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Abstract: Emodin, an active constituent of oriental herbs, is widely used to treat  

allergy, inflammation, and other symptoms. This study provides the scientific basis for the  

anti-inflammasome effects of emodin on both in vitro and in vivo experimental models. Bone 

marrow-derived macrophages were used to study the effects of emodin on inflammasome 

activation by using inflammasome inducers such as ATP, nigericin, and silica crystals.  

The lipopolysaccharide (LPS)-induced endotoxin shock model was employed to study the 

effect of emodin on in vivo efficacy. Emodin treatment attenuated interleukin (IL)-1β 

secretion via the inhibition of NOD-like receptor family, pyrin domain containing 3 

(NLRP3) inflammasome activation induced by ATP, nigericin, and silica crystals.  

Further, emodin ameliorated the severity of NLRP3 inflammasome-mediated symptoms in 

LPS-induced endotoxin mouse models. This study is the first to reveal mechanism-based 

evidence, especially with respect to regulation of inflammasome activation, substantiating 

traditional claims of emodin in the treatment of inflammation-related disorders. 
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1. Introduction 

Interleukin (IL)-1β has a central role in the inflammatory process by inducing expression of adhesion 

molecules and cell recruitment into the site of infection. Inflammasomes are critical for activation of  

this proinflammatory interleukin-1 cytokine family [1]. The NOD-like receptor family, pyrin domain 

containing 3 (NLRP3) inflammasome is the most widely studied among the inflammasomes, and known 

to be activated upon signs of cellular “danger signals”. The key components of the functional NLRP3 

inflammasome are NLRP3, the adaptor protein apoptosis associated speck like protein (ASC), and 

caspase-1 [2]. Activating stimuli for the NLRP3 inflammasome are diverse and include both endogenous 

factors (ATP, uric acid crystals, etc.) and exogenous factors (bacterial hemolysins, pneumolysin, vs.). 

NLRP3 inflammasome is implicated in diseases, such as Alzheimer’s disese [3], obesity [4], major 

depressive disorder [5], obesity induced type 2 diabetes [6], and fibromyalgia [7]. Therefore, suppressing 

the cleaved IL-1β production through the modulation of NLRP3 inflammasome activation should be  

an important strategy for relieving inflammation-related disorders. 

Emodin (1,3,8-trihydroxy-6-methylemodin) is an active constituent of oriental medicinal herbs 

including Rheum officinale and Polygonum cuspidatum [8]. Reports have demonstrated that emodin 

possesses biological functions such as anti-bacterial [9], vasorelaxant [10], anti-cancer [11], and  

anti-allergy [12,13]. Many studies related to the anti-inflammatory potential of emodin also have been 

reported [14–16]. However, most of these anti-inflammation-related studies have been examined with 

LPS/Toll like recector (TLR)s regulation, but the functional involvement of emodin in IL-1β secretion 

through regulation of inflammasome has hitherto not been reported. In the present investigation, we 

demonstrate the functional capacity of emodin in improvement of inflammation through regulation of 

inflammasomes and IL-1β secretion. 

2. Results and Discussion 

2.1. Effects of Emodin on Inflammasome-Induced Interleukin (IL)-1β Secretion in Vitro 

Pro-IL-1β is known to be induced by pro-inflammatory signals such as LPS or tumor necrosis factor 

(TNF) that activate the NF-κB transcription factors, and the release of bioactive IL-1β from macrophages 

is in turn dependent on activation by inflammasome. The NLRP3 inflammasome has been widely studied 

and responds to a broad range of pathogen-associated molecular patterns (PAMP) or damage-associated 

molecular patterns (DAMP) signals such as monosodium urate crystal (MSU), ATP, and nigericin which 

are very well known NLRP3 inflammasome inducers. We investigated the potency of emodin on the 

regulatory effect on NLRP3 inflammasome activation. As shown in Figure 1A–C, treatment with emodin 

inhibited the secretion of cleaved IL-1β and caspase-1 in culture supernatants from bone marrow-derived 

macrophages (BMDMs) responding to danger signals such as nigericin, ATP, and silica crystals. 

However, other inflammasome components have not been changed in cell lysates. 



