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Abstract: Bioactive peptides are considered the new generation of biologically active regulators
that not only prevent the mechanism of oxidation and microbial degradation in foods but also
enhanced the treatment of various diseases and disorders, thus increasing quality of life. This review
article emphasizes recent advances in bioactive peptide technology, such as: (i) new strategies for
transforming bioactive peptides from residual waste into added-value products; (ii) nanotechnology
for the encapsulation, protection and release of controlled peptides; and (iii) use of techniques of
large-scale recovery and purification of peptides aiming at future applications to pharmaceutical and
food industries.
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1. Introduction

Bioactive peptides are compounds that exhibit an effect on body functions or conditions and may
influence human health [1]. They differ widely in their amino acid composition, chemical structure
and, therefore, in their biological function. These compounds frequently have cholesterol-lowering
effects, besides antiprotozoal, antiviral, antithrombotic, antioxidant, antihypertensive and antimicrobial
activities [2–5], which make them attractive for application to foods and pharmaceuticals.

Bioactive peptides may contain from three to 20 amino acid residues per molecule. They may be
free or encrypted within the protein sequence. Encrypted peptides become active when released from
the protein sequence [6,7] mostly by acid and alkaline chemical hydrolysis [8], proteolytic action of
microorganisms or enzymatic hydrolysis of proteins. However, the last two are most widely used for
food and pharmaceutical industrial applications [9].

Most reported peptides are derived from expensive protein matrixes (e.g., food), which in most
cases make their application unfeasible. Processes that do not result in negative environmental impacts
(green processes) have currently stood out since they aim at the use of agricultural waste to replace
non-renewable resources. Waste generated by agro-industries is a protein-rich source and has become
an alternative for obtaining compounds with bioactivity, mainly from protein hydrolysates.

After bioactive peptides have been obtained and have proven their power to act, they can be
applied to food or drugs as bioactive agents. However, for commercial use, these compounds must be
purified. To explore their physicochemical properties and evaluate their bioactivities the downstream
process of peptides with functional properties are also very important [10].
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In addition, the activity of bioactive peptides can be reduced by their susceptibility to proteolytic
degradation or undesirable interactions with other compounds. Since most of the biological processes
occur at the nanoscale, nanoparticulate technology has a promising future in developing novel
preventive, diagnostic and therapeutic agents such as bioactive peptides.

The use of nanoparticles for peptides encapsulation is very important to protect these
biomolecules [11], thus, providing higher therapeutic efficacy with progressive and controlled release
of the drug during the degradation of the matrix [12]. Encapsulation may also allow the development
of delivery systems [13] by improving stability [11], increasing residence time in the circulation and
significantly decreasing toxicity [12].

This review concerns the novel approach for producing bioactive peptides from protein-rich waste.
Some issues, such as recovery, purification process and nanoencapsulation for efficient industrial-scale
production of bioactive peptides, have also been highlighted.

2. Peptides

The role of proteins has been widely known as physiologically active components in the diet. In
addition, proteins have regions inside the molecule that perform both the protection and regulation of
biological functions. These specific protein fragments, which are denominated peptides, may have a
positive effect on body functions or conditions and affect human health positively [1,14].

Peptides can naturally occur in raw food materials and exert their physiological action directly.
The synthesis of natural peptides may occur through ribosomal and nonribosomal mechanisms [15].
Furthermore, peptides can occur in an encrypted form, in which the bioactive molecule is inactive or
in latent form within the sequence of the protein, and can be released and activated by proteolysis or
several other techniques [16]. Bioactive peptides affect numerous biological processes, thus yielding
behavioral, neurological, hormonal, nutritional, gastrointestinal effects, hyperglycemic and anti-tumor
activities [17–22].

Despite their positive effect on body functions, a few peptides, such as the ones obtained from
Amanita (fungal basidiomycetes), were identified as producers of toxic effects on a variety of cells; their
ingestion can lead to death [23]. Furthermore, other toxic peptides were associated to the formation of
toxic aggregates in Alzheimer's disease [24,25] and celiac disease [26,27], among others.

In this review, just encrypted peptides with positive effect on body functions will be discussed
because of their potential low cost and ease to be obtained from low cost raw material which could
cause environmental impact if it were disposed of inappropriately.

Peptides may contain from three to 20 amino acid residues per molecule [6,7] and differ widely in
their chemical structure; hence, in their biological function. However, they have some characteristics
in common: they are organic substances, usually of low molecular mass and have protective action on
health when they are found in the diet in significant amounts.

In addition, they may have antiprotozoal, antiviral and antithrombotic activity, thus, reducing
cholesterol levels and body mass [9,28], and even antioxidant, antihypertensive and antimicrobial
activity [2–4,29–32], which makes them attractive for application to foods and pharmaceuticals.

The commercial market for peptides and proteins drugs has been estimated to be
>$40 billion/year [33]. Annual sales of peptide drugs are growing at accelerated pace, about
$20 billion/year, corresponding approximately 2% of the huge drug market [34].

Encrypted peptides can be found in animal and plant sources, such as milk, dairy products, eggs,
fish, oysters, cereals (rice, wheat, buckwheat, barley and corn), soybeans, radish seeds [3,35–37] and
other protein-rich sources.

Antioxidant peptides may be applied to oxidative processes since the oxidation results in the
production of free radicals (O´2 , OH, H2O2) during the metabolism and respiration in aerobic organisms.
When they are produced in excess and are not eliminated, free radicals can attack the nearest molecules
by subtracting electrons and starting a chain reaction in which a molecule without an electron attacks
other molecules, and so on [38]. Free radicals play a critical role in health-related disorders and can
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lead to heart disease, atherosclerosis, diabetes, cancer and neurological diseases [39]. In food, they may
result in the deterioration of quality attributes such as flavor, color and texture [40].

The antioxidant activity of peptides is related to their composition, hydrophobicity, structure and
ability to delay or prevent oxidative processes from the donation of electrons, with stabilization of the
free radical, which remains in the structure of antioxidant rather than in the reaction. Antioxidant
peptides have been produced by hydrolyzing various protein substrates such as fish proteins, soybeans,
marine algae and a variety of dairy products [41–45].

