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Abstract: Genomic selection (GS) is a strategy to predict the genetic merits of individuals using
genome-wide markers. However, GS prediction accuracy is affected by many factors, including
missing rate and minor allele frequency (MAF) of genotypic data, GS models, trait features, etc.
In this study, we used one wheat population to investigate prediction accuracies of various GS
models on yield and yield-related traits from various quality control (QC) scenarios, missing genotype
imputation, and genome-wide association studies (GWAS)-derived markers. Missing rate and MAF
of single nucleotide polymorphism (SNP) markers were two major factors in QC. Five missing rate
levels (0%, 20%, 40%, 60%, and 80%) and three MAF levels (0%, 5%, and 10%) were considered and
the five-fold cross validation was used to estimate the prediction accuracy. The results indicated that a
moderate missing rate level (20% to 40%) and MAF (5%) threshold provided better prediction accuracy.
Under this QC scenario, prediction accuracies were further calculated for imputed and GWAS-derived
markers. It was observed that the accuracies of the six traits were related to their heritability and
genetic architecture, as well as the GS prediction model. Moore–Penrose generalized inverse (GenInv),
ridge regression (RidgeReg), and random forest (RForest) resulted in higher prediction accuracies
than other GS models across traits. Imputation of missing genotypic data had marginal effect on
prediction accuracy, while GWAS-derived markers improved the prediction accuracy in most cases.
These results demonstrate that QC on missing rate and MAF had positive impact on the predictability
of GS models. We failed to identify one single combination of QC scenarios that could outperform
the others for all traits and GS models. However, the balance between marker number and marker
quality is important for the deployment of GS in wheat breeding. GWAS is able to select markers
which are mostly related to traits, and therefore can be used to improve the prediction accuracy of GS.
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1. Introduction

Wheat (Triticum aestivum L.) is one of the major cultivated crops that is growing on approximately
200 million hectares worldwide and delivers one fifth of the total caloric demands of the global
population [1]. The increasing population and climate fluctuations impose new breeding challenges
and require wheat breeders to use more efficient selection methods to develop high-yield cultivars
with multiple resistances and wide adaptations [2]. Improvement of grain yield is still a considerable
challenge to wheat breeding and production. Hence, modern wheat breeding approaches, such as
the combination of accurate or suitable experimental designs, multiyear and multilocation trials,
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the application of concepts of quantitative and population genetics, and the integration of various
disciplines such as computer science, statistics, and mathematics have been utilized widely in the last
decade [3].

Recent advancements in high-throughput sequencing platforms have generated genome-wide
dense molecular markers for genetic analysis in wheat [4]. Genomic selection (GS) is a special type of
marker-assisted selection that incorporates genome-wide dense markers, as proposed by Meuwissen
et al. [5]. GS could be a powerful tool in crop breeding to improve the prediction and selection
accuracy for quantitative traits [6]. GS utilizes one or more training populations (TP) that have been
genotyped and phenotyped to calibrate or train a statistical model. Then, the trained model is used
to predict genomic estimated breeding values (GEBVs) in a validating population (VP), which is
only genotyped. Superior parents for the next breeding cycle are selected based on the GEBV and
consequently reduce the generation interval. Generally, the number of markers used for training the
statistical model is far larger than the number of observations. Whole-genome regression methods
based on ordinary least squares cannot estimate all marker effects simultaneously due to insufficient
degrees of freedom. To address this issue, various classical statistical, Bayesian, and machine learning
methods have been proposed for predicting the genetic merits of individuals [7]. These methods differ
from each other mainly by a range of assumptions in the estimation of breeding values and variances
in quantitative traits and computational complexity [2,7]. Among the parametric models, ridge
regression (RidgeReg), ridge regression best linear unbiased predictions (RRBLUP), and genomic-BLUP
(GBLUP) assume the normal distribution of marker effects with equal variance [7]. Least absolute
shrinkage and selection operator (LASSO), Bayes A, and weighted Bayesian shrinkage regression
or nonlinear regression assume the prior distribution of marker effects with a high probability and
moderate to large effects, while Bayes B and Bayes Cπ assume some marker effects to be zero [7].
Nonparametric or semiparametric models, such as random forest (RForest), reproducing kernel Hilbert
space (RKHS), and neural network approaches, have also been applied in GS [6,8,9]. Nonparametric
models, such as RForest and RKHS, are capable of capturing non-additive effects and complex and
nonexplicit interactions [2,9]. Previous efforts to compare the predictive ability of various GS models
in wheat showed the good performances of RF and RKHS for traits of interest, but no single GS model
outperformed the other models in all cases [9,10].

The efficiency of GS is always expressed by prediction accuracy, i.e., the correlation coefficient
between observed phenotypic values and predicted GEBVs in VP. Previous studies have indicated
that many factors are interrelated in a comprehensive manner [7,11], such as the genetic architecture
of traits [11,12], heritability, population structure [13], type of statistical models, i.e., parametric
and nonparametric models [9], cross-validation strategies [12], training population size and
composition [12,13], marker density [6,13], and linkage disequilibrium (LD) between markers and
QTL. Recent studies in animal and plant breeding have demonstrated that quality control (QC) on
markers can improve the prediction accuracy of GS [14,15]. However, studies on the effect of missing
rate and minor allele frequency (MAF) QC on the prediction accuracy of yield and yield-related traits
are limited in wheat.

GS holds potential for the genetic improvement of qualitative and quantitative traits and has been
widely used in wheat breeding to predict various traits, such as grain yield [12], test weight, heading
time [10,12], disease resistance [16], end-use quality [17], iron and zinc contents [18], and physiological
traits [19]. In addition, some studies have described the practical applications of GS in wheat breeding,
such as cultivar development [20], cross prediction [21], and heterosis [22]. In this study, a wheat
training population was developed from 166 elite wheat cultivars collected mainly from China.
More than 80% of the cultivars (144) were collected from the Yellow and Huai River valley of China,
which is one of the most important agricultural regions of wheat production in China and has an area
of approximately 15 million hectares [23]. The main objectives of this study were (1) to evaluate the
performance of seven GS models in predicting yield and yield-related traits in this wheat population,
(2) to assess the effects of missing rate and MAF QC on the prediction accuracy of GS models, (3) to
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evaluate the effect of genotype imputation and genome-wide association studies (GWAS)-derived
markers on prediction accuracy of GS.

