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Abstract: Apolipoprotein E (APOE) ε4 gene allele and type 2 diabetes mellitus (T2DM) are prime risk
factors for Alzheimer’s disease (AD). Despite evidence linking T2DM and apoE4, the mechanism
underlying their interaction is yet to be determined. In the present study, we employed a model of
APOE-targeted replacement mice and high-fat diet (HFD)-induced insulin resistance to investigate
diabetic mechanisms associated with apoE4 pathology and the extent to which they are driven by
peripheral and central processes. Results obtained revealed an intriguing pattern, in which under
basal conditions, apoE4 mice display impaired glucose and insulin tolerance and decreased insulin
secretion, as well as cognitive and sensorimotor characteristics relative to apoE3 mice, while the
HFD impairs apoE3 mice without significantly affecting apoE4 mice. Measurements of weight and
fasting blood glucose levels increased in a time-dependent manner following the HFD, though no
effect of genotype was observed. Interestingly, sciatic electrophysiological and skin intra-epidermal
nerve fiber density (IENFD) peripheral measurements were not affected by the APOE genotype or
HFD, suggesting that the observed sensorimotor and cognitive phenotypes are related to central
nervous system processes. Indeed, measurements of hippocampal insulin receptor and glycogen
synthase kinase-3β (GSK-3β) activation revealed a pattern similar to that obtained in the behavioral
measurements while Akt activation presented a dominant effect of diet. HFD manipulation induced
genotype-independent hyperlipidation of apoE, and reduced levels of brain apoE in apoE3 mice,
rendering them similar to apoE4 mice, whose brain apoE levels were not affected by the diet. No such
effect was observed in the peripheral plasma levels of apoE, suggesting that the pathological effects
of apoE4 under the control diet and apoE3 under HFD conditions are related to the decreased levels
of brain apoE. Taken together, our data suggests that diabetic mechanisms play an important role in
mediating the pathological effects of apoE4 and that consequently, diabetic-related therapy may be
useful in treating apoE4 pathology in AD.
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1. Introduction

1.1. Alzheimer’s Disease and Apolipoprotein ε4

Alzheimer’s disease (AD) is the most common form of dementia, an age-related neurodegenerative
disorder affecting more than 50 million people worldwide [1,2]. It is clinically characterized by
progressive deterioration of cognition, loss of insight, judgment, language, and changes in behavior
and, in late stages, physical functioning [3]. Neuro-biochemical assessments of AD patients’ brains
revealed selective impairments in the hippocampus and neocortex areas, with damage to mainly
cholinergic neuronal populations [4,5]. Along with neuronal loss, AD pathology is characterized by
the occurrence of senile plaques, which contain Aβ depositions, neurofibrillary tangles composed of
hyper-phosphorylated tau, and extensive synaptic loss [6]. The sex-based prevalence of AD is well
documented, with over 60% of AD patients being female [7]. An even greater sex difference has been
found in the impact of AD pathology, with each additional unit of AD pathology found to be associated
with a nearly 3-fold increase in the odds of clinical AD in men compared with a more than a 22-fold
increase in the odds of clinical AD in women [8]. AD is manifested either in a familial or sporadic form;
the familial form is characterized by mutations in the amyloid precursor protein (APP) and presenilin
1 and 2, resulting in elevated levels of Aβ deposits and senile plaques [9,10]. Studies of sporadic AD
revealed allelic segregation of the apolipoprotein E (APOE) gene to families and individuals with a
higher risk of late-onset sporadic AD [11–13]. There are three main alleles of the apolipoprotein E,
termed apoE2, apoE3, and apoE4, of which the ε4 gene allele (apoE4) has been found to be the most
prevalent genetic risk factor for AD [11,12,14]. The frequency of this allele in AD patients is over 50%,
whereas in the general population its frequency is about 25% [15]. Each ε4 allele reduces the age of AD
onset by 7 to 9 years per allele copy [12,16]. Evidence indicates that the apoE4 risk for AD is greater
in women than in men [7]; a single copy of the ε4 allele in women is sufficient to increase the AD
disease risk associated with two copies of ε4 in men [17]. Furthermore, it has been shown that carrying
the apoE ε4 allele has a larger deleterious effect on neurodegeneration, synaptic plasticity, and adult
neurogenesis, and on cognitive performance in females more than males [18].

Neuropathologically, apoE4 is associated with a wide range of brain-related phenotypes, including
impaired neurite outgrowth, synaptogenesis, and plastic neuronal remodeling, as well as increased
neurodegeneration [19–21]. As opposed to the effect of apoE4 on the CNS, there is a lack of
understanding regarding its effect on the peripheral nervous system (PNS) [22,23]. This is despite the
fact that apoE is expressed throughout the PNS, including at the neuromuscular junction (NMJ) [24,25],
where expression levels dramatically increase in response to nerve crush injury and exposure to harmful
environmental stimuli [26]. An association between the APOE genotype and disease outcome has been
demonstrated for human patients with diabetic neuropathies [27,28], but very few have investigated
the influence of the apoE isoform on the PNS in genetically modified animals [26]. In general, although
many studies have been carried out regarding AD, the etiology and pathogenesis of the disease are
not yet fully understood [29]; therefore, new links that may unravel the answers to these questions
are necessary.

1.2. Alzheimer’s Disease and Type 2 Diabetes Miletus

Epidemiologic studies revealed that the risk of AD is increased by 50%–100% by type 2 diabetes
miletus (T2DM) [30–32]. A recent population-based study found that the overall incidence densities
of AD for diabetic men and women, respectively, were 0.82 and 1.15 per 1000 person-years, with an
especially notable higher hazard ratio of AD in older diabetic women [33]. T2DM is a metabolic disorder
of impaired glucose regulation, one of the most common chronic metabolic diseases, with more than
300 million patients worldwide. Clinically, T2DM is characterized by a slow decline in the functions
of multiple body organs and systems, and impairments in cognitive functions [34]. Pathological
characteristics include peripheral and central impaired insulin action, insulin secretory deficiency, and
increased endogenous glucose production [35]. Diabetic peripheral neuropathy (DPN) is a common
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late complication of diabetes, defined as a symmetric length-dependent sensorimotor polyneuropathy
attributable to metabolic and microvascular alterations as a result of chronic hyperglycemia exposure
(diabetes) [36,37]. DPN is characterized by loss of small-fiber–mediated sensation, resulting in the loss
of thermal and pain perception, and large-fiber impairment resulting in the loss of touch and vibration
perception [37]. T2DM and AD have been shown to share many pathophysiological features [38], which
include insulin resistance, disrupted glucose metabolism, peripheral oxidative and inflammatory stress,
amyloid aggregation, neural atrophy, neurodegeneration, and cognitive decline [30]. Furthermore,
key pathological changes that occur in an AD brain, such as amyloid aggregation, resemble those that
occur in the pancreas and vasculature of diabetic patients [39,40]. These findings and more led to the
hypothesis that impaired neuronal insulin action might be a unifying pathological mechanism in the
development of both T2DM and AD [41]. Indeed, insulin resistance and impaired insulin signaling
in the central nervous system (CNS) have been linked to the pathogenesis of AD, observations that
resulted in terming AD “type 3 diabetes” [30,42,43].