Int. J. Mol. Sci. 2015, 16 8104 

 

 

Activated inflammasomes serve as a platform for caspase-1 activation and IL-1β maturation, as well 

as pyroptosis [17]. We determined the effects of emodin on pyroptosis caused by cell death. As shown  

in Figure 1D, emodin inhibited the inflammasome induced cell death dose dependently. Results  

indicate that emodin can regulate NLRP3 inflammasome activation, leading to attenuation of IL-1β and 

caspase-1 secretion. 

 

Figure 1. Effects of emodin on inflammasome-induced interleukin (IL)-1β secretion and cell 

death in vitro. LPS-primed bone marrow-derived macrophages (BMDMs) were pretreated 

with emodin for 1 h and stimulated with (A) nigericin (Nig) (10 μM) and (B) ATP (5 mM) 

for 1 h, and (C) silica crystals (silica) (150 μg/mL) for 3 h, and supernatants (SN) were used 

to detect cleaved IL-1β (p17) and caspase-1 (p10). Cell lysates (Lys) were used to detect internal 

controls, such as pro-IL-1β (p31), ASC, pro-caspase-1 (p45), and β-actin; (D) LPS-primed 

BMDMs were treated with emodin at the indicated concentration for 1 h and then treated with 

nigericin (Nig) (10 μM) and ATP (5 mM) for 1 h, after which supernatants were collected  

for LDH determination. The results are expressed as mean ± S.E.M. of three independent 

experiments in triplicate. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared with Nig, ATP 

treated cells. ns: None significant. 
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2.2. Effects of Emodin on Inflammasome Component and Sepsis in Vivo Model 

It has been reported that inflammasomes are large multiprotein oligomers containing mainly the 

adaptor protein apoptosis-associated specklike protein (ASC), caspase-1, and NLRP3 [18]. The ASC 

forms oligomers associating with mitochondria-associated ER membranes MAMs [19]. ASC also  

have been reported to form Triton X-100 resistant aggregates [20,21]. Accordingly, we examined 

inflammasome components in Triton X-100 soluble and insoluble fraction. As shown in Figure 2A, 

emodin significantly inhibited cleaved IL-1β production in the supernatant. However, emodin did not 

affect inflammasome-related protein expression in Triton X-100 soluble fraction. Interestingly, emodin 

elevated pro-IL-1β level in Triton X-100 insoluble fraction. It remains to be elucidated how emodin halts 

pro-IL-1β in the insoluble fraction, leading to inhibition of caspase-1 activity. 

LPS-induced endotoxin shock is reduced in NLRP3 gene-deleted mice compared to intact  

mice [22]. Thus, we confirmed the inhibitory effect of emodin on NLRP3 inflammasome activation by  

the LPS-induced endotoxin shock model. As shown in Figure 2B, mice intra peritoneally treated with 

emodin showed higher survival rates than LPS alone injected control mice, indicating that emodin can 

ameliorate the severity of NLRP3 inflammasome-mediated disease symptoms in vivo. 

Taken together, our study showed that emodin inhibited NLRP3 inflammasome activation in vitro 

and LPS-induced endotoxin shock in in vivo model. The potential effects of emodin in inflammasome 

derived inflammatory responses might provide a valuable therapeutic strategy in controlling 

inflammation-mediated pathological disorders. 

 

Figure 2. Effects of emodin on inflammasome component in vitro and sepsis in vivo model. 

(A) LPS-primed BMDMs were pretreated with emodin for 1 h and stimulated with nigericin 

(Nig) (10 μM) and ATP (5 mM) for 1 h, and silica crystals (Silica) (150 μg/mL) for 3 h, and 

supernatants were used to detect cleaved IL-1β. Protein levels of NLRP3 inflammasome 

components in Triton X-100 soluble (sol) and Triton X-100 insoluble (insol) fraction lysates 

were used to detect internal controls, such as pro-IL-1β (p31), ASC, pro-caspase-1 (p45), and 

β-actin; (B) Mice (n = 5 per each group) were intraperitoneally treated with LPS (20 mg/kg) 

with or without emodin (10 and 50 mg/kg) and LPS (20 mg/kg). Survival rates were observed 

at indicated times. 
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3. Experimental Section 

3.1. Reagents and Antibodies 

Penicillin-streptomycin, fetal bovine serum, and RPMI 1640 were purchased from Gibco  