2. Results

2.1. Phenotypic Evaluation

The descriptive statistics of grain yield (GY) and yield-related traits, i.e., spike number per square
meter (SN), thousand-kernel weight (TKW), spike length (SL), heading days (HD), and plant height
(PH) of the 166 wheat accessions in different environments (locations in cropping seasons) are shown
in Table S1. The average values in each environment ranged from 6320.25 to 9318.19 kg per hectare
(kg·ha−1) for GY, 534 to 693 for SN, 39.38 to 49.82 g for TKW, 8.83 to 9.64 cm for SL, 184 to 199 days
for HD, and 77.60 to 91.52 cm for PH (Table S1). Overall, the averages of BLUE values for GY, SN,
TKW, SL, HD, and PH across all environments were 7268.81 kg·ha−1, 605, 43.17 g, 9.15 cm, 187 days,
and 83.36 cm, respectively (Table S1). High heritability was observed for all traits in all environments
and ranged from 0.70 (for SL) to 1 (for HD). The difference in heritability among traits reflected the
contribution of the environment to variations across locations and years (Table S1).

The Pearson’s correlation coefficient (r) between traits ranged from −0.45 to 0.39 (Figure 1). Under
the significance level of 0.001, GY had the highest positive correlation with TKW (r = 0.39) and lowest
negative correlation with PH (r = −0.45, Figure 1). SN was negatively correlated with TKW (r = −0.38)
but positively correlated with PH (r = 0.27). TKW was negatively correlated with HD (r = −0.25).
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Figure 1. Pearson’s correlation matrix among yield and yield-related traits based on their best linear
unbiased estimates (BLUE). The upper corner represents the correlation coefficient, with the significance
level indicated by asterisks. Three symbols (“*” and “***”) correspond to three p-values (0.05 and
0.001, respectively). The lower corner contains bivariate scatter plots with fitted lines. The diagonally
arranged plots show the phenotypic distribution of traits based on BLUE values. GY, indicates grain
yield; SN, spike number per square meter; TKW, thousand-kernel weight; SL, spike length; HD, heading
days; PH, plant height.

From ANOVA across environments, the genotype, block, environment, and
genotype-by-environment interaction effects were all significant at a level of 0.001. For TKW, SL,
and PH, the variance of environment and genotype-by-environment interaction was lower than the
genotypic variance (Table 1). Environmental variance was the highest for HD, and the variance of the
genotype-by-environment interaction was the largest for GY. Plot-level heritability was high for PH
(0.85), HD (0.81), and TKW (0.77) but was relatively low for GY (0.42) (Table 1).
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Table 1. Variance components and heritability of yield and yield-related traits in 166 wheat accessions.

Trait 1
Variance Components (%) Heritability 3

Genotype Environment G by E
Interaction 2

Random
Error Plot Level Genotypic

Mean Level

GY 12.12 43.00 39.39 5.50 0.42 0.85
SN 34.32 24.11 36.19 5.39 0.69 0.92

TKW 41.38 27.68 23.76 7.18 0.77 0.97
SL 42.94 8.24 34.71 14.12 0.67 0.96
HD 12.64 79.29 7.26 0.81 0.81 0.97
PH 60.19 11.97 23.09 4.75 0.85 0.98
1 GY, grain yield; SN, spike number per square meter; TKW, thousand-kernel weight; SL, spike length; HD, heading
days; PH, plant height. 2 G by E; genotype-by-environment. 3 Heritability was estimated from analysis of variance
across environments.

2.2. Marker Coverage, Genetic Diversity, and Linkage Disequilibrium Analysis

A total of 11,997 SNPs from 90 K of genotypic data were chosen to create two QC scenarios that
were used for genomic prediction. In the first scenario, five subsets of markers were generated by
removing markers with missing rate values above or equal to different thresholds (0%, 20%, 40%, 60%,
and 80%). In the second scenario, three subsets of markers were generated by removing markers
with MAF levels under or equal to different thresholds (0%, 5%, and 10%) for each missing level.
The number of SNPs decreased significantly after the application of missing rate and MAF QC (Table 2).
The distribution of these markers on the 21 wheat chromosomes is shown in Table S2. Markers were
unevenly distributed along chromosomes. Generally, for the MAF level of 0%, the B genome had more
markers than the A genome, and the A genome had more markers than the D genome; for the other
MAF levels, the A genome had the most markers, and the D genome had the least markers (Table S2).
The estimated polymorphic information content (PIC) values ranged from 0.005 to 0.702 across wheat
accessions, with an average value of 0.13, whereas the genetic diversity (GD) ranged from 0.006 to
0.749, with a mean value of 0.149 (Figure S1).

Table 2. Number of markers used for genomic predictions under five missing rate levels (i.e., 0%, <20%,
<40%, <60%, and <80%) and three minor allele frequency (MAF) levels (i.e., >0%, >5%, and >10%).

Missing Rate (%) MAF (%)

0 1 5 10

0 2 1442 259 181
20 8674 5343 4368
40 9851 5513 4494
60 10818 5635 4596
80 11997 5725 4675

1 MAF greater than zero. In other words, this QC scenario actually only removed non-polymorphism markers in
the population, and therefore the remaining markers were polymorphic after this control. 2 Markers contained no
missing values.

In total, 9851 SNPs with missing rate levels <40% were used to evaluate LD decay across the
whole genome. The average r2 was 0.065 in the whole genome, and the average LD decay distances for
10, 100, and 10,000 Mb were estimated to be 0.38, 0.28, and 0.14, respectively. The scatter plot between
r2 and physical distance (Mb) showed that LD decreased with increasing physical distance (Figure S2).

2.3. Prediction Accuracy of Different GS Models under Different Missing Rate and MAF Levels

Seven GS models were evaluated in this study. The prediction accuracies of the GS models ranged
from 0.026 (PH) to 0.682 (TKW) and varied significantly among the six traits, five missing rate levels,
and three MAF levels (Figure 2). Overall, QC for the missing rate and MAF improved the prediction
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accuracy, irrespective of traits and GS models (Figure 2). The prediction accuracy under a missing rate
level of 0% was always the lowest for all traits as compared with other missing rate levels, and the
prediction accuracy under the MAF level of 10% was the lowest for most traits as compared with other
MAF levels. Steep slope was observed between prediction accuracies for missing rate levels of 0% and
20%. The major reason could be the significant difference of marker number between the two levels
(Table 2). Stringent QC resulted in insufficient genome coverage and poor accuracy as well. However,
prediction accuracy did not steadily increase with missing rate level (0% to 80%) and MAF level (0% to
10%). To find the best missing rate level, prediction accuracy under each missing rate was averaged
across the seven GS models and three MAF levels for each trait. Considering the top three accuracies
for each trait, missing rate levels 0%, 20% 40%, 60%, and 80% achieved the top accuracy for 0, 5, 5,
4, and 4 times, respectively, which indicated that, 20% to 40% was a suitable level for missing rate
QC. Similarly, to find the best MAF level, prediction accuracy under each MAF level was averaged
across the seven GS models and five missing rates for each trait (results not shown here). Considering
the top two accuracies for each trait, MAF level 0%, 5%, and 10% achieved the top accuracy for 4, 5,
and 3 times, respectively, which indicated that, 5% was a suitable level for MAF QC. In conclusion,
missing rate levels of 20% to 40% and MAF level of 5% led to a suitable marker number and good or
comparable prediction accuracies for all traits.
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Figure 2. Genomic prediction accuracy of seven genomic selection (GS) models for yield and
yield-related traits with five missing rates (columns) and three minor allele frequencies (MAFs) (rows).
0% MAF, represents markers with MAF greater than 0; GY, indicates grain yield; SN, spike number per
square meter; TKW, thousand-kernel weight; SL, spike length; HD, heading days; PH, plant height.