Antimicrobial peptides act against a wide variety of pathogenic microorganisms, such as bacteria,
fungi and viruses [46]. The action mechanism of antimicrobial peptides generally involves changes
in biological membranes; it initially occurs by electrostatic attraction between molecules of peptides,
usually positively charged, and anionic lipids found on the membrane surface. Then, due to the
amphipathic structure of these peptides, interaction between the peptides and the membrane surface
occurs [47,48], with degradation of the microbial cells by formation of ion channels or by production
of transmembrane pores. This process causes an imbalance of cellular contents, thereby regulating
the process of replication, transcription and translation of the DNA sequence by binding to specific
intracellular targets, preventing the multiplication and growth of microbial cells [49].

The role of antihypertensive peptides in the regulation of blood pressure is related to the inhibition
of the angiotensin I-converting enzyme (ACE) [50]. Inhibitors of this enzyme are, in fact, one of the main
alternatives for the treatment of hypertension [51]. An alternative for the use of synthetic inhibitors
against ACE would be their replacement by natural encrypted peptides capable of promoting the
inhibition of the enzyme. Most of the peptides with ACE inhibition activity have short sequences in the
range from two to 12 amino acids. The most effective antihypertensive peptides contain hydrophobic
amino acids such as proline, especially in the C-terminal position, or positively charged amino acids,
such as lysine and arginine at a terminal position [52].

Antihypertensive peptides have been obtained from several sources: dairy products [53], microbial
cultivations with the bacterium Oenococcus oeni in wine protein substrate [54], enzymatic hydrolysis of
proteins from Parkia speciosa seeds [55], from the use of hydrolyzed bovine lactoferrin derived from
whey protein milk [56], enzymatic hydrolysis of protein concentrates recovered by ultrafiltration from
cuttlefish processing wastewaters [57] and water soluble peptide extracts from dry-cured ham [58].

Opioid peptides can be considered compounds which may exert effects on the nervous system,
similar to opium (morphine). Hydrolysates generated by the action of digestive enzymes in casein
substrate have generated peptides with opioid properties [59,60]. The mechanism of peptides with
opioid property appears to be related to their property receptor ligand, which has agonistic or
antagonistic activities. Opioid receptors located in different parts of mammals can interact with
endogenous ligands, exogenous opioids and opioid antagonists. The opioid receptors involved in this
mechanism are present in the gastrointestinal tract, endocrine, nervous and immune systems [61,62].

Thus, when opioid peptides are orally administered, they can modulate absorption processes in
the gut and influence the functioning of the gastrointestinal system in two ways: (1) affecting smooth
muscles, a fact that results in limited intestinal transit time; and (2) affecting electrolytes transport
of electrolytes. The effects of these compound derived from milk still need confirmation for adult
consumers [63], since in newborn the opioid function of encrypted peptides from casein fractions is
well known. Several peptides with different properties can be obtained and applied to foods and drugs
after having their bioactivity evidenced. Therefore, constant study is required to obtain technology so
that real application can be carried out.

3. Obtaining Peptides from Agro-Industrial Waste

Continued development of bio-sustainable and renewable resource technologies is extremely
important with respect to environmental concerns [64], since the significant progress in agribusiness
resulted in increased consumption of inputs and, consequently, in an increase in the generation of
waste in agro-industrial activities.
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The use of agro-industrial waste involves the use of materials generated as by-products, since
the total volume thereof is large [65] and when they are not used, they raise the costs of disposal to
prevent environmental pollution [66]. In this sense, there is growing interest in developing processes
that enable the total use of waste [67]. Processes that do not result in negative environmental impact
(green processes) have currently stood out since they aim at the use of agricultural waste to replace
non-renewable resources.

Waste generated by the agro-industries is a protein-rich source and has become an alternative for
obtaining compounds with bioactivity, mainly from protein hydrolysates. After bioactive peptides
have been obtained and have proven their power to act, they can be applied to food or drugs as
bioactive agents. Apart from creating potential environmental problems, waste represents loss of raw
materials and energy, thus requiring significant investments in treatments for pollution control [68].

Waste can contain many valuable substances and through a suitable process or technology, this
material can be converted into value-added products or raw materials that can be used in secondary
processes [69].

The current trend is to employ production processes that do not harm the environment or that
can reduce the release of waste, considering that the best process is the one that reduces generation of
waste and the worst process is the one that generates waste, which is improper for disposal (Figure 1).
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Figure 1. An ideal process should avoid generation of waste. Adapted from Pelizer, Pontieri and
Moraes [68].

Several bioactive peptides produced by enzymatic hydrolysis of various food proteins have
recently been shown to possess bioactivity [70–73]. By-products and waste represent a relatively cheap
source, thus, their use for the production of bioactive peptides will not only result in the reduction of
production costs, highly significant to the development of added-value nutritional by-products but
also in the mitigation of the problem regarding waste disposal [74].

Large amounts of protein-rich waste and bioactive nitrogenous compounds have extensively
been generated every year. The major waste and by-products generated in the agro-industrial activity
comprise microalgae [75,76], soybean meal [77], residues of olive production [78], rapeseed meal [79],
chicken feathers [80], fish waste [81] and egg protein [82]. In particular, this waste is proteinaceous in
nature and includes proteins, peptides and amino acids. Furthermore, protein-rich sources are ideal
materials for bioactive peptide generation [8]. Some waste generated in large amounts and used for
obtaining bioactive peptides is shown in Table 1.
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Table 1. Protein content of agro-industrial waste available to obtain bioactive peptides.

Agro-Industrial Waste Proteins (%) Reference

Alga protein >50.0 [75,83]
By-products of shrimp (L. vannamei) >64.0 [81]

Chicken raw feathers 85.3 [84]
Fish and shellfish 10–23 [8]

Olive stone >22.0 [78,85]
Porphyra columbina residual cake >27.0 [76]

Sheep raw wool 80.7 [86]
Soybean meal 90–93 [77]

Alga protein waste is a by-product derived from the water-extraction process of microalgae
manufacturing, e.g., during alga essence production. The underused alga waste, with over 50%
protein, has low economic value since it is normally used as animal feed [75]. As an example,
more than 100 tons of alga protein waste has been harvested every year in Taiwan [87]. Thus, the
bioconversion of alga protein waste into bioactive compounds can add value to this waste.

Peptides from Chlorella vulgaris alga waste, which were hydrolyzed by pepsin, showed high
efficiency in scavenging various free radicals [75]. In addition, the authors reported that peptides from
alga protein waste presented antioxidative in vitro potential. Thereby, these bioactive peptides can be
used for the prevention of oxidative stress-related diseases.