The expression of insulin receptor (IR) units in the CNS displays a widespread but selective regional
pattern, and they are found abundantly in brain areas involved in glucose and energy homeostasis
as well as cognitive processes [41]. In rodents, one of the areas with the highest density of IRs is the
hippocampus [44–46]. In the canonical insulin signaling pathway, insulin first binds to its receptor on
the plasma membrane and induces signal transduction that includes activation/phosphorylation of
Akt on residues Thr308 and Ser473 [35]. In turn, activated Akt inhibits glycogen synthase kinase-3β
(GSK-3β) by inhibition/phosphorylation of Ser9 residues [47,48]. GSK-3β is an inhibitor of glycogen
synthase (GS), and the Akt-driven inhibition of GSK-3β thus results in the promotion of glycogen
synthesis and glucose absorption [35,49]. Additionally, GSK-3β has been found to be activated by
auto-phosphorylation of Tyr216, which in AD can result in pathological and abnormal phosphorylation
of tau [50]. In the brain, the insulin signaling pathway plays a significant role in neuronal health
as well as synapse formation and maintenance. Significant impairments in this pathway have been
documented in both postmortem analysis and animal models of AD [51]. Furthermore, insulin
resistance may also contribute to cognitive deficits in AD, seeing that healthy brain insulin signaling
has been found to be crucial for learning and memory [43,52].

1.3. ApoE4 and T2DM

Given the overlap of AD and T2DM, several anti-diabetic agents have been tested for treatment
of AD, with many showing reduced benefits in apoE4 patients, such as intranasal insulin treatment
and insulin sensitizer Rosiglitazone trials [53,54]. Although both apoE4 carriers and non-carriers
with AD appear to have a brain insulin defect, the apoE4 carrier status appears to modulate the
relationship between the peripheral and brain insulin metabolism [53]. These findings suggest an
association between two major risk factors for AD, apoE4, and T2DM. The ε4 allele has been found
to be an independent risk factor for T2DM [55] and associated with the development of T2DM [56].
Furthermore, the presence of apoE4 exacerbates AD neuropathology in the presence of T2DM [57].
For example, apoE4 enhances the differences between T2DM and non-T2DM subjects in the number of
hippocampal and cortical neuritic plaques, neurofibrillary tangles, and the load of cerebral amyloid
angiopathy [58]. It has also been shown that in apoE4 carriers, the degree of glucose dysregulation
(evaluated by fasting blood glucose concentration and mean glycemic value, as measured by the
HbA1c concentration [59]) correlates with reduced cortical thickness and that apoE4 carriers with
T2DM demonstrate a level of cortical thinning comparable to that of preclinical AD [60]. Metabolic
deficiencies, such as abnormally low rates of brain glucose metabolism, that are unrelated to regional
amyloid burden [61] were observed in healthy apoE4-positive volunteers as young as their twenties [62].
Additionally, altered expression of insulin signaling parameters has been observed in apoE4 mouse
and human brains [63,64]. However, despite the strong body of evidence linking T2DM and apoE4,
the mechanism underlying the interaction between these two critical risk factors for AD is yet to be
determined [54].
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In the present study, we employed a dietary regimen of a high-fat diet (HFD), a well-established
and robust animal model for studying impaired glucose tolerance and early T2DM in mice [65,66],
compared to a regular diet, on an APOE-targeted replacement (TR) mouse model expressing either
apoE3 or apoE4. Utilizing this model, we investigated the effects of the APOE genotype and HFD
on glucose metabolism and insulin resistance, and the extent to which these are associated with
apoE4-driven peripheral or central pathologies.

2. Results

2.1. Body Weight and Glucose Metabolism

Following weaning at 7 weeks of age, mice were subjected to either a HFD or regular chow
diet for 18 weeks, as described in the materials and methods, utilizing n = 17–18 mice per group.
Throughout these 18 weeks, body weight and fasting blood glucose levels were monitored once a
week. The results thus obtained are presented in Figure 1A,B. As can be seen in Figure 1A, there was
an age-dependent increase in the weight of apoE3 and apoE4 control diet mice, which was similar in
both genotypes (23.23 ± 0.4 and 21.71 ± 0.4 at 18 weeks on diet; respectively). The HFD induced a
marked and similar increase in body weight of apoE3 and apoE4 mice (34.89 ± 1.4 and 32.72 ± 0.9 at
18 weeks on diet; respectively). It is important to note that starting at week 15 on the HFD, apoE4
HFD-fed mice showed a trend of decreased weight gain in comparison to apoE3 HFD-fed mice. As can
be seen in Figure 1B, the HFD also induced an increase of fasting blood glucose, which was similar
between apoE3 and apoE4 mice, in accordance with the corresponding body weight measurements
(160 ± 4.5 and 147.3 ± 3.6 at 18 weeks; respectively), whereas control diet apoE3 and apoE4 mice did
not differ in fasting blood glucose (122.7 ± 3.2 and 126.7 ± 2.5 at 18 weeks; respectively).

The effects of the HFD and apoE genotype on glucose and insulin tolerance were next evaluated.
Glucose tolerance was assessed via an intraperitoneally (IP) glucose tolerance test (GTT) as described
in the materials and methods (n = 8 mice/group). As can be seen in Figure 1C, apoE4 control diet
mice displayed delayed recovery compared to the corresponding apoE3 control diet mice, suggesting
impaired glucose tolerance in apoE4 mice. HFD treatment resulted in increased glucose levels in both
the apoE3 and apoE4 mice, indicating a pathological glucose tolerance. Areas under the curve (AUC)
of GTT measurements were calculated using the trapezoidal rule [67], and the results are depicted in
Figure 1D. Two-way ANOVA analysis revealed a significant effect for genotype (*** p < 0.0001) and
interaction diet x genotype (p = 0.01), Bonferroni post-hoc comparisons showed significantly increased
glucose levels in apoE4 mice relative to apoE3 mice (33 ± 5 and 20 ± 6, respectively; * p < 0.05), while
apoE3 and apoE4 HFD mice’s AUC was elevated in a similar manner (45 ± 3 and 40 ± 3, respectively).
ApoE3 control diet mice displayed significantly lower (p < 0.001) glucose levels relative to apoE3
HFD mice.

Insulin tolerance was assessed via the IP-insulin tolerance test (ITT) (n = 10 mice/group). In view
of the findings that the differences in glucose tolerance between apoE3 and apoE4 mice were more
pronounced in control diet mice, these experiments were performed on mice maintained on a control
diet. As can be seen, in Figure 1E, the injection of insulin in both groups resulted in decreased levels of
blood glucose. This decrease was more gradual and less pronounced in apoE4 mice. Quantitation
of these results in terms of total glucose levels by measurements of AUC revealed increased levels
of glucose in apoE4 compared to apoE3 mice. Accordingly, the Student’s t-test for AUC of the ITT
results revealed a significant effect (*** p < 0.001) for the comparison of apoE3 and apoE4 control diet
mice (46 ± 4 and 64 ± 2, respectively) (Figure 1F). These results suggest that apoE4 is associated with
increased insulin resistance relative to apoE3 mice.