Prediction accuracy for the six traits and seven GS models with non-QC or QC to keep the missing
rate levels <40% and MAF values >5% are shown in Table 3. The prediction accuracies for SN, SL,
HD, and PH with QC were consistently higher than those with non-QC for all GS models, except
LASSO for SN, RRBLUP for HD, and BLUP and RRBLUP for PH. The improvement was not significant
for GY and TKW, except that LASSO for GY (Table 3). In this QC scenario, independent of the GS
models, moderate prediction accuracies were observed for all traits (Table 3). The average prediction
accuracy of GY, SN, TKW, SL, HD, and PH across all GS models was 0.522, 0.480, 0.601, 0.380, 0.350,
and 0.572, which was partially related to trait heritability. For example, TKW and PH had a high
heritability and high prediction accuracy, and SN and SL had a low heritability and low accuracy.
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However, GY had a low heritability but moderately high accuracy and HD had a high heritability
but low accuracy. The possible reason could be the different genetic architectures of traits. For GY,
variance of environment and genotype-by-environment interaction were similar, which were higher
than genotypic variance, but for HD, environmental variance was much higher than the other two
variances. The best models for GY, SN, TKW, SL, HD, and PH were LASSO, RForest, Moore–Penrose
generalized inverse (GenInv), RidgeReg, GenInv (and also RidgeReg), and RidgeReg, respectively
(Table 3). The average prediction accuracy of the seven GS models across the six traits was 0.489,
0.486, 0.512, 0.425, 0.494, 0.510, and 0.473, respectively. GenInv had the highest accuracy, followed
by RidgeReg, RForest, BLUP, GBLUP, RRBLUP, and LASSO. Considering the top three accuracies for
each trait, BLUP, GBLUP, GenInv, LASSO, RForest, RidgeReg, and RRBLUP achieved the top accuracy
for 1, 2, 4, 1, 3, 5, and 2 times, respectively, which indicated that GenInv, RForest, and RidgeReg were
relatively better among the seven models. In summary, independent of the GS models, moderate
prediction accuracies were observed for all traits, and GenInv, RidgeReg, and RForest had a better
performance than the other GS models for most traits (Table 3).

Table 3. Prediction accuracy with marker quality control (QC) or non-QC for six traits and seven
genomic selection (GS) models. The QC to keep markers with missing rate levels <40% and minor
allele frequency (MAF) >5% was used as an example.

Trait 1 Scenario
Genomic Selection Model 2

BLUP GBLUP GenInv LASSO RForest RidgeReg RRBLUP Mean

GY
QC 0.531

(0.027) 3
0.458

(0.033)
0.503

(0.029)
0.589 5

(0.022)
0.547

(0.028)
0.495

(0.030)
0.534

(0.027)
0.522

(0.016)

Non-QC 4 0.545
(0.030)

0.461
(0.035)

0.506
(0.033)

0.454
(0.029)

0.535
(0.028)

0.506
(0.033)

0.545
(0.030)

0.507
(0.014)

p-value 0.3687 0.3892 0.3926 0.0001 0.3688 0.4662 0.3994 0.248

SN
QC 0.491

(0.026)
0.484

(0.025)
0.496

(0.025)
0.383

(0.030)
0.521

(0.027)
0.494

(0.025)
0.488

(0.026)
0.480

(0.017)

Non-QC 0.462
(0.030)

0.383
(0.034)

0.335
(0.035)

0.444
(0.033)

0.434
(0.031)

0.335
(0.035)

0.463
(0.031)

0.408
(0.021)

p-value 0.2447 0.0096 0.0002 0.0816 0.018 0.0002 0.2671 0.011

TKW
QC 0.600

(0.028)
0.605

(0.038)
0.652

(0.027)
0.499

(0.036)
0.603

(0.028)
0.650

(0.028)
0.601

(0.028)
0.601

(0.019)

Non-QC 0.672
(0.025)

0.598
(0.032)

0.619
(0.026)

0.594
(0.027)

0.638
(0.027)

0.619
(0.026)

0.672
(0.025)

0.630
(0.012)

p-value 0.0282 0.4463 0.19 0.0189 0.1809 0.2122 0.0298 0.116

SL
QC 0.373

(0.046)
0.402

(0.041)
0.416

(0.041)
0.315

(0.041)
0.373

(0.040)
0.417

(0.040)
0.362

(0.050)
0.380

(0.014)

Non-QC 0.307
(0.047)

0.367
(0.042)

0.358
(0.042)

0.146
(0.047)

0.284
(0.042)

0.358
(0.042)

0.296
(0.048)

0.302
(0.029)

p-value 0.1595 0.2805 0.1629 0.0041 0.0645 0.1575 0.1721 0.020

HD
QC 0.355

(0.038)
0.394

(0.034)
0.413

(0.033)
0.264

(0.033)
0.342

(0.033)
0.413

(0.033)
0.266

(0.040)
0.350

(0.024)

Non-QC 0.326
(0.036)

0.276
(0.036)

0.262
(0.040)

0.161
(0.047)

0.340
(0.027)

0.262
(0.040)

0.272
(0.033)

0.271
(0.022)

p-value 0.2912 0.0265 0.0065 0.0412 0.471 0.0063 0.4991 0.017

PH
QC 0.585

(0.019)
0.570

(0.020)
0.593

(0.019)
0.502

(0.032)
0.576

(0.027)
0.591

(0.020)
0.586

(0.019)
0.572

(0.012)

Non-QC 0.616
(0.022)

0.543
(0.030)

0.574
(0.023)

0.369
(0.039)

0.558
(0.027)

0.574
(0.040)

0.615
(0.033)

0.550
(0.032)

p-value 0.1438 0.2283 0.2445 0.0057 0.3201 0.2807 0.1372 0.269

Mean
QC 0.489

(0.043)
0.486

(0.035)
0.512

(0.039)
0.425

(0.051)
0.494

(0.045)
0.510

(0.039)
0.473

(0.054)

Non-QC 0.488
(0.061)

0.438
(0.049)