Cian, Alaiz, Vioque and Drago [76] obtained bioactive peptides from algal residual cake (Porphyra
columbina) with ACE inhibitory activity and antioxidant properties. To obtain theses peptides, a cellular
rupture step is necessary; that is, when the cell wall is disrupted, the intracellular components are
released, including proteins.

Potent antioxidative peptide was obtained from the hydrolysis of alga protein waste. Alga protein
waste was digested by pepsin at an enzyme to substrate ratio of 2% (w/w) at 50 ˝C for 15 h. The
peptide was isolated by sequential ammonium sulfate precipitation, gel filtration and ion exchange
chromatography. The isolated peptide can degrade different free radicals, such as hydroxyl, superoxide,
peroxyl, DPPH and ABTS radicals. In addition, the isolated peptide has anticancer activity [75].

Similarly, during fish processing, the fishing industry generates large amounts of by-products,
which are destined especially for the manufacture of flour or even discarded into the environment [88].
Thus, bioactive peptides from marine processing waste and shellfish are also very promising
as functional food ingredients. The waste derivate from fish and shellfish represent a potential
source of biofunctional peptides, since it contains high quality and high levels of proteins, around
10%–23% (w/w) [8].

Robert, Zatylny-Gaudin, Fournier, Corre, Corguillé, Bernay and Henry [81] obtained peptides
from hydrolysates of white shrimp (Litopenaeus vannamei) by-products. The hydrolysis was performed
by Protamex enzymes at 50 ˝C. All three fractions of the resulting peptides had antibacterial activity
against Yersinia ruckeri, Bacillus megaterium and Edwardsiella tarda.

Hsu [89] verified the antioxidative properties of peptides obtained from hydrolyzed protein of
tuna dark muscle by-product using two commercial enzymes (orientase and protease XXIII) at pH 7.0
and 50 ˝C and pH 7.5 and 37 ˝C, respectively, for up to 6 h. The protein hydrolysate was subjected to
gel filtration chromatography and the purified fractions of peptides showed antioxidant activity.

Garcia et al. [90] extracted peptides showing antioxidant and antihypertensive properties from
waste material derived from the processing of cherry, which protein content of seeds was close to
39% of the dried and defatted seed. Peptide extracts obtained by the digestion using two different
enzymes recovered highest antioxidant and antihypertensive capacities. In addition, when the authors
used 3 and 5 kDa membranes in the ultrafiltration for separation of hydrolysates, the fractions
obtained showed high antihypertensive and antioxidant power. Identified peptides in antioxidant
fractions by mass spectrum (MS) detection using a quadrupole time-of-flight (Q-TOF) coupled to a
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High-Performance Liquid Chromatography (HPLC) (HPLC-ESI-Q-TOF) showed less than 10 amino
acids and a high number of hydrophobic and aromatic amino acids, which are characteristic features
for antioxidant peptides. Some identified peptides in antihypertensive fraction contained proline,
which is a characteristic amino acid within antihypertensive peptides.

A recent study using gastrointestinal proteases for digestion of smooth hound by-products
investigated the bioactive peptide production. When the enzymes from intestinal extract were used
for hydrolysates production, a highest antioxidative activity (IC50 value of 1.47 ˘ 0.07 mg/mL)
was obtained using DPPH method. On the other hand, the alkaline protease was able to produced
hydrolysate with the highest ACE inhibitory activity (82% ˘ 1.52% at 2 mg/mL) [91].

Another kind of waste that can be employed to bioactive compound production is the one
generated during olive oil manufacturing. The different extraction process used in olive oil production
can generate a lot of waste, which can have great environmental impact [85]. In 2013 and 2014,
the production of olives in Europe was approximately 6.9 million tons per year, according to
the International Olive Council (IOC) [92]. Thus, assuming that 100 kg of fresh olives generate
approximately 2 kg of flour with approximately 22% protein, this waste is highly attractive to perform
protein hydrolysis and to produce bioactive peptides [85]. The hydrolysis of proteins from olive seed
waste by specific enzymes (Alcalase, Thermolysin, Neutrase, Flavourzyme and PTN) at 50 ˝C, for 2 h,
enables it to be transformed into hydrolysates with antioxidant and antihypertensive capacity [78].

Soybean, a legume with high protein content, has become one of the most consumed food in the
world; besides being a very cheap source of protein; its consumption has always been associated with
health benefits [93]. In addition to oil, a protein-rich soy meal is obtained from soybean processing,
which is usually destined for animal nutrition [94]. Peptides with bioactivity against colon, liver and
lung cancer cell proliferation were obtained from soybean meal, a by-product of oil extracted from
seeds [77].

Several peptides can be obtained from different approaches, including the type of hydrolysis
employed and variations of the operational parameters. The type of peptide generated and its
property is dependent on the properties of the protein substrate, and particularly the specificity of the
enzyme [95,96]. For this reason, bioactive peptides for food and pharmaceutical industrial applications
should be obtained either by the proteolytic action of microorganisms on protein-rich waste or by
in vitro enzymatic hydrolysis of proteins [9].

The enzymatic hydrolysis of protein-rich waste is carried out by proteases, which are obtained
from plants, microorganisms and animals for the production of bioactive peptides. Commercial
enzymes commonly used for bioconversion of waste into bioactive peptides are Flavourzyme [76],
pepsin [83,97], alcalase [97,98], chymotrypsin [98], orientase, protease XXIII [89], protamex [99,100],
α-chymotrypsin, neutrase, papain, tripsina [97], among others. Table 2 shows the summary of some
bioactive peptides obtained from agro-industrial waste by enzymatic hydrolyses.
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Table 2. Peptides from agro-industrial waste by enzymatic hydrolyses with their respective bioactivity and purification techniques.