Insulin levels in the plasma were assessed at baseline, 15 and 30 min following glucose injection in
the GTT as described in the materials and methods, and the results are depicted in Figure 1G. As can
be seen, the levels of insulin in the plasma are elevated in apoE3 mice relative to apoE4 mice at baseline
(0.514 ± 0.03 and 0.41 ± 0.03, respectively; * p = 0.04) and 15 min following the glucose injection
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(0.62 ± 0.12 and 0.35 ± 0.01, respectively; p = 0.05), suggesting that there is a deficit in the ability of the
apoE4 mice to secrete insulin in response to elevated blood glucose levels. Together with the GTT and
ITT results, the results obtained suggest that the pathological effects of apoE4 are mediated by two
complementary mechanisms: reduced ability to secrete insulin and increased insulin resistance.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 23 
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Figure 1. The effects of APOE genotype and high fat diet (HFD) on body weight, glucose metabolism,
and insulin resistance. Following weaning, apoE4 and apoE3 mice were subjected to either a control or
HFD for 18 weeks. (A) Body weight and (B) fasting blood glucose were monitored weekly following a
6-h fast as indicated. n = 17–18 mice/group. ApoE4 control and HFD comparisons are represented
by *, apoE3 control and HFD comparisons are represented by #. (C) Glucose tolerance test (GTT).
Blood glucose levels were measured at the indicated time points after an intraperitoneal injection of
glucose. ApoE3 control and HFD comparisons are represented by #. n = 8 mice/group. (D) Quantitation
of GTT results expressed as area under the curve. (E) Insulin tolerance test (ITT). Blood glucose
levels were measured at the indicated time points following an intraperitoneal injection of insulin.
n = 10 mice/group. (F) Quantitation of ITT results expressed as area under the curve. (G) Insulin levels
in plasma at the indicated time points of GTT. n = 6–7. The areas under the curve of the GTT in (D)
and ITT in (F) were calculated using the trapezoidal rule. Data were analyzed via two-way ANOVA,
repeated measures when appropriate, with Bonferroni post-hoc comparisons; ITT results were analyzed
via Student’s t-test. Data is presented as mean ± SEM, */# p < 0.05, ** /##p < 0.01 and ***/### p < 0.001.
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2.2. Cognitive and Sensorimotor Tests

The effects of the HFD and APOE genotype on cognitive and sensorimotor parameters were
next examined.

Short-term memory was assessed via the novel object recognition (NOR) paradigm, in which the
mouse’s tendency to approach a novel object was measured (n = 10 mice/group). Mice were exposed
to a novel object 2.5 h following initial exposure to two similar objects (in which no preferences existed
in either of the groups). As can be seen in Figure 2A, control diet apoE4 mice displayed no preference
and visited the new and old objects similarly, whereas control diet apoE3 mice spent more time near
the novel object, suggesting an intact short-term memory of the old object. This difference between the
control diet apoE3 and apoE4 mice was abolished by the HFD, seeing that under these conditions, both
apoE3 and apoE4 mice displayed no preference for the novel object. Statistical analysis via two-way
ANOVA revealed a significant effect for genotype (p = 0.034). Further Bonferroni post-hoc comparisons
revealed that the decreased preference of control apoE4 mice to the new object relative to that of the
control apoE3 mice was significant (0.42 ± 0.04 and 0.65 ± 0.09, respectively; * p < 0.05), as was the
effect of the HFD on apoE3 mice relative to apoE3 control diet mice as seen by a lack of preference of
apoE3 HFD mice (0.43 ± 0.05; * p < 0.05). The HFD did not affect the performance of the apoE4 mice.

The effect of the APOE genotype and HFD on nociception was assessed by testing the latency
of reactivity to thermal pain in the hot plate test (52 ◦C) (n = 10 mice/group). As can be seen, apoE4
control diet mice displayed hypersensitivity compared to apoE3 control diet mice while the HFD
manipulation elevated sensitivity in apoE3 mice, rendering them similar to apoE4 mice. Analysis of
the results via two-way ANOVA revealed a significant effect for the interaction between genotype x
diet (p < 0.05). As can be seen in Figure 2B, apoE4 control diet mice showed statistically increased heat
sensitivity relative to apoE3 control diet mice (11.11 ± 1.2 and 14.94 ± 1.4, respectively; * p < 0.05) while,
similar to the effect seen in the NOR paradigm, the HFD abolished these differences and increased the
thermal sensitivity of the apoE3 mice but did not affect the apoE4 mice (10.62 ± 0.5 and 11.54 ± 1.28,
respectively).

Motor coordination and learning were tested using the rotarod apparatus, in which the amount of
time mice spent on an accelerating rod was documented. The results thus obtained during the first
trial are presented in Figure 2C (n = 10 mice/group). As can be seen, a similar pattern to the results of
the NOR and hot plate tests was observed, where apoE4 mice displayed impaired motor skills relative
to apoE3 mice in the control diet, while the HFD impaired motor skills in apoE3 mice without affecting
apoE4 mice. Two-way ANOVA revealed a significant effect (p < 0.0001) for the interaction between
genotype x diet. Bonferroni post-hoc comparisons revealed that apoE4 control diet mice displayed
significantly decreased latency to fall relative to the apoE3 control diet mice (6.44 ± 1 and 19.13 ± 2,
respectively; *** p < 0.0001). The HFD decreased the performance of apoE3 mice while no effect was
seen in apoE4 HFD mice (5.4 ± 0.8 and 6.68 ± 1.3, respectively). This effect, however, was diminished
over the four subsequent trials (Figure 1D), suggesting an effect on basal motor coordination, which
was abolished in time by learning. The average performance of both genotypes throughout the five
trials was similar in the control diet and tended to be decreased by the HFD. Indeed, statistical analysis
revealed a significant effect (p < 0.05) for diet, whereas post-hoc comparisons showed no significant
differences between groups.

Taken together with the results of the NOR, the hot plate and first trial of the rotarod test revealed
a similar pattern in which apoE4 mice were impaired relative to apoE3 control diet mice, and the HFD
damaged the performance of the apoE3 mice, rendering them similar to apoE4 mice, which were not
affected by the HFD.
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Figure 2. The effects of the APOE genotype and high fat diet (HFD) on short-term memory, nociception,
and motor skills. ApoE4 and apoE3 mice, maintained on either a control diet or HFD, were subjected
to cognitive and sensorimotor tests as described in the materials and methods. (A) Novel object
recognition test (NOR). The results obtained are depicted as the fraction of the time spent near the novel
object from the total time spent near both familiar and novel objects following 2.5 h from initial exposure
to identical objects. n = 10 mice/group. (B) Hot plate test. Reactivity to thermal pain was measured by
latency to nociceptive behavior on the hot plate (52 ◦C). n = 10 mice/group. (C) (D) Rotarod test. Motor
coordination and learning were evaluated by measurements of latency to fall during the accelerating
rotarod apparatus (5 to 50 RPM in 300 s). (C) Average time spent on the rotarod during the first round.
(D) Average time spent on the rotarod during five consecutive trials. n = 10 mice/group. Data were
analyzed via two-way ANOVA with Bonferroni post-hoc comparisons and the results were normalized
relative to apoE3 control diet mice. Data are presented as mean±SEM. * p < 0.05 and ***p < 0.001.