0.442
(0.059)

0.461
(0.072)

0.465
(0.056)

0.442
(0.059)

0.477
(0.067)

1 GY, grain yield; SN, spike number per square meter; TKW, thousand-kernel weight; SL, spike length; HD, heading
days; PH, plant height. 2 BLUP, best linear unbiased prediction; GBLUP, genomic-BLUP; GenInv, Moore–Penrose
generalized inverse; LASSO, least absolute shrinkage and selection operator; RForest, random forest; RidgeReg,
ridge regression; and RRBLUP, ridge regression-BLUP. 3 Values in parenthesis indicate standard errors of the
estimated parameter. 4 Non-QC indicates that all polymorphic markers were used. 5 The models with the top three
prediction accuracies under QC are bolded for each trait.
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2.4. Effect of Imputation for Missing Genotypes on GS

The effect of genotype imputation on prediction accuracy was evaluated, using the QC to keep
missing rate levels <40% and the MAF values >5% as an example. Prediction accuracies of yield and
yield-related traits for the seven GS models using imputed markers are shown in Table 4. Compared
with non-imputation (see Table 3 with QC), prediction accuracy using imputed markers sometimes
increased slightly, but sometimes decreased slightly, irrespective of the traits and GS models (Table 4).
Difference of prediction accuracy between imputation and non-imputation was minor. Averaged
across the seven GS models, the prediction accuracy was 0.537, 0.496, 0.607, 0.423, 0.345, and 0.538
using imputed markers for GY, SN, TKW, SL, HD, and PH (last column in Table 4). Compared with
results in Table 3, the accuracy improved by imputation for each trait was 0.015, 0.016, 0.006, 0.043,
−0.005, and −0.034, respectively. Averaged across the six traits, the prediction accuracy using imputed
markers was 0.472, 0.480, 0.521, 0.440, 0.509, 0.524, and 0.466 for the seven GS models, respectively
(last row in Table 4). Compared with the results in Table 3, the accuracy improved by imputation for
each model was −0.017, −0.006, 0.009, 0.015, 0.015, 0.014, and −0.007, respectively. The best models for
the six traits were LASSO, RForest, GenInv (and also RidgeReg), RidgeReg, RidgeReg, and RForest,
respectively (Table 4). Regarding the average performance across all traits, RidgeReg had the highest
accuracy, followed by GenInv, RForest, GBLUP, BLUP, RRBLUP, and LASSO. Considering the top three
accuracies for each trait, BLUP, GBLUP, GenInv, LASSO, RForest, RidgeReg, and RRBLUP achieved
the top accuracy for 0, 2, 6, 1, 4, 6, and 0 times, respectively, which indicated that, GenInv, RidgeReg,
and RForest were better among the seven models. In conclusion, imputation had marginal effect on
GS, and it may not be a necessary step in the deployment of GS in wheat breeding. GenInv, RidgeReg,
and RForest still had a better performance than the other GS models for most traits.

Table 4. Prediction accuracies of yield and yield-related traits for the seven GS models using imputed
markers. The QC to keep markers with missing rate levels <40% and minor allele frequency (MAF)
>5% was used as an example.

Trait 1
Genomic selection Model 2

BLUP GBLUP GenInv LASSO RForest RidgeReg RRBLUP Mean

GY 0.517
(0.031) 3

0.491
(0.031)

0.531 4

(0.024)
0.593

(0.022)
0.577

(0.024)
0.531

(0.024)
0.520

(0.031)
0.537
(0.13)

SN 0.488
(0.025)

0.477
(0.036)

0.520
(0.024)

0.418
(0.029)

0.569
(0.026)

0.518
(0.029)

0.481
(0.026)

0.496
(0.018)

TKW 0.600
(0.036)

0.560
(0.043)

0.636
(0.024)

0.586
(0.031)

0.629
(0.03)

0.636
(0.031)

0.602
(0.035)

0.607
(0.011)

SL 0.370
(0.04)

0.455
(0.041)

0.489
(0.024)

0.370
(0.034)

0.394
(0.036)

0.494
(0.036)

0.392
(0.044)

0.423
(0.021)

HD 0.305
(0.031)

0.380
(0.030)

0.381
(0.024)

0.377
(0.034)

0.312
(0.057)

0.401
(0.029)

0.256
(0.035)

0.345
(0.02)

PH 0.549
(0.019)

0.517
(0.0241)

0.566
(0.024)

0.450
(0.035)

0.570
(0.025)

0.566
(0.02)

0.547
(0.02)

0.538
(0.016)

Mean 0.472
(0.046)

0.480
(0.025)

0.521
(0.036)

0.440
(0.036)

0.509
(0.051)

0.524
(0.051)

0.466
(0.051)

1 GY, grain yield; SN, spike number per square meter; TKW, thousand-kernel weight; SL, spike length; HD, heading
days; PH, plant height; 2 BLUP, best linear unbiased prediction; GBLUP, genomic-BLUP; GenInv, Moore–Penrose
generalized inverse; LASSO, least absolute shrinkage and selection operator; RForest, random forest; RidgeReg,
ridge regression; and RRBLUP, ridge regression-BLUP. 3 Values in parenthesis indicate standard errors of the
estimated parameter. 4 The models with the top three prediction accuracies with and without markers imputation
are bolded for each trait.
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2.5. Effect of Significant Markers Detected by GWAS

Manhattan and quantile-quantile (Q-Q) plots from GWAS were given in Figure S3 for the imputed
scenario, and in Figure S4 for the non-imputed scenario. The number of selected markers by GWAS is
shown in Table 5. For both imputed and non-imputed scenarios, around 500 significant markers were
detected by GWAS for each trait, which were, then, used for GS. For GWAS with imputed genotypic
data, the number of selected markers was the highest for SN (537), and the lowest for PH (497).
For GWAS with non-imputed genotypic data, the number of selected markers was also the highest
for the SN (576), and the lowest for HD (506, Table 5). A comparison of Tables 3 and 4 shows that
using GWAS-derived markers in GS increased the prediction accuracy in most cases, irrespective of the
traits and GS models. Conducting imputation before GWAS made a small increase on the prediction
accuracy for most traits and GS models (Table 6). Averaged across the seven GS models, the prediction
accuracy for the six traits was 0.847, 0.850, 0.873, 0.843, 0.793, and 0.798 under the imputed scenario,
and was 0.785, 0.833, 0.843, 0.785, 0.800, and 0.803 under the non-imputed scenario (last column in
Table 6). Average across the six traits, the prediction accuracy for the seven models was 0.913, 0.836,
0.895, 0.673, 0.711, 0.895, and 0.913 under the imputed scenario, and was 0.886, 0.792, 0.842, 0.737, 0.679,
0.836, and 0.886 under the non-imputed scenario (last row in Table 6). These values were much higher
than those from GS without marker selection by GWAS (Tables 3 and 4). The difference in accuracies
between the imputed and non-imputed scenarios was minor. BLUP and RRBLUP had higher accuracy
than the other models under both scenarios. Considering the top three accuracies for each trait, BLUP,
GBLUP, GenInv, LASSO, RForest, RidgeReg, and RRBLUP achieved the top accuracy for 6, 1, 3, 0, 0, 4,
and 6 times under the imputed scenario, and for 6, 0, 6, 0, 0, 2, and 6 times under the non-imputed
scenario, respectively, which indicated that BLUP and RRBLUP were better among the seven models.
The best models were different from those observed in Tables 3 and 4. The reason could be that BLUP
and RRLUP were more suitable for datasets with a small number of markers. In conclusion, using
GWAS to select markers is a useful step for GS. Effect of genotype imputation before GWAS was very
small. BLUP and RRBLUP had a better performance than the other GS models for most traits when
GWAS-selected markers were used for GS.

