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Abstract: Circular RNAs (circRNAs) have recently emerged as a new class of RNAs, highly enriched
in the brain and very stable within cells, exosomes and body fluids. To analyze their involvement
in glioblastoma multiforme (GBM) pathogenesis, we assayed the expression of twelve circRNAs,
physiologically enriched in several regions of the brain, through real-time PCR in a cohort of fifty-six
GBM patient biopsies and seven normal brain parenchymas. We focused on hsa_circ_0001445
(circSMARCA5): it was significantly downregulated in GBM biopsies as compared to normal brain
tissues (p-value < 0.00001, student’s t-test), contrary to its linear isoform counterpart that did not
show any differential expression (p-value = 0.694, student’s t-test). Analysis of a public dataset
revealed a negative correlation between the expression of circSMARCA5 and glioma’s histological
grade, suggesting its potential negative role in the progression to malignancy. Overexpressing
circSMARCA5 in U87MG cells significantly decreased their migration, but not their proliferation
rate. In silico scanning of circSMARCA5 sequence revealed an enrichment in binding motifs for
several RNA binding proteins (RBPs), specifically involved in splicing. Among them, serine and
arginine rich splicing factor 1 (SRSF1), a splicing factor known to be a positive controller of cell
migration and known to be overexpressed in GBM, was predicted to bind circSMARCA5 by three
different prediction tools. Direct interaction between circSMARCA5 and SRSF1 is supported by
enhanced UV crosslinking and immunoprecipitation (eCLIP) data for SRSF1 in K562 cells from
Encyclopedia of DNA Elements (ENCODE). Consistently, U87MG overexpressing circSMARCA5
showed an increased expression of serine and arginine rich splicing factor 3 (SRSF3) RNA isoform
containing exon 4, normally skipped in a SRSF1-dependent manner, resulting in a non-productive
non-sense mediated decay (NMD) substrate. Interestingly, SRSF3 is known to interplay with two
other splicing factors, polypyrimidine tract binding protein 1 (PTBP1) and polypyrimidine tract
binding protein 2 (PTBP2), that positively regulate glioma cells migration. Collectively, our data show
circSMARCA5 as a promising druggable tumor suppressor in GBM and suggest that it may exert its
function by tethering the RBP SRSF1.
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1. Introduction

Circular RNAs (circRNAs) have recently been established as a comprehensive class of RNAs
generated by non-linear back-splicing [1–6]. CircRNAs are characterized by covalently joined
5′- and 3′-ends: this peculiarity renders them intrinsically resistant to degradation mediated by
exonucleases and, consequently, more stable than linear isoform counterparts, both inside and
outside the cells [7]. CircRNAs show species-, cell type- and developmental stage-specific expression
patterns [8–10]: in animals, they are highly enriched in neural tissues [11,12] and furthermore detectable
in several biological fluids, thereby useful as non-invasive robust biomarkers [13–17]. Notwithstanding
dysregulation of circRNA expression has been highlighted in several types of cancer, most deregulated
circRNAs remain functionally undisclosed till today [18–20]. Most studies describe circRNAs as
microRNA (miRNA) sponges, however, for some of them, a role as modulators of RNA binding
proteins (RBPs) has also been suggested [21–28]. To pinpoint functional involvement of circRNAs
in glioblastoma multiforme (GBM), we chose twelve circRNAs abundantly expressed in human
brain and whose expression is known to be modulated during biological processes linked to
oncogenesis (e.g., differentiation, epithelial-to-mesenchymal transition, etc.). In this study, we focused
on circSMARCA5, the most downregulated circRNA (among the twelve analyzed) in GBM samples as
compared to healthy brain parenchyma, and characterized it as a novel tumor-suppressor, regulating
the migration of GBM cells. Our data indicate that circSMARCA5 may exert its function by modulating
the RNA binding protein serine and arginine rich splicing factor 1 (SRSF1), a known oncoprotein
involved in positive regulation of cell migration [29].