Agro-Industrial Waste Bioactivity Hydrolysis Techniques Purification Reference

Porphyra columbina residual cake
ACE

Inhibitory and antioxidant
properties (DPPH)

Acid protease (fungal protease
concentrate) + Flavourzyme Gel filtration chromatography [76]

Chlorella vulgaris waste Antioxidant and anticancer
activities Pepsin Ammonium sulfate precipitation, gel

filtration, ion exchange chromatography [83]

Chicken feathers Antioxidant, ACE- and
DPPH-IV inhibitory activities Chryseobacterium sp. kr6 Ultrafiltration, HPLC [80]

Chicken feathers Antioxidant activity Bacillus pumilus A1 [84]

Sheep wool Antioxidant activity Bacillus pumilus A1 [86]

Heads and viscera of sardinelle ACE-inhibitory activity Crude enzyme extract from
sardine (Sardina pilchardus) viscera Gel filtration [98]

Spirulina (Arthospira platensis) ACE-inhibitory activity Extracellular proteases from
Aureobasidium pullulans Ultrafiltration [101]

Tuna dark muscle Antioxidant activity Orientase and protease XXIII Gel filtration, two-steps of HPLC [89]

Residual meat of hard clam ACE-inhibitory activity Protamex Gel filtration [99]

Chum salmon (Oncorhynchus keta) skin ACE-inhibitory activity Trypsin Gel filtration, reversed-phase HPLC [97]

Atlantic rock crab (Cancer irroratus) Antibacterial activity Protamex Micro-, ultra- and nanofiltration, ion
exchange chromatography [100]

Egg-yolk phospholipid extraction ACE-inhibitory activity Protease from Cucurbita ficifolia
fruit pulp

Ultrafiltration, gel filtration and
reversed-phase HPLC [82]

HPLC: high-performance liquid chromatography.
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The use of commercial enzymes increases the cost of the process. In this sense, non-commercial
enzymes, or even microorganisms, have been used for obtaining bioactive biomolecules. In the
literature, few studies of the use of microorganisms for the bioconversion of waste have been
published: these microorganisms produce proteases capable of degrading recalcitrant proteins such
as keratin [80,84,86]. The microorganism Chryseobacterium sp. kr6 produces alkaline keratinases for
feather protein hydrolysate production with dipeptidyl peptidase-IV, antioxidant and angiotensin-I
converting enzyme inhibitory activities [80]. Fakhfakh, Ktari, Haddar, Mnif, Dahmen and Nasri [84]
applied Bacillus pumilus A1 to the degradation of chicken feathers to yield protein hydrolysates with
antioxidant activity. Bacillus pumilus A1 was also used for sheep wool-waste biodegradation, in which
the hydrolysate had antioxidant activity [86]. The yield obtained by in vitro digestion of chicken and
wool waste with Bacillus pumilus A1 was very high, reaching 98% [84] and 97% [86], respectively.

Regarding non-commercial use of enzymes, extracellular proteases from Aureobasidium pullulans
were produced, purified and characterized. Purified protease was used for enzymatic hydrolysis of
different substrates (marine yeasts, milk and casein). Hydrolyzed Spirulina showed high ACE inhibitory
and antioxidant activities [101]. Several enzyme preparations commercial and non-commercial were
evaluated in hydrolysis of heads and viscera of Sardinella aurita. The hydrolysates showed inhibitory
activity towards ACE but the alkaline protease extract from the viscera of sardine produced hydrolysate
with the highest ACE inhibitory activity [98].

Generally, waste does not undergo pretreatment before enzymatic hydrolysis. In some cases, only
the grinding operation unit is applied to the waste [100] and the one with high lipid content, such as
chicken breast skins, need a defatting step prior to hydrolysis [102]. The hydrolysis reaction conditions,
such as time, temperature, pH and enzyme:substrate ratio, must be optimized to trigger the activity of
the enzyme [10]. The hydrolysis reaction ends with heat; afterwards, protein hydrolysates are filtered
or centrifuged and bioactive peptides are recovered by purification techniques.

The degree of hydrolysis carried out by endo- and exopeptidases may differ. Efficiency of protein
hydrolysis is more pronounced when a combination of endo- and exopeptidases is employed. Usually,
the hydrolysis starts with endopeptidase action, and, afterwards, exopeptidase is applied [76,103].

Available waste and by-products are potentially a cheap source of active biomolecules, such as
peptides. In addition, no process has been applied on a large scale to obtain bioactive peptides; thus,
investments in studies and processes to obtain these biomolecules on a large scale are needed.

4. Recovery and Purification Process

Commercially, there has been increasing the interest in producing bioactive peptides due to their
therapeutic potential. However, these compounds must be purified for commercial use. Isolation and
purification of bioactive peptides are also very important, not only to explore their physicochemical
properties, but also to evaluate the bioactivities properties by in vitro and in vivo assays [10].

The first step to consider in the purification is the purpose of the process. The three factors that
influence the development of design industrial processes are the purity, cost effectiveness and process
time. It is noteworthy that purity is defined by the final intended use of the product, e.g., 95% purity is
required for an in vitro diagnosis, whereas 99.998% purity is required for therapeutic application [104].
Therefore, studies of recovery and purification of bioactive peptides should be performed in order to
obtain an economically viable product.

Conventional purification of any biotechnological product traditionally involves the following
steps [105]:

1. Removal of insolubles: Filtration and centrifugation are the principal unit operations used in this
segment. Relatively little product concentration or improvement of product quality occurs.

2. Isolation and concentration of products: These steps, which are relatively nonspecific, remove
materials of widely divergent properties by comparison with the desired product. Appreciable
concentration and increase in the product quality usually occur. Adsorption and solvent extraction
are typical.
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3. Purification: This processing technique is highly selective for the product and removes impurities
of similar chemical functionality and physical properties. Chromatography, electrophoresis and
precipitation are good examples.

4. Polishing: The end use of the product dictates the final sequence. Crystallization is often used.
Most products must also be dried.

Purification steps may represent a high share of the total production cost of a bioproduct.
Therefore, the following rules are useful to ensure the success of the process: keep purification
simple, minimize the number of steps and avoid difficult manipulations that will not reproduce; avoid
expensive techniques; optimize each step of the process; use reliable techniques and apparatus; bear in
mind your objectives, be they high yield, high purity, final scale of operation, and/or reproducibility;
and, last but not least, know about the structure, function and properties of the target protein to set up
a correct purification strategy [106].

Most protein recuperation and purification processes can be used for separation of bioactive
peptides [107]. Before the separation process, ammonium sulfate precipitation, salting out and solvent
extraction steps may be performed to remove interferents present in the crude extract, as enzymes,
lipids, proteins and other compounds [10].

It is well known that chromatography is the most powerful technique to isolate and purify
bioactive peptides. Different chromatographic systems have been developed based on the properties
of molecules [108]. Table 3 shows the description of the chromatography methods frequently used for
peptide purification.