Table 5. The number of significant markers detected by genome-wide association studies (GWAS)
under the imputed and non-imputed scenarios. Threshold of −log10 P was set at 1.

Trait 1
GWAS QTLs

Imputed 2 Non-imputed

GY 525 514
SN 537 576

TKW 519 553
SL 520 509
HD 508 506
PH 497 522

Total 3106 3080
1 GY, grain yield; SN, spike number per square meter; TKW, thousand-grain weight; SL, spike length; HD, heading
days; PH, plant height. 2 Markers were imputed before GWAS.
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Table 6. Prediction accuracy for yield and yield-related traits using significant markers detected by
genome-wide association studies (GWAS). Both imputed and non-imputed scenarios were considered.
The QC to keep markers with missing rate levels <40% and minor allele frequency (MAF) >5% was
used as an example.

Trait 1 Imputation 2 Genomic Selection Model 3

BLUP GBLUP GenInv LASSO RForest RidgeReg RRBLUP Mean

GY
Yes 0.901 4

(0.008) 5
0.901

(0.008)
0.887

(0.008)
0.721

(0.016)
0.730

(0.020)
0.887

(0.008)
0.901

(0.008)
0.847

(0.031)

No 0.866
(0.01)

0.712
(0.038)

0.788
(0.014)

0.746
(0.017)

0.727
(0.017)

0.788
(0.014)

0.866
(0.010)

0.785
(0.024)

SN
Yes 0.923

(0.007)
0.859

(0.037)
0.915

(0.007)
0.673

(0.025)
0.741

(0.018)
0.915

(0.007)
0.923

(0.005)
0.850

(0.039)

No 0.889
(0.011)

0.857
(0.018)

0.872
(0.010)

0.767
(0.016)

0.685
(0.023)

0.872
(0.010)

0.889
(0.011)

0.833
(0.029)

TKW
Yes 0.942

(0.006)
0.848

(0.034)
0.938

(0.005)
0.737

(0.024)
0.763

(0.021)
0.938

(0.005)
0.942

(0.007)
0.873

(0.034)

No 0.926
(0.005)

0.79
(0.036)

0.881
(0.010)

0.763
(0.018)

0.733
(0.021)

0.880
(0.010)

0.926
(0.005)

0.843
(0.03)

SL
Yes 0.932

(0.005)
0.861

(0.034)
0.938

(0.005)
0.628

(0.026)
0.674

(0.029)
0.938

(0.005)
0.932

(0.005)
0.843

(0.051)

No 0.881
(0.012)

0.773
(0.044)

0.841
(0.016)

0.669
(0.029)

0.613
(0.034)

0.840
(0.016)

0.881
(0.012)

0.785
(0.04)

HD
Yes 0.878

(0.011)
0.792

(0.030)
0.846

(0.012)
0.660

(0.026)
0.648

(0.024)
0.846

(0.002)
0.878

(0.011)
0.793

(0.037)

No 0.873
(0.010)

0.818
(0.021)

0.827
(0.013)

0.728
(0.018)

0.653
(0.020)

0.826
(0.013)

0.873
(0.010)

0.800
(0.031)

PH
Yes 0.901

(0.008)
0.756

(0.038)
0.846

(0.013)
0.621

(0.029)
0.712

(0.024)
0.846

(0.013)
0.901

(0.008)
0.798

(0.040)

No 0.880
(0.011)

0.800
(0.023)

0.840
(0.017)

0.746
(0.023)

0.664
(0.020)

0.810
(0.017)

0.880
(0.011)

0.803
(0.029)

Mean
Yes 0.913

(0.010)
0.836

(0.021)
0.895

(0.017)
0.673

(0.019)
0.711

(0.018)
0.895

(0.017)
0.913

(0.100)

No 0.886
(0.009)

0.792
(0.020)

0.842
(0.014)

0.737
(0.015)

0.679
(0.019)

0.836
(0.019)

0.886
(0.009)

1 GY, grain yield; SN, spike number per square meter; TKW, thousand-kernel weight; SL, spike length; HD, heading
days; PH, plant height. 2 “Yes” indicates that genotypic data was imputed for missing values and then used for
GWAS and GS analysis. 3 BLUP, best linear unbiased prediction; GBLUP, genomic-BLUP; GenInv, Moore–Penrose
generalized inverse; LASSO, least absolute shrinkage and selection operator; RForest, random forest; RidgeReg,
ridge regression; and RRBLUP, ridge regression-BLUP. 4 The models with the top three prediction accuracies with
and without markers imputation are bolded for each trait. 5 Values in parenthesis indicate standard errors of the
estimated parameter.

3. Discussion

A better understanding of the factors that affect the prediction accuracy of GS is crucial to
deploying GS within the conventional breeding scheme [12,19]. Missing rate and MAF are important
factors that determine the quality of genotypic data. They have been extensively studied in animal
breeding, but few such studies have been conducted in plant breeding [14,15,24]. According to the
GS literatures, there is no consensus on marker QC thresholds for genomic prediction. Therefore,
this study investigated the effect of missing rate and MAF QC on prediction accuracy for yield and
yield-related traits in wheat. In addition, the effect of missing genotype imputation and GWAS-derived
markers were also explored.