(Grans Island, NY, USA). A 3,3',5,5'-tetramethylbenzidine  (TMB) substrate reagent set was purchased 

from BD Biosciences (Franklin Lakes, SD, USA). IL-1β antibody was purchased from R&D systems 

(Minneapolis, MN, USA). ASC and NLRP3 antibodies were purchased Enzo Life Sciences 

(Farmingdale, NY, USA). Caspase-1 and β-actin were purchased from Santa Cruz Biotechnology  

(Santa Cruz, CA, USA). Silica crystal, nigericin, and zVAD-FMK were purchased from InvivoGen  

(San Diego, CA, USA). A Western blot chemiluminescence reagent kit (Super Signal West Pico Stable 

Peroxide and Super Signal West Pico Luminol/Enhancer solutions) was purchased from Pierce Chemical 

(Rockford, IL, USA). Polyvinylidene fluoride (PVDF) membrane was purchased from Millipore 

Corporation (Bedford, MA, USA). LPS (E. coli 026:B6), ATP, and emodin were purchased from  

Sigma-Aldrich (St. Louis, MO, USA). A LDH kit was purchased from BioVision (Mountain View,  

CA, USA). 

3.2. Preparation and Culture of Bone Marrow-Derived Macrophages (BMDMs) 

Bone marrow cells from C57BL/6 mice (8 weeks old) were collected by flushing the femurs and 

tibias in sterile PBS. The collected cells were cultured in RPMI 1640 supplemented with 10% fetal 

bovine serum (FBS), 30% L929 cell-conditioned medium (LCM), and 1% penicillin-streptomycin for  

7 days to differentiate into macrophages (BMDMs). Cells were seeded in non-tissue culture-treated Petri 

dishes (SPL Life Science Co., Gyeonggi-do, Korea) and incubated at 37 °C in a 5% CO2 atmosphere. 

3.3. Animals 

All experiments were performed in accordance with the guidelines of the Konkuk University Animal 

Care Committee, Korea. Male C57BL/6 mice (20–22 g, 6 weeks old) were purchased from Orient Bio 

Co., Korea. They were housed in groups of five under standard conditions (temperature 22% ± 2 °C, 

humidity 55% ± 5%, 12 h light/dark cycle) with food and water ad libitum. The animals were allowed 

to adapt to the laboratory environment for 5 to 7 days before experimentation. The experiments were 

conducted in accordance with the “Guide for the Care and Use of Laboratory Animals” adopted by the 

United States National Institutes of Health. 

For LPS-induced endotoxin shock, mice were intraperitoneally co-injected with LPS plus vehicle 

(200 μL of saline) or emodin. The animals were observed every 8 h for 3 days. 

3.4. Inflammasome Activation 

BMDMs (1.0 × 106 cells/well) were plated in 6-well plates and primed with LPS (100 ng/mL) for  

3 h. After LPS priming, the medium was replaced with opti-MEM, and cells were incubated for 1 h with 

or without emodin or zVAD, before being pulsed with ATP (5 mM) and nigericin (10 µM) for 1 h and 

silica crystal (150 µg/mL) for 3 h. 
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3.5. Immunoblot Analysis 

Immunoblot analysis was performed as described previously [23]. The experimental process of Triton 

X-100 soluble and insoluble fractions was previously described [17]. 

3.6. Statistical Analysis 

The results were expressed as the mean ± S.E.M. of at least three independent experiments performed 

in triplicate. Statistical analysis was performed using the one-way ANOVA, and p value less than 0.05 

was considered to be statistically significant 

4. Conclusions 

Emodin attenuated NLRP3 inflammasome activation, leading to decreased secretion of cleaved  

IL-1β and blocking of the inflammasome-induced pyroptosis. In vivo efficacy of the anti-inflammatory 

effect through regulation of inflammasome activation was verified by the sepsis mouse model.  

Although the detailed mechanisms that link the common molecular pathways to the means by which 

emodin attenuates NLRP3 inflammasome activation remains to be elucidated, this is the first report 

providing scientific evidence substantiating the use of emodin in medicine for the treatment of various 

inflammatory diseases through the regulation of inflammasome activation, which may provide  

a valuable therapeutic strategy for controlling inflammasome-mediated pathological conditions. 
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