2. Results

2.1. CircRNA Expression Profile

Expression profile of twelve selected circRNAs in a training set of five fresh-frozen GBM
samples matched with adjacent non-tumor tissues revealed a significant downregulation
of hsa_circ_0001649/circSHPRH (median fold-change = −2.18, p-value = 0.015) and
hsa_circ_0001445/circSMARCA5 (median fold-change = −2.42, p-value = 0.017) (Figure 1A).
Here, we focus on circSMARCA5, because of its higher abundance in several regions of the brain
as well in GBM biopsies with respect to circSHPRH, as reported by circBase and by Song et al. [30].
Downregulation of circSMARCA5 was confirmed in a test set cohort of fifty-six formalin-fixed paraffin
embedded (FFPE) GBM biopsies and seven controls (median fold-change = −5.83, p-value < 0.00001).
Interestingly, the expression of the linear isoform counterpart did not vary, suggesting a specific
dysregulation of the circular isoform (Figure 1B). CircSMARCA5 down expression was also observed
in five GBM cell lines with respect to healthy astrocytes, suggesting a contribution of this cell type to
circSMARCA5 dysregulation in GBM (Figure S1) (see Section 3).
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Figure 1. Expression of candidate circRNAs in GBM and control (NORM) samples. (A) Heat map 
representing the expression profile of twelve candidate circRNAs in GBM and control samples. 
Expression values (reported as DCt) higher and lower than those of the control are shown in yellow 
and blue, respectively. circSHPRH and circSMARCA5 are in bold, due to their significant 
downregulation (p-value circSHPRH = 0.015, p-value circSMARCA5 = 0.017, n = 5, Student’s t-test). 
(B) Box-plots representing the expression of circSMARCA5 and linearSMARCA5 in GBM and control 
samples. Expression values are reported as −DCt relative to (mRNA) TBP (p-values are shown in the 
figure, nGBM = 56, nNORM = 7, Student’s t-test). 

2.2. circSMARCA5 Expression Is Linked to Progression through Malignancy 

Data reported in the previous paragraph were reproducible in an independent dataset made of 
twenty GBM, three grade III glioma, four grade II glioma, thirteen normal brain cortex and six normal 
cerebellum [30]: specifically, this dataset showed that a decreased expression of circSMARCA5 
matched with an increase in glioma grade malignancy (Figure 2). 

 
Figure 2. Correlation between circSMARCA5 expression and glioma grade malignancy. Box-plot 
representing circSMARCA5 expression in three grade tumor groups (GBM, Grade III—GIII- and 
Grade II—GII-gliomas) and two different control groups (Cortex and Cerebellum). Expression values 
are reported as reads per million mapped reads (RPM) (* p-value < 0.05, ANOVA test). 

Figure 1. Expression of candidate circRNAs in GBM and control (NORM) samples. (A) Heat map
representing the expression profile of twelve candidate circRNAs in GBM and control samples.
Expression values (reported as DCt) higher and lower than those of the control are shown in yellow and
blue, respectively. circSHPRH and circSMARCA5 are in bold, due to their significant downregulation
(p-value circSHPRH = 0.015, p-value circSMARCA5 = 0.017, n = 5, Student’s t-test). (B) Box-plots
representing the expression of circSMARCA5 and linearSMARCA5 in GBM and control samples.
Expression values are reported as −DCt relative to (mRNA) TBP (p-values are shown in the figure,
nGBM = 56, nNORM = 7, Student’s t-test).

2.2. circSMARCA5 Expression Is Linked to Progression through Malignancy

Data reported in the previous paragraph were reproducible in an independent dataset made
of twenty GBM, three grade III glioma, four grade II glioma, thirteen normal brain cortex and six
normal cerebellum [30]: specifically, this dataset showed that a decreased expression of circSMARCA5
matched with an increase in glioma grade malignancy (Figure 2).
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Figure 2. Correlation between circSMARCA5 expression and glioma grade malignancy. Box-plot
representing circSMARCA5 expression in three grade tumor groups (GBM, Grade III—GIII- and Grade
II—GII-gliomas) and two different control groups (Cortex and Cerebellum). Expression values are
reported as reads per million mapped reads (RPM) (* p-value < 0.05, ANOVA test).
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2.3. CircSMARCA5 Cloning and Expression in GBM Cells