3.1. Marker Quality Control, Density, and LD

In most cases, QC on SNPs improved the prediction accuracy, irrespective of the traits and GS
models. But the significance of improvement varied with trait features, GS models, as well as QC
combinations. The QC levels for missing rate and MAF are important factors that affect prediction
accuracy, in accordance with previous studies [15,24]. The increase in missing rate level resulted in an
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increased marker number, while the increase in MAF level resulted in a decreased marker number in
the genome. The threshold of SNP QC can affect the quality of genotypic data, LD between markers and
QTL, estimation of genetic relationship between individuals, and population structure [25]. Different
genomic studies, including studies on QTL mapping, marker-assisted selection, and GWAS, have used
different thresholds for marker QC [25]. In addition, different genotyping and sequencing platforms,
such as SNP arrays and GBS (genotyping by sequencing), result in different qualities on genotypic
data [26]. For instance, GBS is an effective genotyping technology that provides high marker density at
a relatively low cost per sample, but it also generates a large proportion of missing data (up to 80%)
when a low sequencing depth of genomic loci is employed [27]. However, markers with low MAF
probably occur due to the design bias of the SNP array, because only a few cultivars and landraces are
used to discover SNPs in the array [28].

Our results also revealed that QC for missing rate and MAF affected genome coverage (Table S2).
The lowest number of markers was identified in the D genome, followed by the A and B genomes,
which is in agreement with previous reports [23]. In addition, a stringent MAF threshold (e.g., >10%
used in the present study) results in reduced allelic diversity in genomic datasets [29]. However,
intrachromosomal LD decay declined rapidly with increasing distance (Figure S2). The LD decay rate
is important because it determines the sufficient marker density for genome-wide coverage, i.e., at least
one marker should be in LD with each segregating segment of the genome. In natural populations
(non-inbred lines), faster LD decay requires higher marker density [30].

3.2. Effect of Missing Rate and MAF QC on Prediction Accuracy

Different missing rate thresholds have been adopted for QC on SNPs in previous studies [14,15,
24,31]. However, it is difficult to determine which threshold is best for prediction accuracy. Therefore,
QC with different missing rates and MAF thresholds was conducted to assess the predictability of the
seven GS models in this study. Habier et al. [32] indicated that increasing marker density improves the
genetic similarity of individuals in TP and VP, and thereby improves prediction accuracy. However,
results from this study indicated that prediction accuracy was not improved consistently with an
increase in missing rate level and MAF, irrespective of the traits (Figure 2). After QC for missing rate
levels of 20% to 40%, all traits showed improved prediction accuracies, irrespective of the GS models
(Figure 2). Including markers with a high missing rate level (e.g., 80%) added noise to the estimation of
GEBVs. It is not necessary to use a small missing rate threshold (e.g., 0%), which undoubtedly reduces
marker density and genome coverage, or even near to exclude some chromosomes (Table S2), reducing
the prediction accuracy regardless of the GS models (Table 2 and Figure 2). The prediction accuracy
was the highest when QC with a moderate missing data rate (20% to 40%) and MAF (5%) were used.
Our conclusion was consistent with some previous studies. Roorkiwal et al. [33] evaluated prediction
accuracy of six GS models for GS under nine combinations of missing rate and MAF QC for yield
and yield-related traits in chickpea. Results indicated that QC on SNP before GS increased prediction
accuracy, and missing rate levels ≤30% and MAF values ≥10% were the best QC combination. Jarquín
et al. [15] compared different SNP QC (i.e., missing rate and MAF) scenarios in soybean and concluded
that there was no unique strategy that outperformed the results of the others.

For most traits, prediction accuracies were negatively affected by a high MAF threshold (Figure 2).
There were three possible reasons. First, the number of markers was smaller (insufficient genome
coverage) and statistically less informative in the prediction analysis when a high MAF threshold
was used (Table 2 and Table S2). Second, excluding markers by high MAF threshold could result in
a bottleneck of allelic diversity [29] and biased accuracies for diverse germplasms. Third, excluded
markers by QC can be linked with QTL, affecting some traits. In our diversity panel, it was possible
that yield and yield-related traits were associated with relatively low-MAF SNPs which could have
an advantage in the estimation of genetic relationship between TPs. The results from this study
suggested that a moderate missing rate level (20% to 40%) and MAF (5%) threshold provided better
prediction accuracy for yield and yield-related traits (Figure 2). There is no single combination of QC
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scenarios that outperforms the others for all traits and GS models. Further investigation is needed
to determine how to find a balance between marker number and marker quality to achieve higher
prediction accuracy. Further investigation is required to quantify the impact of other factors that
were not included in this study such as TP size, population structure, and genotype-by-environment
interactions, and imputation methods on prediction accuracy.

3.3. Effect of GS Models on Prediction Accuracy

The choice of GS models depends on the maximum prediction ability and computation efficiency
of a model across a wide range of traits and datasets. In this study, the prediction accuracy varied
substantially among traits and GS models (Table 3). There was no consistently best GS model for
predicting various traits. This could be because the selected traits in the present study varied with
respect to genetic architecture and heritability, whereas GS models differed from each other because
of underlying assumptions for estimating marker effects [6,7]. In this study, GenInv, RidgeReg,
and RForest had a higher prediction accuracy than other GS models (Table 3). The high accuracy of
GenInv and RidgeReg could be explained by the overfitting of these two models, which was caused by
the multi-collinearity between dense markers, overfitting results in biased estimation of marker effects,
however, increasing the prediction accuracy in some cases. Another possible reason could be the trait
features. Ornella et al. [34] reported the superiority of RidgeReg in some rust resistant traits because of
the additive nature of rust resistance. The advantage of RForest is consistent with previous studies
on wheat [18,19]. For example, Charmet et al. [10] compared the performances of five GS models on
three elite breeding populations (each with approximately 350 lines) for three years and identified
RForest to be the best model for predicting GY. Heslot et al. [7] evaluated seven GS models using
eight datasets in wheat, barley, and maize, and demonstrated RF as a promising method to increase
prediction accuracy. The superiority of RF for yield and yield-related was also reported in chickpea [33].
The superiority of RForest could be explained by its appealing properties for genomic predictions.
RForest includes minor-effect QTLs and interacting and correlated markers with no distributional
assumptions in the training model [8,35]. However, these three models may not show superiority in
some other traits or populations. Further investigation is required to select the best GS model. In most
cases, high-heritability traits result in high prediction accuracy, whereas low-heritability traits result in
low prediction accuracy, regardless of the GS model [36]. Nevertheless, prediction accuracy relies not
only on heritability but also on the genetic architecture of the target trait [37]. This phenomenon was
also observed in this study.

3.4. Effect of Imputation and GWAS on Prediction Accuracy

The QC to keep missing rate levels <40% and MAF values >5% was used as an example to
investigate the effect of imputation and GWAS on GS, and which QC scenario prediction accuracy was
the highest. Missing values were imputed based on the empirical distribution of genotypes obtained
from observed values, because this method requires less computational burden. Poland et al. [27]
reported that imputation of missing values resulted in slightly higher prediction accuracy for yield
(under drought condition), TKW, and HD, regardless of imputation methods (e.g., random forest,
heterozygote, and expected maximization) in a panel of 254 advanced breeding lines from CIMMYT.
Jarquín et al. [15] reported that imputation increased marker number and could improve prediction
accuracy. However, in this study, it was concluded that imputation had little effect on the prediction
accuracy of GS (Table 4), possibly because imputation and GS were conducted on the same dataset,
and no additional information was provided to increase the prediction accuracy.

