalization+
Ru@AuNPs grafting

SWV 0.001–0.1 nM 0.2 pM Exceptional sensibility. [220]

Phenyl triethoxysilane (PTEOS); Tetramethoxysilane (TMOS); Dispersive solid-phase extraction (dSPE); Graphene-coated carbon screen-
printed electrode (G-CSPE); Cyclic voltammetry (CV); Fixed-potential amperometry (FPA); Current of anodic peak (Ia); Current of cathodic
peak (Ic); Differential pulse voltammetry (DPV); Molecular imprinted polymer (MIP); Square wave voltammetry (SWV); Nitrogen doped
reduced graphene oxide (N-rGO); poly(L-lysine) (PLL); Graphene oxide nanoribbons (GON); Graphene reduced nanoribbons (GRN); Diode
Array Detection (DAD); Nitrogen-doped porous graphene aerogel (NPGA); p-phenylenediamine (PPD); Chitosan (CS); Electrochemically
reduced graphene oxide (ERGO); Photocurrent measurements (PC); Graphene Quantum Dots (GQDs); p-sulfonated calix[6]arene (CX6);
Nafion (NF); Polydopamine (PDA); Polyaniline (PANI); Nitrogen-doped functionalized graphene (NFG); Three dimensional holey graphene
(3D-HG); fluorine-doped tin oxide electrode (FTOE); Flow injection analysis (FIA).
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5. Outlook and Future Prospects

Over the last years, G and its derivatives have shown huge potential in the field of
optical and electrochemical sensors. Owed to their exceptional electrical, chemical, and me-
chanical properties, G-based nanomaterials have already been used as sensors for detecting
a wide range of analytes, including bioactive compounds, which are essential for human
health owing to their multiple biological effects, including antioxidant activity. These sen-
sors display outstanding performance compared to those based on conventional materials
in terms of sensitivity, selectivity, response time, and long-term stability. In particular,
it is possible to detect picomolar concentrations using electrochemical sensors based on
MWCNT/rGO nanocomposites or L-cysteine functionalized-rGO/GCE. Currently, despite
the benefits of optical detection, including high selectivity, immunity to electromagnetic
interference, and a wide dynamic range, very few optical sensors have been designed for
the detection of bioactive compounds. Covalent and non-covalent functionalization of
G-based nanomaterials with organic or inorganic systems (i.e., polymers, nanoparticles)
offer novel means for the development of the next generation of G-based sensors. How-
ever, despite most of the developed sensors represent an important proof-of-concept, the
full potential of G-based sensors is far from being reached, and several issues have to be
addressed prior to the commercial use of G-based nanocomposites:

(1) New manufacturing/fabrication routed to prepare high-quality G with tailored
morphology, and electronic properties are required since the performance of G-based
sensors is closely related to the nanomaterial characteristics, namely, purity, defect content,
degree of functionalization, and structural morphology. From a practical perspective,
novel technologies to produce sensors with reproducible and repeatable characteristics
are needed. Thus, improvements in manufacturing to diminish variations among sensors
and yield consistent performance, novel sensor designs, and operating modes are required.
Likewise, more work on integrating signal conditioning and processing electronics to
minimize performance variations, improve selectivity and operating lifetime would be
valuable for practical applications.

(2) The functionalization and ultrasonication processes applied to G prior to and
during the sensor fabrication may result in a strong reduction in electrical conductivity.
Hence, G-based nanocomposites might present electrical properties that do not satisfy the
requirements for sensor applications.

(3) Approaches that allow the large-scale synthesis of G at a relatively low cost are
highly desirable. Despite significant efforts having been carried out in this direction, current
methods are seriously restricted by their low efficiencies, which should be addressed for
commercial applications. To the best of our knowledge, a reliable method able to supply
the huge demand for pristine GO (or rGO) via an environmentally friendly approach, with
a short-sonication time, viable washing steps, and high yield is still lacking.

(4) The actual specific surface area of G-based nanomaterials is considerably lower
than the theoretical predictions due to the strong agglomeration tendency of the nanosheets
via π-π stacking interactions and the mixing with organic molecules can make it worsen.
While some achievements have been attained via the addition of stabilizers, these can have
detrimental effects on sensor performance. In this regard, novel approaches to efficiently
exfoliate the G sheets and in a green way are pursued.

(5) The toxicity of G-based nanomaterials is not clear yet. Despite considerable
efforts in evaluating the potential impact of these nanomaterials on human health and
the environment, results are frequently contradictory. They might cause cytotoxicity in
humans, and this issue should be clarified. It is important to highlight that “graphene”
is not a single nanomaterial but a group of materials, which accounts for the fact that
their biological effects may vary depending on their intrinsic properties. A number of
parameters, including processing method, lateral dimensions, level of functionalization,
defect content, etc., can strongly influence the toxicity of these nanomaterials. Furthermore,
their biodegradation mechanisms and extent remain unclear. The number of graphene
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layers, the average lateral dimension, and the atomic C/O ratio can play a key role in their
biodegradability.

Overall, the development and widespread usage of G-based nanomaterials are largely
hindered by the lack of techniques to provide simple, reproducible, and cost-effective
sensors at a large scale. The research in this field is still in its infancy. More work is needed
to ensure that the sensors are reliable, robust, and have non-toxic and easy manufactura-
bility in a cost-competitive manner. Cost should be reduced in order to attain economic
production of these nanomaterials with defined structures and properties at a large scale.
In addition, a better understanding of G interactions with the bioactive compounds and
the detection (or signal transduction) mechanisms are critical. Moreover, issues related to
biodegradation and biocompatibility must be carefully considered, and challenges includ-
ing device minimization, integration, durability, and lifetime should be addressed. Even
so, it is expected that after comprehensive research in the field and continuous innovative
efforts, sensors incorporating G-based nanomaterials could offer a new outlook for the
detection of a variety of analytes, in particular bioactive compounds. This can be achieved
with the collaborations between different disciplines and technologies.

6. Conclusions

In this review, the potential of G-based nanomaterials, namely GO, rGO, and GQDs,
for sensing applications, in particular for bioactive compounds with antioxidant properties
such as melatonin, gallic acid, tannic acid, resveratrol, hydroxytyrosol, tocopherol, ascorbic
acid, and curcumin has been discussed in detail. The synthesis process, functionalization
routes, and main properties have been summarized, with particular emphasis on their sen-
sitivity and selectivity. The use of carbon nanomaterials has been demonstrated to be really
useful to detect antioxidants through an easy, fast, and green technique, leading to better
performance than sensors based on conventional materials. Moreover, the combination
between these carbon nanostructures and the antioxidants has opened new properties and
applications owed to synergistic effects. Besides, these antioxidants can be used to reduce
GO via inexpensive and environmentally friendly methods. Finally, the future outlook for
the development of G-based sensors for this type of biocompounds has been outlined. The
extensive research progress in nanotechnology for graphene nanomaterials will enable the
development of highly sensitive, specific, and green nanosensors at an affordable cost.
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