pcDNA3_circSMARCA5 transfected in U87MG cells produced the circular isoform of SMARCA5,
as revealed by Northern blotting (Figure S2A). The introns flanking the two exons of SMARCA5
pre-mRNA involved in circularization contain a 132 nucleotides long conserved inverted repeat
(cloned within pcDNA3_circSMARCA5 vector) with a 77% of complementarity that is most probably
involved in circSMARCA5 biogenesis (Figure S2B). Based on our analyses, a very small (30 nucleotides
long), probably not functional, inverted repeat appeared in genomes of lagomorpha and rodentia for
the first time during evolution, whereas a longer, most probably functional, inverted repeat emerged in
primate genomes (Table S1). Consistently, circSMARCA5 has not been annotated in mouse according
to CircBase, suggesting that circSMARCA5 is primate specific and that biogenesis depends on the long
inverted repeat.

2.4. CircSMARCA5 Inhibits GBM Cells Migration without Altering Cell Viability

Overexpression of pcDNA3_circSMARCA5 in U87MG revealed significant decrease of migration
rate as compared to negative control (U87MG transfected with pcDNA3) (average fold change =
−2.41, p-value = 0.015) (Figure 3A). Viability of U87MG appeared not to be affected under the same
experimental conditions (Figure 3B).
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Figure 3. Effects of circSMARCA5 overexpression on migration and viability of U87MG cells.
(A) Migration of untransfected (UC), pcDNA3 and pcDNA3_circSMARCA5 (circSMARCA5)
transfected U87MG cells. Cells were stained with Hoechst® 33342 at a final concentration of
5 µg/mL (upper panel). Quantitative data are reported as the number of pixel within the detection
area (lower panel, * p-value < 0.05, n = 3, Student’s t-test). (B) Viability of untransfected (UC),
pcDNA3 and pcDNA3_circSMARCA5 (circSMARCA5) transfected U87MG cells. Data are reported as
baseline-corrected absorbance at 580 nm (n = 6).
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2.5. CircSMARCA5 Is Predicted to Function as Modulator of Several RBPs

To investigate the mechanism through which circSMARCA5 may exert its function, we scanned
its sequence for motifs predicted to be bound by miRNAs or RBPs. Probably due to the short length
(only 269 nucleotides), no significant enrichment of miRNA binding sites was observed. On the
contrary, circSMARCA5 appeared to be enriched in RBP binding sites. Among the RBPs, SRSF1 was
predicted to bind circSMARCA5 at multiple sites, by three different tools (Table S2). This prediction
was also supported by enhanced UV crosslinking and immunoprecipitation (eCLIP) data on K562,
available in Encyclopedia of DNA Elements (ENCODE) (Figure 4).
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2.6. Splicing of Serine and Arginine Rich Splicing Factor 3 (SRSF3) Is Regulated by CircSMARCA5