Table 3. Principles of the chromatography methods used for bioactive peptide purification.

Method Principle

Reversed-phase Based on hydrophobicity. Consists of a stationary phase of lower polarity and a mobile
phase of higher polarity.

Ion exchange The distribution and surface charge of the peptide determines the interaction of charged
groups with the surface of the stationary phase.

Size exclusion
Based on separation process according to the size of the peptide relative to pore sizes in the
stationary phase. Used primarily in the early stages of purification of the peptide, when
performed in multiple steps.

Affinity
Based on the biological specificity of the peptide. Consists of a ligand (small specific
biomolecule such as an antibody) that is immobilized in the column. The separation occurs
because of highly specific biochemical interactions between the peptide and the ligand.

Reference: Adapted from Espitia et al. [109].

High-performance liquid chromatography (HPLC) is the technique most used for chromatography
methods because of some technical features, such as reproducibility, ease of manipulation and high
recovery. In addition, the most important characteristic of this type of chromatographic system is its
high resolution achieved even with structurally similar molecules [108].

Reversed-phase chromatography is undoubtedly the most commonly used technique separation
for peptides, although ion exchange, size exclusion, affinity and hydrophobic interaction
chromatographies have also been applied [4,79,82,87,89,97,110–115]. It is noteworthy that, in most
studies, a combination of more than one chromatographic technique is used to better separate peptides.
For example, in Kim’s study, a novel antioxidant peptide from Ruditapes philippinarum was purified by
a combination of ultrafiltration, ion exchange chromatography (diethylaminoethyl (DEAE)-Sephacel)
and reverse-phase HPLC [114].

Peptides isolated from egg-yolk protein preparation with ACE-inhibitory were purified by a
sequence of different methods: ultrafiltration, size exclusion chromatography and reverse-phase
HPLC [82]. Lee et al. obtained an ACE-inhibitory peptide from enzymatic hydrolysis of chum salmon
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(Oncorhynchus keta) skin [97]. The peptide was purified by size exclusion chromatography (Sephadex
G-25) and reversed-phase HPLC (Grom-sil 120 ODS-5 ST column).

Sheih, Fang and Wu [87] obtained a potent antioxidative peptide from hydrolyzed alga protein
waste. The peptide was purified by ammonium sulfate precipitation and the precipitate was collected
and dissolved in distilled water. Then, the solution was fractionated by size exclusion chromatography
(Sephacryl S-100). The fraction with the highest antioxidative activity was subsequently loaded onto a
Q-sepharose fast flow column (ion exchange chromatography).

In Xie’s study, a zinc-chelating peptide obtained from hydrolysis of rapeseed meal with alcalase
was purified by immobilized-metal affinity chromatography (IMAC-zinc (II)) and gel filtration
(Sphadex G-25) [79]. Reversed-phase high-performance liquid chromatography (RP-HPLC) was
used to separate the desirable fractions after gel filtration.

Other purification techniques, such as capillary electrophoresis, capillary isoelectric focusing,
counter-current chromatography and centrifugal partition chromatography, have also been used for
peptide purification [10,116–121].

Membrane processes are commonly used processes in large-scale separation of bioactive
peptides [14]. These processes are based on the differences in the permeability of the liquid constituents
through a membrane. The driving force applied to the mass transport is a partial pressure. The
membrane separation processes could be divided into ultrafiltration, microfiltration, reverse osmosis
and nanofiltration (Table 4) [122].

Table 4. Brief general descriptions of membrane processes.

Method Description

Ultrafiltration (UF) UF involves the use of membranes with a molecular weight cutoff in the range of
1–200 kDa and a pore size of approximately 0.01 µm; it is performed at <1000 kPa.

Microfiltration (MF)
MF is a pressure-driven membrane process that involves the use of membranes
with pore size of 0.2–2 µm; it can selectively separate particles with molecular
weights >200 kDa.

Reverse osmosis (RO) RO membranes are characterized by a molecular weight cutoff of approximately
100 Da; the process involves pressures 5–10 times higher than those used in UF.

Nanofiltration (NF)

NF separates particles with molecular weights in the range of 300–1000 Da. It
allows the rejection of ions based on their diffusion characteristics and charge. NF
is capable of removing ions that contribute significantly to the osmotic pressure,
thus allowing operation pressures lower than those needed in RO.

Reference: Adapted from Rosenberg [122].

Ultrafiltration has routinely been employed to enrich bioactive peptides from protein
hydrolysates and to isolate short peptides from high molecular mass residues and enzymes
separation [76,80,123,124]. In many studies, ultrafiltration is used for fractioning peptides, and
then one or more chromatographic techniques are applied, in sequence, to increase the purity of
the fractions [82,100,114,115,125]. In Wu’s study, an enzymatic ultrafiltration reactor was used to
hydrolyzed and fractionated peptides with antihypertensive and antimicrobial activities and casein
phosphopeptides [125]. A sequence of size exclusion chromatography (SEC), strong cation exchange
high-performance liquid chromatography (SCE-HPLC) and reversed-phased high performance liquid
chromatography (RP-HPLC) was applied for the peptides purification.

Nanofiltration membranes were also used to separate peptides on the basis of charge interaction
with the membranes in addition to size separation, since most peptides contain charged functional
groups at a given pH. The combination of membrane processes (UF and NF) is often used in the
separation of peptides [100,126,127]. To improve the yield and selectivity of the peptide separation,
other driving forces have been used in the membrane process, including electrical potential difference



Int. J. Mol. Sci. 2016, 17, 950 11 of 24

(electrodialysis and electrophoresis) and the combination of electrical potential gradients and pressure
(electronanofiltration and electrofiltration) [128–132].

Doyen et al. performed the enzymatic hydrolysis of β-lactoglobulin and the simultaneous
separation of anionic and cationic peptides generated in an electrodialysis cell with ultrafiltration
stacked membranes [128]. Anionic and cationic peptides with hypocholesterolemic, antihypertensive
and antibacterial properties were recovered and concentrated.

Nanofiltration and a combination of electrodialysis with ultrafiltration membrane (EDUF) were
compared by Langevin et al. [132]. Both processes led to different results since nanofiltration was more
efficient in terms of mass flux than EDUF comparing same membrane area and the process duration,
while EDUF was more efficient for recovery a larger range of peptide molecular weights and to recovery
more polar amino acids. The EDUF showed an increase in antioxidant capacities due to better peptide
isolation. An increase in antioxidant capacity on H2O2 degradation assay for the peptides isolated by
nanofiltration was also observed. Thus, this work shows that the combination of nanofiltration and
EDUF could optimize the separation process and result in more specific peptide fractions.