2.3. PNS Skin Intra-Epidermal Nerve Fiber Density (IENFD) and Sciatic Nerve
Electrophysiological Measurements

The extent to which the observed effects of the APOE genotype and HFD on cognitive and
sensorimotor parameters correlate with peripheral neuropathy was next assessed via skin IENFD and
sciatic nerve electrophysiological measurements. Accordingly, we assessed footpad intra-epidermal
nerve fiber density (Figure 3A) following 18 weeks on either a control or HFD (n = 8–10 mice/group).
There were no significant effects of either the APOE genotype or diet on these parameters. Compound
muscle action potential (CMAP), nerve conduction velocities, and distal latencies of the sciatic nerve
were next examined (Figure 3B) (n = 10 mice/group). Similar to the skin IENFD results, these
measurements revealed no effect of either the APOE genotype or HFD on the said parameters. Taken
together, these findings suggest that the demonstrated behavioral effects of apoE4 and HFD are not
associated with peripheral small fiber neuropathy or sciatic nerve electrophysiological pathologies.
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Figure 3. Skin intra-epidermal nerve fiber density (IENFD) and electrophysiological findings in apoE4
and apoE3 mice maintained on a control or high fat diet (HFD). (A) Skin IENFD measurements were
conducted on footpad tissue, which was reacted with anit-PGP9.5 Ab as described in the materials
and methods. A representative image of apoE3 control diet mice is depicted on the left panel,
green fluorescence corresponds to PGP9.5 and white arrows correspond to intra-epidermal nerves.
Quantitation of nerve fiber density per mm is presented in the right panel. n = 8–10 mice/group.
(B) Electrophysiological measurements were conducted on the sciatic nerve as indicated in the materials
and methods. Proximal compound muscle action potential (CMAP) amplitudes are depicted in the
left panel. Motor nerve conduction velocity (MNCV) is presented in the middle panel. Distal latency
was measured and MNCV was calculated as per the measured distance between stimulating cathodes.
Distal latency is presented in the right panel. n = 10 mice/group. Data were analyzed via two-way
ANOVA with Bonferroni post-hoc comparisons and the results were normalized relative to apoE3
control diet mice. Results are mean ± SEM.

2.4. CNS Insulin Signaling

We next focused on the effects of the HFD and APOE genotype on insulin signaling parameters in
the hippocampus. This was performed by utilizing immunoblots of the insulin receptor (IR), and the
subsequent signaling molecules Akt and GSK-3β.

The results of the total and activated IR levels are presented in Figure 4A. As can be seen, apoE3
and apoE4 mice displayed similar levels of total IR under basal control diet conditions while the HFD
decreased levels or IR in apoE4. Two-way ANOVA of the total IR levels revealed a significant effect for
the interaction between genotype x diet (p = 0.009). Post-hoc comparisons showed that the total IR
levels were similar in the control diet groups and that the HFD significantly reduced levels in apoE4
mice relative to apoE4 control diet mice (0.74 ± 0.1 and 0.96 ± 0.1, respectively; * p < 0.05). Furthermore,
apoE3 HFD mice revealed significantly higher IR levels relative to apoE4 HFD (1.1 ± 0.1 and 0.74 ± 0.1,
respectively; *** p < 0.001).

Measurements of the activated IR, as presented by the ratio of phosphorylated IR to its total level,
revealed elevated levels in apoE4 mice relative to apoE3 mice in the control diet groups while the
HFD abolished these differences, rendering apoE3 mice similar to apoE4 mice. Two-way ANOVA
revealed a significant effect for genotype (p = 0.0075), and Bonferroni post-hoc comparisons showed
that apoE4 control diet mice displayed significantly higher IR activity relative to apoE3 control diet
mice (1.45 ± 0.1 and 1 ± 0.08, respectively; ** p < 0.01). The results of all IR immunoblots represent two
cohorts, total n = 15–22 mice/group.
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Akt is activated by insulin-mediated phosphorylation of Thr308 and Ser473, with Ser473
phosphorylation also driven by mechanistic target of rapamycin complex 2 (mTORC2) [68]. The effects
of the APOE genotype and HFD on total levels and said phosphorylation states of Akt are depicted in
Figure 4B. As can be seen in the left graph, the total levels of Akt were not changed by either the APOE
genotype or diet, which is consistent with previous observations [69] (Figure 4B). In contrast, the extent
of Akt activation, as measured by the ratio of p-Akt Ser473 to total Akt, revealed a significant effect
for interaction between genotype x diet (p = 0.024). In accordance with previous findings [69], apoE4
control diet mice displayed a trend of decreased Ser473-mediated activation of Akt relative to apoE3
control diet mice (0.664 ± 0.1 and 1 ± 0.1, respectively). Interestingly, this trend was turned around
in the HFD mice, where apoE4 mice showed a trend of increased activation relative to apoE3 mice
(1.21 ± 0.3 and 0.76 ± 0.14, respectively). The corresponding analysis of the extent of Akt activation, as
measured by the ratio of p-Akt Thr308 to total Akt, revealed a significant effect for diet (p < 0.0001).
Thr308-mediated Akt activation revealed a small increase in apoE4 control diet mice relative to apoE3
control diet mice, and HFD resulted in a marked similar increase in both genotypes. Statistical analysis
revealed significantly higher levels of Thr308 activation in the apoE4 HFD mice relative to apoE4
control diet mice (1.92 ± 0.1 and 1.18 ± 0.1, respectively; *** p < 0.001), as in apoE3 HFD compared to
apoE3 control diet mice (1.87 ± 0.1 and 1 ± 0.05; *** p < 0.001, respectively). n = 6–11 mice/group.

GSK-3β is generally active in the absence of exogenous signals and is thus acutely inactivated
by Akt via inhibitory phosphorylation on Ser9. Activating autophosphorylation of Tyr216 has been
shown to further regulate the kinase’s activity. The results of the GSK-3β immunoblot measurements
are depicted in Figure 4C. As previously shown [69], the levels of total GSK-3β were similar in apoE3
and apoE4 control diet mice, and no significant differences between genotypes were found following
the HFD (Figure 4B). In terms of activation-phosphorylation of GSK-3β on Tyr216, apoE4 control
diet mice showed significantly higher activation than apoE3 control diet mice (1.42 ± 0.2 and 1 ± 0.1,
respectively; * p < 0.05) as previously shown [69]. Interestingly, this effect was abolished by the HFD.
Two-way ANOVA revealed a significant effect for the interaction between genotype x diet (p = 0.0425).
The activity of phosphorylated Ser9, which is a marker of inhibited GSK-3β, is presented in the right
panel in Figure 4C. As can be seen, the inhibited activity of GSK-3β via Ser9 phosphorylation was
higher in apoE4 control mice relative to apoE3 control mice, and HFD administration resulted in a
marked increase in apoE3 mice, rendering them equal to apoE4 mice, which were not affected by the
HFD. Two-way ANOVA statistical analysis revealed significantly higher levels of activation in apoE4
control diet mice relative to apoE3 control diet mice (2.23 ± 0.3 and 1 ± 0.1, respectively; * p < 0.05)
while the HFD abolished these differences and significantly increased the levels of Ser9-mediated
GSK-3β inhibition in apoE3 mice to the levels of the apoE4 control diet mice but did not affect levels of
activity in apoE4 mice. Post-hoc comparisons revealed apoE3 control diet mice displayed significantly
lower levels relative to apoE3 HFD (1 ± 0.1 and 2.3 ± 0.5, respectively; * p < 0.05) mice. The results of
all GSK-3β-related parameters represent two cohorts, total n = 11–17 mice/group.

Taken together, the insulin signaling measurements demonstrate that apoE4 induces insulin and
glucose metabolism-related deficits and that these effects are associated with marked behavioral effects.