To investigate the possible functional role of circSMARCA5 as regulator of splicing, we transfected
U87MG cells with pcDNA3_circSMARCA5 vector and analyzed the expression of two isoforms of
(mRNA) SRSF3, with or without exon 4 skipped. It is known that the inclusion of exon 4 within SRSF3
pre-mRNA is controlled by SRSF1 during splicing [31]. We observed an increase in the expression
specifically of the (mRNA) SRSF3 isoform including exon 4 in U87MG overexpressing circSMARCA5
(Figure 5A). These data are consistent with a significant upregulation of (mRNA) SRSF3 with skipped
exon 4 (SRSF3 No Ex4) in the same cohort of GBM biopsies exhibiting a significant downregulation
of circSMARCA5 (Figure 5B). Unexpectedly, (mRNA) SRSF3 including exon 4 (SRSF3 Ex4) was
also upregulated in GBM biopsies (Figure 5B) but, consistently with data obtained in U87MG cells
overexpressing circSMARCA5, the SRSF3 Ex4/SRSF3 No Ex4 ratio positively correlated with the
expression of circSMARCA5 in GBM biopsies (Figure 5C) (see Section 3).
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Figure 5. circSMARCA5 stimulates inclusion of exon 4 within SRSF3 mRNA. Graphs representing the
expression of the mRNA of the splicing factor SRFS3 in: (A) U87MG overexpressing circSMARCA5;
and (B,C) GBM biopsies. (A) U87MG overexpressing circSMARCA5 show a significant increased
expression of SRSF3 containing exon 4 (SRSF3 Ex4) (** p-value < 0.01, n = 3, Student’s t-test). Data are
reported as fold-change (FC) versus untransfected cells (UC). (B) Both SRSF3 No Ex4 and SRSF3 Ex4
are significantly overexpressed in GBM biopsies (GBM) with respect to normal brain parenchyma
(NORM) (* p-value < 0.05; ** p-value < 0.01, nGBM = 56, nNORM = 7, Student’s t-test). Expression values
are reported as −DCt relative to (mRNA) TBP.(C) Correlation between SRSF3 Ex4/SRSF3 No Ex4 ratio
and circSMARCA5 (r-value = 0.36, p-value = 0.004, Spearman’s correlation test). Data are represented
as DCt relative to (mRNA) TBP in a scatter plot.

3. Discussion

CircRNAs are on the forefront of basic and applied research but, notwithstanding the
accumulating evidence of their potential interest as critical regulators of gene expression, only a few
studies describe the molecular mechanisms through which they work. In this paper, we focused
on hsa_circ_0001445/circSMARCA5, an exonic 269-nucleotide-long circRNA, highly enriched in
human brain (http://www.circbase.org/). We found that its expression decreases in GBM cells
with respect to normal brain parenchyma, independently from the expression level of the linear
isoform. Moreover, astrocytes (which is the most representative cell type in GBM biopsies) most likely
contribute to altered expression of circSMARCA5 in GBM (Figure S1), although it is not possible to
exclude that also other cell types—e.g., Tumor Associated Macrophages (TAMs)—may impact on
circSMARCA5 dysregulation. This result matches with a previously described increase of circular to
linear transcript ratios, observed during differentiation of cardiomyocytes [32] and, together with the
inverse relationship between circSMARCA5 expression and glioma malignancy grade, this collectively
suggests a functional involvement in GBM. These data, together with Receiver Operating Characteristic
(ROC) curves data (Figure S3), also suggest circSMARCA5 as a candidate GBM biomarker, although the
use of the term biomarker is referred to a scanty cohort of patients at present and should be re-evaluated
in a wider case-control study. To characterize the effects of circSMARCA5 expression, we first cloned its
sequence, together with a segment of the introns upstream and downstream the exons that circularize,
into an expression vector. Flanking intronic sequences contained an inverted repeat of 132 nucleotides
showing 77% complementarity: these sequences are most probably responsible for the biogenesis
of circSMARCA5 and are conserved among primates (Figure S4), suggesting a primate-specific
expression of this circRNA. According to functional analysis, circSMARCA5 negatively regulates
GBM cell migration. Based on further in vitro and in silico characterization, we also speculate that
circSMARCA5 may exert its function by disrupting splicing of GBM cells, specifically by modulating
the SRSF1 splicing factor. This hypothesis is supported by eCLIP data from ENCODE (Figure 4) as
well as by the circSMARCA5-mediated changes in (mRNA) SRSF3 splicing pattern (Figure 5A) and by