Ultrafiltration membrane bioreactors have been used for simultaneous enzymatic hydrolysis
and isolation of bioactive peptides from a large variety of protein sources. The efficiency of
enzyme-catalyzed bioconversion and product yield could be improved using these processes. Besides
that, ultrafiltration membrane reactors can easily be scaled up and provide a uniform product
containing the desired peptides with specific molecular mass characteristics [14,125,133].

Wang et al. compared the efficiency of oligopeptides production by traditional bath enzymatic
hydrolysis and an ultrafiltration process coupled with enzymatic hydrolysis [133]. The authors
demonstrated that the combination of the ultrafiltration and the enzymatic hydrolysis in the same
reactor provides benefits for the oligopeptides process. The ultrafiltration-coupled to enzymatic
hydrolysis increased the content of oligopeptides up to 60%, compared to less than 40% using batch
enzymatic hydrolysis. Additionally, ultrafiltration-coupled to enzymatic hydrolysis methodology had
excellent stability in the molecular weight distribution of the collected peptides at different hydrolysis
time and more antioxidant activity than the batch enzymatic hydrolysis.

Most of the purification methods mentioned in this review are effective in laboratories. However,
they are no used in large scale for industrial applications due to the process cost effectiveness.
Peptide-based products commercialization is still limited due to the high cost of separation and
purification techniques and the lack of technologies applicable for industrial scale [14].

A few bioactive peptides have been commercialized in the form of fermented milks. However,
industrial-scale production of bioactive peptides is hampered by the lack of suitable technologies.
Besides, there is the need to develop technologies that retain or even enhance bioactivity of peptides in
food systems [134]. Thus, it is evident that there is need for establishing an efficient, inexpensive and
scale-up process to obtain, recover and purify these biomolecules, allowing its application to food and
pharmaceutical industries.

Additionally, in order to obtain peptides with bioactive properties and to use them effectively, it
is necessary to choose a protocol that involves the choice of the most appropriate co-product, the way
it will be obtained and the purification process that will be employed. Furthermore, new technologies,
such as nanotechnology, have emerged as a way to enable peptide transport and ensure its functionality
during application.

5. Nanotechnology

Nanotechnology, in a general way, is the study of the control of matter in the size range of
100 nm or smaller. As a comparison, a hydrogen atom is 0.1 nm in diameter, a lysosome is between
200 and 500 nm, an Escherichia coli bacterium is about 2 µm in length and most eukaryotic cells are
between 8 and 30 µm in diameter or larger. The magnitude of proteins ranges between 3 and 90 nm;
therefore, many enzymes, signaling molecules and receptors are in the nanoscale range [135]. Since
most biological processes occur at the nanoscale, nanoparticulate technology has a promising future
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to develop novel preventive, diagnostic and therapeutic agents, such as bioactive peptides. Figure 2
shows the diagrammatic representation of the size range of materials used in nanotechnology.
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The economic impact of nanotech products is in order of trillions of US dollars, and
nanobiotechnology has a great share of this market. The sectors that have benefits with the
development of products, technics, methodology and processes on nanometric scale are the health,
food and agroindustry. The last one represents a fertile field for applications on a large scale. The
nanobiotechnology is a reality and the knowledge of biomaterials, biological sciences and engineering,
through the union of different research groups on their specific fields, allows the conception of products
never considered many years ago. Many nutrients, phytochemicals, enzymes, peptides and other
natural compounds can be loaded into biocompatible and biodegradable nanoparticles, which will
improve some of their characteristics, such as aqueous solubility, stability, bioavailability, circulation
time and target specificity [136]. Functional ingredients, for example bioactive peptides in addition to
other important aim biomolecules, are components of an extensive range of industrial products, for
instance pharmaceuticals, health-care merchandises, cosmetics, agrochemicals and foods. Functional
ingredients are not often applied straight in their pure form. Instead, they are frequently incorporated
into some method of delivery system [13].

The interest in studying bioactive peptides using nanotechnology to improve their application has
grown impressively in recent years, which shows the importance of cataloging the different uses and
interests to advance in this area is ongoing and the information is made available in organized way, as
is the case of this review. Table 5 gives some examples of applications involving nanotechnology and
peptide in recent years.

The technology of controlled drug delivery is one of the frontiers of science, which involves several
multidisciplinary aspects and can greatly contribute to the advance of human health. Delivery systems,
often described as drug delivery systems, offer numerous advantages by comparison with other
conventional dosages: they provide higher therapeutic efficacy, with progressive and controlled release
of the drug from the degradation of the matrix and significantly decrease toxicity and high residence
time in the circulation [12]. New strategies include the use of important applications of science
colloids, in their various forms, such as multiple and inverse emulsions, microgel, nanogel, liposomes,
biodegradable materials, microcapsules, nanocapsules, microparticles, nanoparticles and nanofibers.

It is important to define some terms related to nanoencapsulation, since structures and types
diverge greatly. The term nanoparticle is generic and it is used in accordance with the size of the
particle that it refers to. Particles smaller than 1 mm are considered nanoparticles, whereas larger
particles are called microparticles. The word nanoparticle applied to controlled release is broad and
refers to two different forms, nanosphere and nanocapsule structures. Those spheres are called systems
in which the drug is homogeneously dispersed or solubilized within the polymeric matrix. Thus, a
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monolithic system is obtained where a differentiated nucleus cannot be identified. Nanocapsules, on
the contrary, are the so-called system reservoirs, where it is possible to identify a distinct core, which
may be solid or liquid. In this case, a membrane, generally a polymeric one, encloses the substance
and insulates the core from the external environment [135].

Table 5. Application of bioactive peptides using nanotechnology.