2.5. ApoE Lipidation and Levels in the Brain and Plasma

The effects of the APOE genotype and HFD on apoE levels in the brain and plasma were assessed
via immunoblots of hippocampal homogenates and plasma extracts from apoE3 and apoE4 control
and HFD-fed mice. In accordance with previous findings [70], the total hippocampal apoE levels were
significantly lower in apoE4 control diet mice relative to apoE3 control diet mice (0.55 ± 0.03 and
1 ± 0.03, respectively; *** p < 0.001). Interestingly, the HFD significantly decreased (*** p < 0.001) the
levels of hippocampal apoE in apoE3 HFD mice relative to apoE3 control diet mice, rendering them
closer to the levels of apoE4 control mice without affecting apoE4 mice (Figure 5A). Still, hippocampal
apoE levels in apoE4 HFD mice remained significantly lower (** p < 0.01) relative to apoE3 HFD mice
(0.55 ± 0.04 and 0.763 ± 0.06, respectively). Two-way ANOVA revealed a significant effect (p < 0.0001)
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for genotype and a significant effect (p < 0.01) for diet and the interaction between genotype x diet.
The results of the hippocampal apoE immunoblots represent two cohorts, total n = 15–17 mice/group.
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Figure 4. The effects of the APOE genotype and high fat diet (HFD) on insulin signaling parameters in
the hippocampus. Hippocampal homogenates of apoE3 and apoE4 mice subjected to a control diet or
HFD were blotted and reacted with indicated antibodies as described in the materials and methods.
Representative immunoblots of three mice per group are presented on the left panel along with the
β-tubulin loading control. Quantitation of the bands is presented in the right panels, such that the
total levels of the parameter are presented in the left graphs and activated levels in the right graphs as
presented by the ratio of the phosphorylated molecule to its total level. (A) Total and phosphorylated
insulin receptor (IR) levels. n = 15–22 mice/group. (B) Total Akt, p-Akt Thr308, and p-Akt Ser273.
n = 6–11 mice/group. (C) Total glycogen synthase kinase-3β (GSK-3β), p-GSK-3β Tyr216, and p-GSK-3β
Ser9. n = 11–17 mice/group. ApoE3 mice are depicted in white bars and corresponding apoE4 mice
are depicted in black bars. β-tubulin was used as a loading reference, and the results presented were
normalized relative to the apoE3 control diet mice. Data were analyzed via two-way ANOVA with
Bonferroni post-hoc comparisons, and results are mean ± SEM; * p < 0.05, **p < 0.01, and *** p < 0.001.

Plasma apoE levels were measured next. This revealed that similar to the brain phenotype and as
previously described [71], the levels of plasma apoE in control apoE4 mice were significantly lower
than those of the corresponding apoE3 mice plasma apoE relative to the apoE3 control diet (0.84 ± 0.05
and 1 ± 0.04, respectively; * p < 0.05), as revealed by post-hoc comparisons of two-way ANOVA.
In contrast, there was no difference in the plasma levels of HFD-fed apoE4 and apoE3 mice, which was
due to a small increase in the levels of plasma apoE in apoE4 mice. The results of the plasma apoE
immunoblots represent two cohorts, total n = 8–10 mice/group.

The effects of the APOE genotype and HFD on apoE lipidation in the brain were assessed via blue
native gel, and the results can be seen in Figure 5C, n = 3 lanes per group, where each lane represents a
pull of three mice from the same group. In accordance with previous findings [70,72], under control
diet conditions, apoE4 mice displayed hypolipidation of apoE relative to apoE3 mice. Importantly,
the extent of lipidation of apoE in apoE3 and apoE4 mice was increased in mice exposed to the HFD,
rendering the lipidation of apoE4 HFD mice similar to that of the apoE3 control diet mice.

Taken together, these observed results show that under normal diet conditions, the levels of apoE
in apoE3 mice are significantly higher than those of apoE4 in the brain and plasma, an effect that
correlates with hypolipidation of apoE in apoE4 mice. The HFD increases apoE lipidation in both
apoE3 and apoE4 mice, and reduces brain apoE levels in apoE3 mice without further affecting apoE4
mice, but has no significant effect on the levels of apoE in the plasma of neither apoE3 nor apoE4 mice.
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Figure 5. The effects of the APOE genotype and high fat diet (HFD) on apoE lipidation and levels in the
hippocampus and plasma. Hippocampal homogenates (A) and plasma samples (B) of apoE3 and apoE4
control or HFD mice were blotted and reacted with anti-apoE Ab as described in the materials and
methods. Representative immunoblots of three mice per group are presented on the left panel along
with the loading control. Quantitation of the intensities of the apoE bands is presented in the right panel.
(A) Hippocampal apoE levels. n = 15–17 mice/group. (B) Plasma apoE levels. n = 8–10 mice/group.
(C) ApoE lipidation. Control and HFD apoE3 and apoE4 hippocampal homogenates were subjected to a
blue native gel and stained with anti-apoE Ab as described in the materials and methods. Representative
immunoblots of two mice per group are presented on the left panel. n = 3 lanes per group, each of the
lanes represents a pull of 3 separate mice of the same group. Results were normalized relative to control
diet apoE3 mice. Data were analyzed via two-way ANOVA with Bonferroni post-hoc comparisons and
results are mean ± SEM; * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Discussion

The present study examined the effects of the APOE genotype and HFD on glucose metabolism and
insulin resistance, and the extent to which they are associated with peripheral and central pathologies.
The results thus obtained revealed that under basal conditions, apoE4 mice display impaired glucose
tolerance relative to apoE3 mice while the HFD impairs apoE3 mice without significantly affecting
apoE4 mice. Complementary measurements of insulin resistance and insulin levels revealed that the
impairment of glucose tolerance in apoE4 mice maintained on a control diet is parallel to impairments
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in insulin tolerance and insulin secretion. Measurements of weight and fasting blood glucose revealed
an effect of diet and not genotype, where the HFD increased body weight and fasting blood glucose in
a time-dependent manner.

Behavioral cognitive and sensorimotor measurements revealed a similar pattern to that obtained
in the glucose tolerance measurements, in which under basal conditions, apoE4 mice are impaired
relative to apoE3 mice, and the HFD induces pathological behavioral consequences in apoE3 mice,
rendering them similar to apoE4 mice whose behavior was not affected by HFD. Diabetic neuropathy
impairments in thermal perception are associated with small-fiber-mediated sensation, and pathologies
in touch perception and motor coordination are linked to large-fiber neuropathies [36,37,73]. Therefore,
we next examined the extent to which the sensorimotor profile of the mice is affected by the APOE
genotype and diet effects on small and large fibers utilizing skin IENFD for the first [74] and sciatic
electrophysiological measurements [75] for the latter. These experiments revealed no significant effects
of either the APOE genotype or diet on these peripheral parameters, suggesting that the observations
recorded in the behavioral and sensorimotor paradigms, much like the observed cognitive phenotypes,
are driven primarily by the CNS and not by the PNS. This assertion is supported by the finding that
central insulin signaling-related parameters, particularly the activation of IR and GSK-3β, are affected
by the apoE genotype and diet in a pattern similar to that of the glucose tolerance and cognitive and
sensorimotor results. Interestingly, the associated Akt activity, which was not majorly affected by the
APOE genotype, was increased similarly by the HFD in both genotypes, suggesting that the coupling
between Akt and GSK-3β in the hippocampus is complex and governed by more than one mechanism.
Further evidence supporting CNS processes as a driving force for the observed behavioral effects
of the APOE genotype and diet was obtained by measurements of the apoE levels and lipidation.
As previously shown, in both the brain and plasma, the levels of apoE in apoE4 mice are significantly
lower than in apoE3 mice under basal conditions, effects that are accompanied by hypolipidation
of brain apoE in apoE4 mice relative to apoE3 mice [71,72,76]. Interestingly, brain apoE levels were
sensitive to both the APOE genotype and diet, seeing that the HFD reduced apoE levels in apoE3
mice, rendering them similar to apoE4 mice, which were not affected by the diet. No such effect was
observed in the peripheral plasma apoE measurements. Furthermore, subjection to the HFD resulted
in hyperlipidation of apoE, independent of genotype.