http://www.circbase.org/
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data on GBM biopsies (Figure 5B,C). Based on our data of circSMARCA5 modulation (Figure 5A) and
according to Jumaa et al. and Jihua et al. [31,33], we hypothesize that circSMARCA5 downregulation in
GBM biopsies, associated with upregulation of SRSF1 (Figure S5), may promote the skipping of exon 4
in SRSF3 pre-mRNA. At the same time, increased levels of functional SRSF3 protein may determine the
increased expression of (mRNA) SRSF3 containing exon 4 (which results in a non-productive non-sense
mediated decay (NMD) substrate [34,35]), in a self-regulatory manner (Figure 5B). Despite the increased
expression of both (mRNA) SRSF3 isoforms in GBM biopsies compared to normal brain parenchyma,
we observe a significant positive correlation between SRSF3 Ex4/SRSF3 No Ex4 ratio and circSMARCA5
expression (Figure 5C). These data support our hypotheses that circSMARCA5 may indirectly regulate
the expression of (mRNA) SRSF3 isoforms, by tethering SRSF1, and, in turn, functional SRSF3 protein
(synthesized from SRSF3 No Ex4) may positively regulate the expression of SRSF3 Ex4, which is
normally expressed at very low levels within cells (Figure S6). Often the networks involved in gene
regulation within cells are intricate, so we do not exclude that other nodes (in addition to circSMARCA5)
may contribute in regulating the expression of (mRNA) SRSF3 isoforms within GBM cells. Interestingly,
SRSF1 is known to regulate a plethora of biological functions, further to splicing, within cells [36]
and is located in the middle of a self-regulatory network involving several splicing factors such as
PTBP1 and SRSF3 that act as known oncoproteins in different types of cancer [37]. Most specifically,
splicing pattern of (mRNA) SRSF3 is defined by SRSF1 and SRSF3 itself regulates the expression of
PTBP1 whose overexpression is known to positively regulate GBM cells migration [38]. Conclusively,
circSMARCA5 is significantly downregulated in GBM and it may exert its function by modulating the
activity of SRSF1 with subsequent effects on SRSF3 and PTBP1 splicing and expression. An in-depth
study of the interaction between circSMARCA5 and SRSF1 and its downstream network within
GBM cells and to strengthen the possible use of circSMARCA5 as GBM biomarker by extending the
case-control study, will represent the natural continuation of this project.

4. Materials and Methods

4.1. GBM Specimens and Cell Lines

GBM biopsies from five fresh-frozen (training set) and fifty-six FFPE (test set) samples were
diagnosed by at least three experienced pathologists, according to the 2007 WHO criteria [39].
Each sample contained more than 90% of cancer tissue. Normal brain parenchyma was obtained from
area surrounding the tumor that appeared negative to 5-aminolevulinic acid (5-ALA) fluorescence
during surgery, from seven patients. Written informed consent was received from participants prior to
inclusion in the study. Absence of infiltration of cancer cells within normal brain parenchyma was also
confirmed by microscopy analysis performed by at least three experienced pathologists. Additionally,
the commercially available FirstChoice® Human Brain Reference RNA (Ambion, Austin, TX, USA)
and Human Astrocyte Total RNA (ScienCell Research Laboratories®, San Diego, CA, USA) were used
as control healthy tissues. Age, sex and clinical features of the analyzed tumor samples and healthy
controls are reported in Table 1. Human GBM cell lines A172, CAS1, DBTRG, SNB19 and U87MG were
cultured as previously described [19].

Table 1. Clinical data of GBM and control samples.

Type of Samples N◦ of Samples Mean Age
(Years ± StdDev) Sex Mean Overall

Survival (Months)
Preoperative Tumor

Volume (mm3)

M F
Training set (Fresh-frozen

biopsies) 10 60.5 ± 12.1 5 5 19.1 ± 7.2 39.9 ± 11.8

Test set (FFPE biopsies) 56 62 ± 12.7 33 23 17 ± 14.2 28.2 ± 9.2
Normal Brain Parenchyma 7 60.4 ± 11.1 2 5
FirstChoice® Human Brain

Reference Total RNA
1 (commercially

available) 68.3 ± 15 13 10
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4.2. Immunohistochemistry

Immunohistochemical analysis, incubation with biotinylated anti-rabbit secondary antibody
and immunoreaction visualization were performed as previously described [40]. Rabbit polyclonal
antibody against GFAP (DAKO, Glostrup, Denmark) was used at a dilution 1:7000. GFAP-positive
(GFAP+) cells percentage was evaluated in the highest immunoreactivity fields. It was determined by
dividing the number of positive staining cells by 1000 cells. Cells were considered to be positive if
there was any cytoplasmic staining present.