Application Description Reference

Biodegradable wound
dressing nonofiber

Fabrication of nanofibrous P(3HB-co-4HB)/collagen peptides
construct as potential leave-on wound dressing [137]

Intracellular delivery Photosensitizer and polycationic peptide-labeled streptavidin as
a nano-carrier for light-controlled protein transduction [138]

Drug delivery Ionic graft copolymers to fold and activate ionic peptides through
inter-polyelectrolyte nano-assembly [139]

Implant materials in
bone graft substitutes

Peptide decorated nano-hydroxyapatite with enhanced bioactivity
and osteogenic differentiation via polydopamine coating [140]

Brain drug delivery Brain-targeted delivery of protein using chitosan- and RVG
peptide-conjugated, pluronic-based nano-carrier [141]

Antioxidant Activity Bioactive peptides/chitosan nanoparticles enhance cellular
antioxidant activity of (´)-epigallocatechin-3-gallate [142]

Cancer management
Nanochemoprevention by encapsulation of
(´)-epigallocatechin-3-gallate with bioactive peptides/chitosan
nanoparticles for enhancement of its bioavailability

[143]

Drug delivery
Production of porous nano-HA/collagen/PLLA scaffold containing
chitosan microspheres for controlled delivery of synthetic peptide
derived from BMP-2

[144]

Treatment of
atherosclerosis

In vitro evaluation of nanocomposite containing bioactive peptides
romote endothelialisation by circulating progenitor cells [145]

Cell therapies Self-assembly combining two bioactive peptide-amphiphile
molecules into nanofibers by electrostatic attraction [146]

A delivery system shows as an essential requirement to be able to perform diverse roles. Primarily,
it is used as a vehicle to transport the functional ingredient to the preferred site of action. Then, it may
have to shield the functional ingredient from degradation (for example, oxidation) during handling,
storage and usage; it preserves the functional ingredient in its active state. Thirdly, the capacity of
controlling the release of the functional ingredient has to be controlled, for example, the release rate and
the specific environmental conditions that start the release process (pH, ionic strength, temperature,
among others). Finally, the delivery system must be well-matched not only with the other constituents
in the system, nevertheless similarly with the physicochemical and qualitative characteristics of the
final product [147].

Bioactive peptides are viewed as nutraceuticals that can be industrially manufactured and
inserted into several foods and drinks. However, peptides could be degraded in the course of
digestion, [148] resulting in decreased or probable attenuated bioactivity. Several authors have recently
used nanotechnology to improve the use of bioactive peptides. Several examples are described below.

Nanomedicine exploits homing peptides as a way to functionalize free drugs or nanostructured
materials applied as drug carriers. Xu et al. produced tumor-homing peptides as systematic
nanoparticles in order to increase receptor-mediated cell penetrability [149]. The nanoparticulate
peptide versions were significantly more effective as mediator of the receptor-dependent uptake than
their free equivalents. Their results highlights an additional advantage of nanostructured materials
constructed on repetitive building blocks, concerning the multivalent presentation of cell ligands that
could facilitate the cell penetration considering drug delivery uses.
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Regarding biomedical purposes, several advances have been made by nanotechnology and
bioactive peptides. As an example, heparin mimetic peptide amphiphile (HM-PA) nanofibrous network
has recently shown to be a promising platform to improve the functionality and transplantation
effectiveness of the pancreatic islet in vitro, since this procedure is considered a favorable treatment
for type 1 diabetes, even though transplantation can reduce the viability and functionality due to loss
of integrity and destruction of blood vessel networks. Therefore, it is imperative to afford proper
mechanically and biologically helpful environment to improve in vitro islet culture as well as the
transplantation efficiency [150].

Scaffolds produced with nanotechnology knowledge denote extremely useful methods in
peripheral nerve recovery, in addition to in spinal cord recovery. Masaeli et al. established
peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds to improve Schwann cell activity.
Relations between Schwann cells (SCs) and scaffolds were shown as an imperative tool for tissue
development in nerve regeneration, since SCs physiologically support the orientation of the growth
considering regenerating axons [151]. Therefore, electrospun scaffolds were prepared by combining
poly (3-hydroxybutyrate) (PHB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). They
were functionalized with collagen I, or with the following peptides: Gly–Arg–Gly–Asp–Ser (GRGDS),
Tyr–Ile–Gly–Ser–Arg–NH2 (YIGSR) or Arg–Asn–Ile–Ala–Glu–Ile–Ile–Lys–Asp–Ile (p20), which were
neuromimetic peptides able to simulate naturally occurring extracellular matrix (ECM) motifs for
nerve regeneration.

Loo et al. developed ultrashort peptide nanofibrous hydrogels for the acceleration of the healing
of burn wounds [152]. Their ultrashort aliphatic peptides have an innate tendency to self-assemble into
helical fibers, forming biomimetic hydrogel scaffolds that are non-immunogenic and non-cytotoxic.
These nanofibrous hydrogels accelerated wound closure in a rat model for partial-thickness burns.
They also promoted epithelial and dermal regeneration in the absence of exogenous growth factors,
achieving 86.2% and 92.9% wound closure respectively, after 14 days. Since the rate of wound closure
is inversely correlated with hypertrophic scar formation and infection risks, this peptide hydrogel
technology fills a niche neglected by current treatment options. The regenerative properties can be
further enhanced by the incorporation of bioactive moieties, such as growth factors and cytokines.

Bagheri et al. assessed spray-dried alginate microparticles loud caffeine-loaded and bioactive
nanoparticles [153]. Nanoparticles were arranged from antioxidant peptides with the desolvation
using ethanol and spread into a sodium alginate solution. The studied showed that caffeine was
encapsulated into nanoparticles produced via desolvation of potentially bioactive peptides using
ethanol. The peptidic nanoparticles microencapsulated improved the nanoparticles stability toward
the imitation gastric digestion slowing down the release of caffeine from the microparticles.

Inductive growth factors as well as regulation of protein-based extracellular matrix components,
glycosaminoglycans (GAGs) are responsible for bone tissue regeneration. GAGs establish an
important fraction of extracellular matrix and represent a substantial impact on regulating cellular
behavior, directly or acting over the encapsulation and presentation of growth factors to the cells.
Kocabey et al. [154] established nanofibers that stimulate the mineralization by osteogenic cells.
Sulfonate and carboxylate groups were used to produce GAGs and collagen mimetic peptide nanofibers.
The GAG mimetic peptide nanofibers act together with bone morphogenetic protein-2 (BMP-2), critical
growth factor for osteogenic activity. GAG mimicking capability of peptide nanofibers and their
interaction with BMP-2 stimulated osteogenic activity and mineralization by osteoblastic cells. Alkaline
phosphatase activity, Alizarin red staining and energy dispersive X-ray analysis spectroscopy showed
the effectiveness of peptide nanofibers in inducing mineralization. The multifunctional and bioactive
microenvironment defined in this work offers osteoblastic cells with osteogenic stimuli comparable to
those perceived in native bone tissue.