GWAS-derived markers improved prediction accuracy of GS, whether the imputation was
conducted before GWAS or not. This was similar to the results by Lozada et al. [12], who reported that
GS for GY using GWAS-derived markers had higher prediction accuracy than that using all markers in
soft and red winter wheat. The possible reasons for the improvement in prediction accuracy included:
(1) the number of GWAS-derived markers was smaller than the total marker number, which ultimately
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reduced multicollinearity and complexity of models for estimation of GEBVs; (2) the selected markers
were all correlated with the traits. A low threshold (−log10 P = 1) was adopted in this study to identify
more significant markers. The low threshold definitely increased the false positive of GWAS, but it is
generally accepted that false positive does not have a significant effect on prediction accuracy. In this
study, both TP and VP were used in GWAS, and GWAS and GS were conducted on the same population.
In practice, the GS model constructed from TP would be used for other breeding populations only
having genotypic data. More evidence is still needed before concluding that GWAS always improves
the accuracy of GS.

4. Materials and Methods

4.1. Plant Materials, Field Trials, and Phenotypic Evaluation

The wheat population was comprised of 166 diverse accessions, namely, 143 accessions from
the Yellow and Huai River Valley Facultative Wheat Zone of China and 23 varieties from five other
countries (Argentina, Australia, Italy, Japan, and Turkey). The names and origins of these accessions
are presented in Table S3. These accessions were grown in Anyang in Henan province for three
cropping seasons (i.e., from 2013 to 2015), in Shangqiu for two seasons (i.e., 2013 and 2014), and in
Shijiazhuang for one season (i.e., 2015). All field trials were conducted in a randomized complete
block design. Each trial had three replications, and each plot had three rows that were 2 m in length
and 0.2 m in width. The genotypic and phenotypic data used in this study can be downloaded from
http://www.isbreeding.net/wheatGS/.

Six yield and yield-related traits, namely, GY, SN, TKW, SL, HD, and PH, were evaluated at each
location. GY was measured as the weight of grain harvested kg·ha−1. SNs were counted for each plot
and converted to spike number per square meter. TKW was measured by weighting 1000 random
kernels from each plot after harvest. SLs were measured from the base of the rachis to the top spikelet,
excluding awns. HD was recorded on 50% emergence of the spike; PH was measured as the distance
between the soil surface and top of spike, excluding awns after physiological maturity. These traits
were considered to represent a wide range of heritability and genetic architecture.

4.2. DNA Extraction, Genotyping, and Quality Control

Five fresh leaves of each accession were sampled, and DNA extraction was carried out by the
modified CTAB method [38]. The genotypic data for the wheat accessions were obtained using a
high-density Illumina 90K iSelect SNP array [39] featuring 81,587 SNPs. SNP genotyping was conducted
by Genome Studio. A total of 21,856 SNPs remained for each accession using the genotypic data
conversion function of QTL IciMapping V4.2 (freely available from https://www.isbreeding.net/) [40].
For QC on SNPs, the BIN function of QTL IciMapping v4.2 was used to remove the redundant markers,
resulting in 14,043 non-redundant SNPs. Average missing rate of these markers was 28.20%. After
binning, SNPs with more than 80% missing data were removed, and a total of 11,997 SNPs were
employed to evaluate the prediction accuracy of the GS models.

4.3. Phenotypic Data Analysis and Analysis of Variance (ANOVA)

Descriptive statistics of phenotypic data were performed with Microsoft Excel 2016. Best linear
unbiased estimates (BLUE) for each line across multiyear trials, ANOVA, and phenotypic correlation
analysis were conducted using QTL IciMapping V4.2 [40]. BLUE values were used for correlation
analysis. The ANOVA model across three locations is shown in Equation (1).

yi jk = µ+ Rk/ j + Gi + E j + GEi j + εi jk and εi jk ∼ N
(
0, σ2

ε

)
(1)

where yijk is the phenotypic value, µ is the overall mean, Gi is the genotypic effect, Ej is the environmental
effect, GEij is the genotype-by-environment interaction effect, Rk/j is the kth replication effect in the

http://www.isbreeding.net/wheatGS/
https://www.isbreeding.net/
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jth environment, and εijk is the residual effect. From the theoretical expectation of mean square (MS),
genetic variance (σ2

G), interaction variance (σ2
GE), and error variance (σ2

ε) were calculated using Equation
(2), where environment number e = 3, and replication number r = 3 in the present study.

σ2
G =

1
e× r

(MSG −MSε), σ2
GE =

1
r
(MSGE −MSε), and σ2

ε = MSε (2)

Heritability at the plot level and mean level was calculated using Equation (3).

H2
perplot =

σ2
G

σ2
G + σ2

GE + σ2
ε

and H2
per mean =

σ2
G

σ2
G + 1

eσ
2
GE + 1

erσ
2
ε

(3)

4.4. Genotypic Data Analysis

LD between markers measured as r2 was calculated by the TASSEL software (freely available from
https://tassel.bitbucket.io/) using the full matrix and sliding window options [41] and plotted against
physical distance. Markers with a missing rate lower than 40% were used for LD analysis. The PIC
and GD (also known as expected heterozygosity) at each locus were estimated using PowerMarker
v.3.5 (freely available from https://brcwebportal.cos.ncsu.edu/powermarker/) [42]. Plot visualizations
of these parameters were generated by the ggplot2 package in R (freely available from https://cran.r-
project.org/web/packages/ggplot2/index.html) [43].

4.5. GS Models and Factors Affecting Prediction Accuracy

Seven GS models were implemented in the Intel FORTRAN program for estimating prediction
accuracies (code written by L.Z. and J.W.), i.e., BLUP [44], GBLUP [45], RRBLUP [46], RidgeReg,
GenInv, LASSO [47], and one machine learning method, i.e., RForest [8]. Five-fold cross-validation was
employed and replicated 50 times to avoid biases in the estimation of prediction accuracy. The averaged
prediction accuracy across the 50 replicates was calculated. To assess the impact of the missing rate
and MAF on prediction accuracy, five missing rate thresholds (i.e., 0%, <20%, <40%, <60%, and <80%)
and three MAF thresholds (i.e., >0%, >5%, and >10%) were considered. This produced 15 marker
datasets (e.g., 5 missing marker levels × 3 MAF levels). Prediction accuracy was evaluated in terms of
Pearson’s correlation between the observed adjusted phenotypic values (i.e., BLUE) and predicted
values (i.e., GEBVs). In order to investigate the effect of QC on GS, QC with missing rate levels <40%
and MAF values >5% was used as an example, and compared with non-QC, in which all polymorphic
markers were used. T-test was conducted to compare the significance of difference between QC and
non-QC cases. The detailed descriptions of these seven models are described in the next subsection.
Comparison of prediction accuracy among traits and GS models was also conducted under this QC
scenario, i.e., missing rate levels <40% and MAF >5%.