4.3. Constructs and Transfections

A 1450 bp PCR amplified fragment of the human genome, comprising exons 15 and 16 of
SMARCA5 (the two exons that circularize generating circSMARCA5), the intron between them and
440 bp upstream exon 15 and 546 bp downstream exon 16, was inserted in pcDNA3 vector (Figure S7)
after digestion with BamHI and ApaI. U87MG cells were transfected with Lipofectamine 2000 (Thermo
Fisher Scientific, Waltham, MA, USA), according to supplier’s protocol. Transfection efficiencies of
more than 80% were achieved.

4.4. RNA Extraction

Within 30 min from surgical resection, biopsies were collected in sterile tubes on ice, washed in
cold sterile PBS to eliminate any blood residue and stored in RNAlater® Stabilization Solution
(Thermo Fisher Scientific) for 16 h at 4 ◦C. Biopsies were then either fresh-frozen or formalin-fixed and
paraffin embedded and stored until their processing. RNA from fresh-frozen and FFPE biopsies was
extracted by using TRIzol® and RecoverAll® kits (Thermo Fisher Scientific), respectively, according to
manufacturer’s instructions and quantified both through spectrophotometer and Qubit™ fluorometer
(Thermo Fisher Scientific).

4.5. CircRNA Candidates Selection and Primer Design

Manual curation of scientific papers, allowed us to select candidate circRNAs, based on their
association with at least one of the following biological processes: (i) regulation of neuronal differentiation;
(ii) epithelial-to-mesenchymal (EMT) transition; and (iii) cell proliferation (specifically referred to GBM
cells or as general process). All selected circRNA transcripts had to be expressed (and preferentially
enriched) in human brain, according to RNA Seq data stored in circBase (http://www.circbase.org/).
Candidate circRNAs assayed in this study are reported in Table 2. Both convergent (detecting linear
isoforms) and divergent (detecting circular RNAs) primers were designed through the tool NCBI primer
blast. Primer pairs were tested in silico and all those primer pairs that recognized more than one circular
isoforms produced by the same host gene were discarded. Primer pairs used in this study are reported in
Table S3.

Table 2. Candidate circRNAs.

# Candidate circRNA
(circBase ID)

Parental Gene
Symbol

Known Modulation or Function of circRNA
Expression in Specific Cell Context Source (PMID)

1 hsa_circ_0028270 ATXN2
Upregulated during EMT. This circRNA is also
highly expressed in several SNC districts
(see PMID: 25921068)

25768908

2 hsa_circ_0008702 GNB1
Downregulated during EMT. This circRNA is also
highly expressed in several SNC districts
(see PMID: 25921068)

25768908

3 hsa_circ_0000284 HIPK3 Involved in cell growth. Highly expressed in
normal Brain 27050392

4 hsa_circ_0008002 POLE2
Upregulated during EMT. This circRNA is also
highly expressed in several SNC districts
(see PMID: 25921068)

25768908

http://www.circbase.org/
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Table 2. Cont.

# Candidate circRNA
(circBase ID)

Parental Gene
Symbol

Known Modulation or Function of circRNA
Expression in Specific Cell Context Source (PMID)

5 hsa_circ_0132250 RIMS1 Downregulated in GBM vs. Normal Brain
(another dataset) 26873924

6 hsa_circ_0099634 Rmst
LncRNA Rmst (host gene of the same name
circ_Rmst) regulates neuronal differentiation
in mouse

25921068

7 hsa_circ_0054598 RTN4 Upregulated during neuronal differentiation both in
humans and mice 25921068

8 hsa_circ_0001649 SHPRH
Upregulated during EMT. This circRNA is also
highly expressed in several SNC districts
(see PMID: 25921068)

25768908

9 hsa_circ_0003694 SMAD2
Upregulated during EMT. This circRNA is also
highly expressed in several SNC districts
(see PMID: 25921068)