Balcao et al. [155] encapsulated lactoferrin (a whey protein fraction with bioactivity) within a
water–oil–water nanoemulsion as potential antimicrobial formulation. Nanoencapsulated lactoferrin
and lactoferrin in solution showed inhibitory effect against Staphylococcus aureus, Listeria innocua,
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Bacillus cereus and Candida albicans, but not against Gram negative bacteria, such as Salmonella sp.,
Escherichia coli and Pseudomonas fluorescens.

Antimicrobial peptide P34 was nanovesicle-encapsulated by Malheiros, Sant1Anna, Utpott and
Brandelli [4] and then used in milk as an antilisterial bioactive. The authors aimed to assess the effect
of free and nanovesicles-encapsulated BLS P34 against Listeria monocytogenes (L. monocytogenes) in
milk. Thereafter, the preservation of antimicrobial activity was measured over time. The antimicrobial
activity of free and encapsulated BLS P34 reduced approximately 50% after four days of storage (4 ˝C).
Afterward, the activity did not show any significant loss up to 21 days. The amount of L. monocytogenes
in skim and whole milk containing 3200 activity units per mL (AU/mL) of free or encapsulated
BLS P34 showed reduced values when compared to the controls without bacteriocin at 30 and 7 ˝C.
Considering a concentration of 1600 AU/mL, free and encapsulated BLS P34 were inhibitory to
L. monocytogenes in skim milk, comparing with the control at seven days. The conclusion of the work
was that nanovesicle-encapsulated and free BLS P34 presented potential use as biopreservative for
appliance to milk-derived products.

Meira, Daroit, Helfer, Correa, Segalin, Carro and Brandelli [45] studied bioactive peptides in
ovine cheeses from Brazil and Uruguai. Feta-type, Roquefort-type and Pecorino-type cheeses from
Brazil, in addition to Pecorino Sardotype and Cerrillano cheeses from Uruguay, were investigated.
Antioxidant properties were evaluated using 2,21-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid
(ABTS), Thiobarbituric acid reactive substance (TBARS) as antioxidant methods. Scavenging of the
cation radical of ABTS oscillated from 32% to 45% for Feta-type cheeses and 87% for Roquefort-type
cheese. A comparable trend was detected for the reducing power, that is, WSE from Roquefort-type
cheese presented the highest activity among the assessed cheeses. Iron chelating activity was fairly
inconstant considering the different WSE; it was higher (50%) for a Pecorino-type cheese. TBARS
investigation presented resemblance among most cheese samples, with inhibition values oscillating
from 25% to 51%. Scavenging of DPPH radical was detected only for the Roquefort-type cheese.
All WSE samples displayed a protuberant inhibition of angiotensin I-converting enzyme, varying
from 46% for Feta-type cheese to 80% for Roquefort-type cheese. Results showed that the cheeses
studied could be sources of bioactive peptides with diverse ways of action. Nano-ESI-MS/MS method
permitted the identification of peptides that may contribute to the bioactivities.

Imran et al. proposed the fusion of both concepts to improve bioavailability, that is, antimicrobial
peptide (AMP) “nisin” nanoencapsulation and biopolymer immobilizing to produce biodegradable
films entrenched with active agent or nano-encapsulated active agent, or both of them. Nanoliposomes
were produced using soy-lecitin in a microfluidizer to create an average size of 151 nm, presenting
an encapsulation efficiency of 50% [156]. Nisin nano-emulsion (encapsulated and free nisin) films
showed effectiveness against Listeria monocytogenes. Consequently, it is able to be an operational way
to control food pathogen without compromising the physico-chemical characteristics of composite
HPMC biodegradable films.

Liposomes containing nisin and BLS P34 were produced in the study of Malheiros, Sant1Anna,
Barbosa, Brandelli and Franco [5]. Nisin and BLS encapsulated in P34 PC-1-cholesterol were 218 nm
and 158 nm in diameter, zeta potential of ´64 and ´53 mV, and entrapment efficiency of 88.9% and
100%, respectively. The authors showed that all treatments decreased the population of L. monocytogenes
compering with the control for 21-day storage of Minas frescal cheese at 7 ˝C. Nevertheless, nisin and
BLS P34 encapsulated in PC-1-cholesterol liposomes were less efficient to control L. monocytogenes
growth in comparison with free and PC-1 liposome-encapsulated bacteriocins. The best condition
considering the inhibitory effect evaluated was observed when the experiment was done using nisin
and BLS P34 encapsulated in PC-1 liposomes after 10-day storage.

Andukuri et al. developed a biomimetic hybrid nanomatrix combining electrospun
polycaprolactone (ePCL) nanofibers with self-assembled peptide amphiphiles (PAs) [157]. The
electrospun polycaprolactone nanofibers presented an interconnected nanoporous structure, on the
other hand were vulnerable by a lack of surface bioactivity in order to regulate cellular behavior.
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Transmission electron microscopy proved the uniform coating of self-assembled PA nanofibers on
ePCL. Outcomes found by those authors show that this hybrid nanomatrix has pronounced potential
use considering cardiovascular implants.

Considering all previously mentioned studies and the development of nanotechnology when
used as a tool to increase the application of bioactive peptides, much knowledge has emerged in
biotechnological, pharmaceutical, medical, and diagnostic areas as well as others. Points of contact
among different areas of knowledge have interspersed within nanobiotechnology. It has also been
proven that nanotechnology provides product development that goes beyond the limitations of cost,
performance and workmanship, by comparison with conventional production methods.

6. Conclusions

Because of several technological and therapeutics properties of bioactive peptides, the production
of these biomolecules from protein-rich waste is a promising approach to be exploited by the food and
pharmaceutical industry. Currently available waste and by-products are potentially low-price sources
for the production of these peptides. Despite the advances achieved by research, further studies are still
needed in order to reduce the costs of production, downstream processes and scalability. The use of
technologies for entrapment of peptides in nanostructures is an innovative technology for application
of these substances more effectively. The advantages of the peptides encapsulated in nanoparticles in
relation to free peptide shows that it is necessary to develop new technologies and new materials for
entrapment of bioactive peptides in nanostructures, particularly to combat infectious diseases.
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