4.5.1. BLUP Model

The BLUP mixed model is described as follows:

y = Xβ+ Zu + ε (4)

where y is a (n × 1) vector of phenotypic values; X is a (n × p) incidence matrix for fixed effects; β is a
(p × 1) vector of fixed effects; Z is a (n × 1) incidence matrix for random effects; u is a vector of random
effects; ε is a (n × 1) vector of independently random residual following distribution N

(
0, Iσ2

u

)
, with I

being the identity matrix in the present case [44]. In addition, p is the number of fixed effects, n is the
number of genotypes, and m is the number of markers.

https://tassel.bitbucket.io/
https://brcwebportal.cos.ncsu.edu/powermarker/
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
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4.5.2. GBLUP Model

The standard GBLUP model is described as follows:

y = 1nµ+ Zu + ε (5)

where y is the vector of phenotypic values, 1n is the vector of n ones, µ is the overall mean, Z is
the design matrix for random effects, u is the random effect with u ∼ N

(
0, Gσ2

u

)
, G is a genomic

relationship matrix between individuals estimated from genotypes, and ε is the vector of random
residuals following distribution N

(
0, Iσ2

ε

)
[45,46].

4.5.3. RRBLUP Model

The rrBLUP model is described as follows:

y = 1nµ+ Zu + ε (6)

where y is the vector of phenotypic values; 1n is the vector of n ones; µ is the overall mean; Z is
the design matrix for random effects; u is the random e1ffect with u ∼ N

(
0, Kσ2

u

)
; K is the additive

relationship matrix, which is the density matrix in the present study; and ε is the vector of random
residuals following distribution N

(
0, Iσ2

ε

)
[46].

4.5.4. RidgeReg Model

The model is fitted by:
y = Xβ+ Zu + ε (7)

where y is the vector of phenotypic values, X is the design matrix for fixed effects, β is the vector of
marker fixed effects, Z is the design matrix for random effects, u is the vector of random effects, ε is the
vector of random residual following distribution N

(
0, Iσ2

u

)
, and I is the identity matrix. The estimator

of β is (X′X + λI)−1X′y, and the estimator of λ can be expressed as arg min
β

(
‖y−Xβ‖22 + λ‖β‖22

)
, with

the notation ‖.‖2 for L2 norm. The “arg min
β

” notation expresses the determination of coefficient β

minimizing the expression inside the brackets.

4.5.5. GenInv Model

The model is the same as the model described in Section 4.5.4, but the estimation of β is (X′X)+X′y.
Here, “+” is the Moore–Penrose generalized inverse of matrix.

4.5.6. LASSO Model

The LASSO was developed by Tibshirani [47]. λ refers to the shrinkage and regularization

parameter calculated by arg min
β

(
‖y−Xβ‖22

2σ2 + λ‖β‖1

)
and ‖β‖ =

∑
i
‖βi‖ is the L1 norm.

4.5.7. RForest Model

The RForest model is integrated with classification or regression trees that rely on bootstrap
samples and splits original data into multiple subsets of non-overlapping sets [16]. The predictions for
observations are calculated as the averages of predicted values over the trees.

4.6. Imputation for Missing Genotypes

To evaluate the effect of genotype imputation on prediction accuracy of GS, missing values in
genotypic data were imputed using samples from the empirical distribution of marker genotypes [48].
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Imputed markers were employed for genomic prediction analysis. The QC to keep missing rate levels
<40% and MAF values >5% was used as an example, i.e., 5513 markers were retained after QC and
employed for imputation and GS.

4.7. GWAS-Derived Genomic Selection

To evaluate the effect of GWAS-based marker selection on prediction accuracy of GS, the “GWAS”
function of R package rrBLUP V4.6 (freely available from https://cran.r-project.org/web/packages/
rrBLUP/index.html/) was used to perform GWAS before GS [46]. To avoid spurious marker-trait
associations due to population structure, a realized additive relationship matrix and the first five
principal components were included in the model (i.e., PCA + K model). The additive relationship
matrix was computed using “A.mat” function of rrBLUP. Manhattan plots were also generated by
rrBLUP [46]. The threshold of −log10 P was set at 1, in order not to miss any small-effect quantitative
trait nucleotides. The QC to keep missing rate levels <40% and MAF values >5% was used as an
example. Markers with unknown physical positions were excluded before GWAS. As a result, a total
of 5201 markers were employed for GWAS. Two GWAS-derived GS scenarios were designed. In the
first scenario, imputation for missing genotypes was conducted before GWAS; in the second scenario,
non-imputed genotypic data was used to perform GWAS.

5. Conclusions

In this study, a diverse Chinese winter wheat panel was used to compare prediction accuracy of
seven GS models (BLUP, GBLUP, GenInv, LASSO, RForest, RidgeReg, and RRBLUP) under different
marker QC scenarios (five missing rate levels and three MAF values) for yield and yield-related traits.
No single QC combination or GS model can yield better performance in prediction accuracy for all
traits. In general, a combination of moderate missing rate levels (20% to 40%) and MAF (5%) yielded
better prediction accuracy, regardless of the traits and GS models. Prediction accuracy of the six traits
was affected by the heritability, genetic architecture, and GS models. GenInv, RidgeReg, and RForest
models yielded higher prediction accuracy than other models across traits. The effect of genotype
imputation and GWAS-based marker selection was also evaluated in this study. The results showed
that imputation had marginal effect on GS but using GWAS-derived markers improved the prediction
accuracy of GS.
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Abbreviations

ANOVA Analysis of variance
BLUE Best linear unbiased estimates
BLUP Best linear unbiased predictors
GEBV Genomic estimated breeding values
GenInv Moore-Penrose generalized inverse
GBS Genotyping by sequencing
GS Genomic selection
GWAS Genome-wide association studies
GY Grain yield
HD Heading days
LASSO Least absolute shrinkage and selection operator
LD Linkage disequilibrium
MAF Minor allele frequency
PH Plant height
QC Quality control
RForest Random forest
RidgeReg Ridge regression
RRBLUP Ridge regression best linear unbiased predictors
SL Spike length
SN Spike number
SNP Single nucleotide polymorphism
TKW Thousand-kernel weight
TP Training population
VP Validating population
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