25768908

10 hsa_circ_0001445 SMARCA5
Upregulated during EMT. This circRNA is also
highly expressed in several SNC districts
(see PMID: 25921068)

25768908

11 hsa_circ_0073237 VCAN Upregulated in GBM vs. Normal Brain
(another dataset) 26873924

12 hsa_circ_0004383 ZNF292

Upregulated in HUVEC under hypoxia. Its silencing
reduces endothelial cell proliferation and suppresses
tube formation by inhibiting glioma cell proliferation
and cell cycle progression in human glioma U87MG
and U251 cells

26377962; 27613831

4.6. Northern Blotting

Ten micrograms of whole cell RNA were loaded on a 1.2% denaturing agarose gel. Transfer to
the membrane, labelling of probes, hybridization and detection were conducted as previously
described [21].

4.7. qRT-PCR

Total RNA was reverse-transcribed in cDNA and amplified using gene-specific primers either in
two steps, by MLV-RT (Thermo Fisher Scientific) using random hexamer primers and LightCycler®

480 SYBR Green I Master (Roche Molecular Systems, Inc., Pleasanton, CA, USA), or in one step,
using RNA-to-Ct™ 1-Step Kit (Thermo Fisher Scientific). Quantitative PCR was performed on either
7900HT Fast Real-Time PCR System (Thermo Fisher Scientific) or LightCycler 480 (Roche Molecular
Systems, Inc.), according to supplier’s protocol. TBP and GAPDH were used as endogenous control
genes. The relative amount of gene expression and the fold change for each transcript were calculated
according to 2−∆∆Ct method [41].

4.8. Cell Migration Assay

Cell migration was assessed using Oris™ Cell Migration Assay (Platypus Technologies, Madison,
WI, USA), as previously described [42]. Briefly, thirty-five thousand cells per well were seeded in
the migration ninety-six wells plate with the detection mask attached at the bottom and the stoppers
placed. Twenty-four hours after seeding, cells were transfected and grown for other 24 h in a serum
free medium. After this time, the stoppers were removed and migration rate was revealed in the
detection zone after 24 h by staining the cells with Hoechst® 33342 at a final concentration of 5 µg/mL.
Migrated cells were quantified through ImageJ software v. 1.51.

4.9. Cell Viability Assay

Cell viability was measured using MTT (3(4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazoliumbromide),
as previously described [43]. Briefly, twenty-four thousand cells per well were seeded in a ninety-six
wells plate, grown for 24 h and then transfected for other 24 h. Viability was assessed reading
absorbance at 580 nm 24 h, 48 h, 72 h and 96 h after transfection.
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4.10. In Silico Analysis

RBP binding site predictions within circSMARCA5 sequence were done by providing the
circSMARCA5 FASTA sequence as input in RBPmap [44], ATTRACT (https://attract.cnic.es/index)
and catRapid (http://service.tartaglialab.com/page/catrapid_group) online tools, respectively.
Inverted repeats were retrieved using EMBOSS einverted tool (http://emboss.bioinformatics.nl/
cgi-bin/emboss/einverted). UCSC (https://genome.ucsc.edu/) and ClustalW2 (https://www.ebi.ac.
uk/Tools/msa/clustalw2/) were used to assess conservation among sequences.

4.11. eCLIP Analysis

Bam-files (accessions ENCFF913MGS, ENCFF374XWQ, and ENCFF833PXB) were downloaded
from http://www.encodeproject.org and indexed with samtools. Read densities were visualized using
the IGV browser and analyzed using the pysam module in python.

4.12. TCGA Data

TCGA GBM RNA-seq data were retrieved from Cancer RNA-Seq Nexus database (http://syslab4.
nchu.edu.tw/).

4.13. Nomenclature of Genes and Proteins

Genes, mRNAs and proteins are named according to the guidelines set by Human Gene
Nomenclature [45].

4.14. Statistical Analyses

Unless otherwise specified, statistical significance was assessed by two-tailed student’s t-test.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/2079-6382/19/2/480/s1.
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