The current findings that apoE4 mice display impaired glucose and insulin tolerance as well
as reduced insulin levels following elevated blood glucose, relative to apoE3 mice under control
diet conditions, suggest that the pathological effects of apoE4 are mediated by two complementary
mechanisms: Reduced ability to secrete insulin and increased insulin resistance. These observations are
in line with a substantial body of literature showing that apoE4 is associated with various impairments in
CNS metabolism, including decreased cerebral glucose uptake as well as reductions in cerebral glucose
utilization observed in normal apoE4 individuals as young as their 20–30s [62]. Furthermore, the clinical
finding that apoE4 carriers, unlike non-carriers, do not cognitively benefit from intranasal insulin
administration is suggestive of the fact that they have increased insulin resistance [53]. The elevation
of fasting blood glucose and weight in mice of both genotypes subjected to the HFD is also compatible
with the literature [18,54] while in the present experiment weight gain tends to be less elevated in
apoE4 mice in the final weeks of the HFD, an effect that was more dramatic in other studies [54,77,78].
In accordance with previous findings [79], this effect appears to increase with age, which may be why
only a small difference was observed in our study. These findings together suggest that apoE4 carriage
can in itself be viewed as a form of cerebral metabolic dysfunction [80].

The current finding that apoE4 carriers are impaired relative to apoE3 carriers in cognitive
parameters is consistent with previous studies in mice [81–83] and humans [84–86]. The fact that
the HFD impaired apoE3 mice is consistent with many studies that have shown that WT mice are
impaired following the HFD in cognitive [87,88], sensory [89], and motor paradigms [89]. The cognitive
performance of apoE4 mice on HFDs has shown mixed results, with either increased deficits in spatial
memory [54] or no cognitive differences [18], while the observation of the current study, revealing that
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apoE4 mice are not affected by the HFD in these parameters, may be due to the strong pathological
phenotype in this model of apoE4 control diet mice, generating a floor effect in apoE4 HFD mice.

In the present study, we observed no differences in the peripheral phenotypes measured, between
young apoE3 and apoE4-TR mice in sciatic electrophysiological and footpad skin IENFD measurements,
which assess neuropathic impairments in large and small fibers, respectively. Although studies focusing
on apoE isoform-specific alterations in the PNS are scarce, these observations are in line with previous
findings [26], which reported no differences in the function or development of uninjured mouse
PNS following the expression of human apoE3 or apoE4. Specifically, Comley et al. [26] reported
that electrophysiological measurements from apoE4 mice suggested normal neuromuscular synaptic
function, without qualitative or quantitative differences in the morphology of the sciatic nerve or
neuromuscular junctions between apoE4 and apoE3 mice. It is important to note that evidence of
peripheral nerve variances between apoE3 and apoE4 exists, as Comley et al. [26] revealed that
apoE4 expression disrupts peripheral nerve regeneration and subsequent neuromuscular junction
re-innervation following nerve injury compared with apoE3.

Several studies have also studied the effects of apoE4 with or without HFD manipulation on
insulin signaling, directly implicating apoE4 in pathways of insulin signaling [80]. For example, in
both human APOE-TR mice and postmortem human brain tissue, apoE4 was found to reduce the
expression of insulin signaling proteins [64,90], and apoE4 expression in mice exaggerated impairments
in insulin signaling [80,83,91]. Traversy et al. [92] observed no difference between apoE3-TR and
apoE4-TR mice in the levels of IR in brain capillaries while Chan et al. [76] reported more IR was
immunoprecipitated with apoE3 than apoE4 in human postmortem frontal cortex AD samples. Q.R.
Ong et al. [64] reported a reduction of Akt phosphorylation at Thr308 at 32 weeks and at Ser473 at
72 weeks of age in apoE4-TR mice as compared to apoE3-TR mice. Chan et al. [93] reported that in
26-week old mice, there was no difference in the expression and phosphorylation of insulin signaling
proteins among APP, APOE3xAPP, and APOE4xAPP mouse brains while when the mice aged to
78 weeks, these proteins were markedly reduced in APP and APOE4xAPP mouse brains.

The effects of the APOE genotype and diet on APOE-TR mice have recently been reported by
Zhao et al. [48]. In line with the PNS observations reported in the current study, Zhao et al. [48] revealed
no significant differences between apoE3-TR and apoE4-TR control diet mice in skeletal muscle and liver
p-Akt (Ser473) and p-GSK3β (Ser9), indicating that basal peripheral insulin signaling remains intact in
apoE4-TR mice. Regarding CNS insulin signaling, Zhao et al. [48] observed a marked age-dependent
decrease apparent at 24 months of age but not at 12 or 4 months, accompanied by an exacerbation
of these effects following subjection to an HFD at middle age in apoE4 mice. In comparison, the
present study observed an apoE4-dependent effect on insulin signaling at 6 months of age, as shown
by measurements of the total and activated levels of IR and GSK-3β activation via Tyr216 and Ser9
phosphorylation. Seeing that the mice used in this study have a background of α-synuclein −/−,
previously shown to exacerbate apoE4 pathology at a younger age [70], the observed effects on the
insulin cascade may be due to this model’s characteristic of a young age pathological phenotype.
Another interesting variance in the results regards the effects of the HFD manipulation, where the
present study found that the HFD impairs apoE3 mice, rendering them similar to apoE4 mice in various
parameters; Zhao et al. [48] observed no effect on apoE3 mice following the HFD. In this context,
it is interesting to note that many studies have shown that HFD-induced insulin resistance impairs
control wildtype (WT) mice [91,94,95], meaning that the results revealed in the present study may be
compatible with effects of this pattern. Although some specifics of the Zhao et al. study [48] and the
current one differ, the general concept that CNS insulin signaling is affected by apoE4 while peripheral
parameters are not seems to be consistent between the two. Overall, the mixed findings presented in
the field of insulin signaling parameters may be due to the high sensitivity of signaling parameters to
age [96], gender [97], and brain area [98,99].

Regarding the mechanism underlying the observed pathological effects of apoE4, we suggest
that these may be related either to decreased levels of apoE or biochemical changes in this molecule
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following hypolipidation of apoE4. The proposed apoE-level hypothesis is based on the observations
that the impairments of the apoE3 mice following exposure to the HFD are associated with a parallel
decrease in the levels of hippocampal apoE in apoE3 mice, rendering them similar to that of apoE4 mice,
and that these impairments are similar to those of apoE4 mice maintained on a control diet. However,
since the HFD treatment also increases the lipidation of apoE in apoE4 and apoE3 mice, it is possible
that this hyperlipidation, which is presumably enriched with the diet lipids, could negatively affect
apoE3 activity and impair functions, such as cholesterol transport. Accordingly, both hypolipidation of
apoE as observed in apoE4 mice under control diet conditions and hyperlipidation of apoE, such as
that observed in the apoE3 mice following HFD treatment, impair the function of apoE. Importantly,
the finding that the effects of the apoE genotype are more pronounced in apoE levels in the brain
relative to those observed in the periphery supports the hypothesis that the presently observed effects
are triggered by decreased levels of apoE.

In conclusion, the present findings that apoE4 stimulates diabetic-related effects, such as an increase
in glucose tolerance and insulin resistance and a decrease in insulin secretion, which are associated with
further downstream distinct brain pathologies, and that apoE3 under pro-diabetic conditions of the
HFD induces similar pathological changes, suggest that diabetic mechanisms play an important role in
mediating the effects of apoE4 on brain pathology. This implies that diabetic-related therapy may be
helpful in counteracting the effects of apoE4 in AD and that anti-apoE4-related therapies [72,100] may
be beneficial in blocking the neuropathological effects of T2DM in apoE4 carriers.

4. Materials and Methods

4.1. Mice

Endogenous mouse APOE was replaced by either human APOE3 or APOE4, in order to create
APOE-TR mice by gene targeting as previously described [101]. These mice were purchased from
Taconic (Germantown, NY, USA), and were backcrossed at Taconic for eight generations after their
preparation. To minimize possible genetic drifting between the apoE4 and apoE3 mice, which
were offspring of the homozygous apoE4 and apoE3 mice generated by Taconic in 2001, they were
further crossed by us with Harlan C57Bl/6JOlaHsd mice, which unlike the standard Jackson laboratory
C57Bl/6J ApoEtm1.1(APOE∗4)Adpmc mice (Jackson Laboratories, Bar Harbor, ME, USA) wereα-syn−/−.
The resulting mice were then crossbred to yield apoE4 and apoE3 homozygous mice on an α-syn−/−

background. Accordingly, the present experiments were performed with apoE3 and apoE4 homozygous
mice on an α-synuclein −/− background, in which we have previously shown that the apoE4 phenotype
is more pronounced than in α-synuclein +/+ expressing mice [70]. These mice are referred to herein as
apoE3 and apoE4 mice, respectively. The APOE genotype of the mice was confirmed by PCR analysis
(as can be seen in supplementary materials), as previously described [102]. All experiments were
approved by the Tel-Aviv University Animal Care Committee, approval number 04-17-058 (date of
approval expiration: 07/11/2021). Every effort was made to reduce animal stress and to minimize
animal usage.

In the current study, we chose to focus on female mice, seeing that females are more susceptible to
AD than males, and the interaction between gender and apoE4 has been demonstrated in numerous
animal and human studies, resulting in the finding that apoE4-related pathology is more pronounced
in females [18,69]. Furthermore, recent findings in our lab showed that apoE4-TR female mice have a
more robust pathological phenotype than the corresponding male mice [70]. The results presented
correspond to 2 female cohorts, consisting of 4 groups: 2 genotypes (apoE3 or apoE4) X 2 diets (control
or HFD). The first cohort contained 10 mice/group and the second cohort contained 7–8 mice/group.

4.2. Diets

After weaning, at 7 weeks of age, the mice were randomized by body weight and assigned to
either a standard rodent chow diet (Teklad 2018, Envigo, Huntingdon, Cambridgeshire, UK) or an HFD
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(60% kcal, D12492, Research Diets) consumed ad libitum. Weight and blood glucose were measured
weekly following a 6-h fast, as described in the following sections. According to previous studies [103],
diabetic symptoms appear in C57BL/6 mice after a minimum of 11 weeks on the HFD. Therefore,
starting at 15 weeks on the diet, the mice underwent cognitive tests and either metabolic or motor and
sensory tests. At the age of 6 months, the mice were anesthetized with ketamine and xylazine, after
which blood samples were collected from the vena cava and mice were perfused transcardially with
phosphate-buffered saline (PBS). Their brains were then removed, and the hippocampi were further
processed for biochemical analysis.

4.3. Metabolic Tests

The mice were subjected to the GTT 15 weeks following diet initiation, and in the following week
to the ITT.

4.3.1. GTT

Glucose tolerance measurements were performed as previously described [104,105]. In brief,
following a 6-h fast, mice were weighed, and baseline blood glucose levels were measured using an
Accu-Chek® Performa glucometer (Roche, Welwyn Garden City, Hertfordshire, UK). Next, 2 g/kg body
weight of d-glucose (Merck, Darmstadt, Germany) were IP injected (e.g., 250 µL of 20% glucose solution
for a mouse weighing 25 g), and glucose levels from tail blood samples were collected and measured 15,
30, 60, and 120 min post-injection. To measure insulin levels, blood samples were collected at baseline
as well as 15 and 30 min post-injection and plasma was isolated. Plasma insulin was measured using a
Mouse Insulin detection ELISA kit (Mercodia, Uppsala, Sweden).

4.3.2. ITT

Insulin tolerance measurements were performed as previously described [104,105]. In brief, mice
were fasted for 6 h, after which they were weighed and baseline blood glucose levels were measured,
as described above. This was followed by an intraperitoneal injection of 1.5 U/kg body weight of
insulin (Humulin®-R-100, Eli Lilly, Indianapolis, IN, USA) (e.g., 375 µL of 0.1 U/mL insulin solution for
a mouse weighing 25 g). Blood glucose was measured at 15, 30, 45, 60, and 90 min following injection.

4.4. Behavioral Tests

The tests were initiated 15 weeks post the beginning of the diet administration. The mice were
first subjected to the NOR test. After a 1-week interval, they underwent the rotarod test and 3 days
later the hot plate test.

4.4.1. Short-Term Memory Measurements

This test was performed as described in [81,106] and is based on the natural tendency of rodents to
investigate a novel object. For the habituation phase, the mice were first placed in an arena (50 × 50 cm
with 40 cm high walls) in the absence of objects. After 24 h, the mice were placed back in the arena with
two identical objects (A1 and A2, respectively) for a control test. Two and a half hours later, the mice
were re-introduced to the arena in which one of the familiar objects was replaced by a novel one in
order to test short-term memory (A1 and B, respectively). All objects presented similar textures, colors,
and sizes but distinctive shapes. The behavior of the mice was then monitored using the EthoVision XT
13.0 program for 5 min, by the duration and number of visits that the mice paid to each of the objects.
The results are presented as the ratio in the percent of the time spent near the novel object relative to
the total time spent near both new and old objects, where values >0.5 are indicative of a preference for
the new object.
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4.4.2. Motor Coordination and Learning Measurements

Motor performance and learning were tested using the rotarod paradigm (Rotor-Rod; San Diego
Instruments, San Diego, CA, USA). Testing consisted of five trials in which each mouse was placed
on the rod, which accelerated from 5 to 50 RPM over the trial time of 300 s. Trials were terminated
when animals fell off the rod or the maximum time was reached. The rod was placed at a height of
45 cm, and mice fell on to a surface covered with cotton in order to reduce stress. Four mice were
tested simultaneously, separated by black plastic walls. Mice were taken out of the apparatus when
the last mouse fell. The latency to fall served as an indicator of motor performance.

4.4.3. Thermal Pain Sensation Measurements

Pain sensitivity (nociception) was assessed using the hot plate test [74]. In brief, mice were placed
in a Perspex cylinder on a heated stage maintained at 52 ◦C (NG 35150 Hot Plate; Ugo Basile, Gemonio
VA, Italy). Response time was observed by heat sensitivity behavioral changes like hind paw licking,
shaking, or jumping. The maximum time allowed on the plate was 30 s in order to prevent skin injury.

4.5. Electrophysiological Tests

Electrophysiological tests were performed on control and HFD-naive mice when mice reached
6 months of age following 18 months on either a control or HFD immediately prior to being sacrificed,
as previously described [73]. Accordingly, mice were anesthetized with ketamine (100 mg/kg) and
xylazine (10 mg/kg). Body temperature was maintained as warm by placing the mice on a heating
mat. Temperature differences were minimized by conducting the study as soon as the anesthesia had
taken effect. Electrophysiological studies were conducted on the sciatic nerve in the prone position.
CMAP responses were recorded from the gastrocnemius muscle with an active needle electrode and
a reference electrode placed at the center of the foot. Stimulation of the nerve was performed at the
ischial notch and knee with a pair of blunt needle electrodes, with the distal cathode 10 mm proximal
to the recording electrode. The ground electrode was placed between the stimulating and recording
electrodes. Supra-maximal stimulation, at a range of 3–5 mA was employed, and the low and high
frequency filters were set at 10 Hz and 10 kHz, respectively. To calculate the motor nerve conduction
velocity (MNCV), the distance between the stimulation sites was divided by the latency difference.
CMAP amplitudes were measured from the baseline to the negative peak.

4.6. Skin Biopsies for IENFD Measures

Hind footpa skin biopsies were collected, immersed for 6–8 h at 4 ◦C in Zamboni’s fixative
(2% paraformaldehyde, 0.2% picric acid in 0.1 M phosphate buffer), rinsed in 30% sucrose in PBS
solution overnight, cryoembedded in mounting media (OCT), and sectioned at 14 µm thick before
being processed for immunohistochemistry. Sections were incubated at 4 ◦C for 16–24 h with rabbit
anti-primary PGP9.5 antibody (1:200; Sigma-Aldrich, Singapore). Sections were then rinsed 3 times
in PBS and incubated with secondary anti-rabbit AlexaFluor 488 antibody, before being rinsed and
mounted. To confirm that there was no nonspecific immunoreaction, additional sections were
incubated with primary or secondary antibodies alone. Fluorescent images were collected on an
Olympus microscope with an ObserverZ1 imaging system (Zeiss, Oberkochen, Germany). Six sections
were measured for each footpad, and the average linear density of IENF was calculated according to
current guidelines [107].

4.7. Immunoblots

4.7.1. Preparation of Plasma Protein Extracts

Plasma samples were prepared as previously described [71]. In brief, plasma samples were
prepared utilizing freshly excised blood drawn from the posterior vena cava of anesthetized mice and
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collected into tubes containing 20 µL of 10% EDTA to prevent blood clotting. The blood was centrifuged
for 10 min at 3000 rpm at 4 ◦C, after which the supernatant containing the plasma lipoproteins was
collected and frozen at −70 ◦C until use.

4.7.2. Preparation of Hippocampi Protein Extracts

Hippocampi samples were prepared as previously described [108]. In brief, following excision,
the hippocampus of one freshly excised hemisphere was stored frozen at –80 ◦C. This hippocampus
was then homogenized in 200 µL of the following buffer [10 mM HEPES, pH 7, which contained 2 mM
EDTA, 2 mM EGTA, 0.5 mM DTT, protease inhibitor cocktail (Sigma-Aldrich P8340, Singapore), and
phosphatase inhibitor cocktail (Sigma-Aldrich P5726, Singapore)]. The protein concentration was
determined utilizing the BCA protein assay kit (Pierce 23225, Waltham, MA, USA). The homogenates
were then aliquoted in similar protein concentrations and stored at –80 ◦C.

4.7.3. SDS-Electrophoresis

Plasma and hippocampus samples were boiled for 10 min with 0.5% SDS and immunoblotted as
previously described [71,109]. The following Abs were used: Mouse anti-IRβ (1:1000; Cell Signaling,
Danvers, MA, USA), rabbit anti-IRβ (1:500; Cell Signaling, Danvers, MA, USA), rabbit anti-Akt (1:000;
Cell Signaling, Danvers, MA, USA), rabbit anti-p Ser473 Akt (1:1000; Cell Signaling, Danvers, MA, USA),
rabbit anti-p Thr308 Akt (1:1000; Cell Signaling, Danvers, MA, USA), mouse anti-GSK-3α/β (1:1000;
Santa Cruz, Santa Cruz, CA, USA), mouse anti-p tyr216 GSK-3α/β (1:500; Santa Cruz, Santa Cruz,
CA, USA), mouse anti-p Ser9 GSK-3β (1:1000; Santa Cruz, Santa Cruz, CA, USA), and goat anti-apoE
(1:10,000; Millipore, Burlington, MA, USA). It is important to note that IR, Akt, and GSK-3β were
assessed utilizing an antibody whose immunoreactivity corresponded to the total level of the molecule
as well as the indicated phosphorylation-dependent molecule antibodies whose immunoreactivity
corresponded to the indicated phosphorylated site. Membranes were scanned utilizing the ChemiDoc
Touch imaging system (Bio-Rad, Hercules, CA, USA), following which blot intensity was quantified
using Image Lab Software (Bio-Rad, Hercules, CA, USA). β-tubulin levels (mouse anti-β-tubulin,
1:1000; Sigma-Aldrich, Singapore) were used as gel-loading controls for hippocampi homogenates,
seeing that their intensities showed similar levels in the different groups. Plasma blots were stained
with 0.2% Ponceau S for the loading control. All results were normalized and presented relative to the
control diet apoE3 mice.

4.7.4. Blue Native Gels

For nondenaturing blue native gels, the hippocampi homogenates were run on 4%–16% gels
purchased from Novex in the NativePAGE Novex Bis-Tris Gel System according to the manufacturer’s
instructions, and as previously described [70]. Gels were next transferred to PVDF membranes and
stained with goat anti-apoE Ab (1:10,000; Millipore, Burlington, MA, USA). The immunoblot bands
were all visualized using the ECL chemiluminescent substrate (Pierce, Waltham, MA, USA), after
which their intensity was visualized using the ChemiDoc Touch imaging system (Bio-Rad, Hercules,
CA, USA).

4.8. Statistical Analysis

The experimental design consisted of 2 genotypes (apoE3 and apoE4) and 2 diets (control and
HFD). All data are presented as mean ± standard error of measurement. The results of each parameter
were normalized relative to the apoE3 control diet mice and analyzed via GraphPad Prism 5.3 software.
Multiple groups and/or time points were analyzed utilizing two-way ANOVA, and when appropriate
two-way ANOVA repeated measurements (time x groups). This was followed by a planned Bonferroni
post-hoc test to determine the differential effects of diets in apoE3 and apoE4 mice. ITT measurements
were analyzed by Student’s t-test in order to determine differences between APOE genotypes. Values
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of p < 0.05 were considered statistically significant. All graphs were prepared by GraphPad prism
5.3 software.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/4/1289/s1.
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Abbreviations

AD Alzheimer’s disease
APP Amyloid precursor protein
APOE Apolipoprotein E gene
apoE4 Apolipoprotein E4 isoform
PNS Peripheral nervous system
NMJ Neuromuscular Junction
T2DM Type 2 Diabetes Miletus
DPN Diabetic peripheral neuropathy
CNS Central nervous system
IR Insulin Receptor
GSK-3β Glycogen synthase kinase-3β
GS Glycogen Synthase
HFD High Fat Diet
TR Targeted replacement
PBS Phosphate buffered saline
IP Intraperitoneally
GTT Glucose tolerance test
AUC Area under the curve
ITT Insulin tolerance test
NOR Novel Object Recognition
MNCV Motor nerve conduction velocity
IENFD Intra-epidermal nerve fiber density
CMAP Compound muscle action potential
WT Wild Type
mTORC2 Mechanistic target of rapamycin complex 2
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