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Abstract: Infrared irradiation promoted the Diels-Alder cycloadditions of  

exo-2-oxazolidinone dienes 1–3 with the Knoevenagel adducts 4–6, as dienophiles, leading 

to the synthesis of new 3,5-diphenyltetrahydrobenzo[d]oxazol-2-one derivatives (7, 9, 11 

and 13–17), under solvent-free conditions. These cycloadditions were performed with good 

regio- and stereoselectivity, favoring the para-endo cycloadducts. We also evaluated the 

one-pot three-component reaction of active methylene compounds 20, benzaldehydes 21 

and exo-2-oxazolidinone diene 2 under the same reaction conditions. A cascade 

OPEN ACCESS



Int. J. Mol. Sci. 2012, 13             

 

 

2591

Knoevenagel condensation/Diels-Alder cycloaddition reaction was observed, resulting in 

the final adducts 13–16 in similar yields. These procedures are environmentally benign, 

because no solvent and no catalyst were employed in these processes. The regioselectivity 

of these reactions was rationalized by Frontier Molecular Orbital (FMO) calculations. 

Keywords: Diels-Alder cycloadditions; regioselectivity; Knoevenagel; infrared irradiation 

 

1. Introduction  

The Diels-Alder cycloaddition is one of the most powerful synthetic methodologies for the 

construction of cyclic six-membered rings, and tremendous efforts have been focused on expanding 

the scope of this cycloaddition with various combinations of dienes, dienophiles, catalysts and reaction 

conditions [1–6]. In this sense, alkenes containing two electron-withdrawing groups have been the 

target of a large number of recent studies, because many of them can act as Michael acceptors [7–8], as 

well as hetero-dienes [9–11] or dienophiles [12,13] in Diels-Alder reactions. Similarly, exocyclic 

dienes have received significant attention in recent years due to their high reactivity in cycloaddition 

reactions and their synthetic potential [14,15]. We described an efficient cascade methodology, which 

combines α-diketones and isocyanates in the presence of a dehydrating agent, to afford functionalized 

N-substituted exo-2-oxazolidinone dienes 1–3 (Tables 1–3). The latter have proved to be stable, and 

they undergo Diels-Alder cycloadditions with high selectivity [16–20]. In addition, they have shown to 

be useful synthons in the preparation of carbazoles [21–24], and in the synthesis of new polycyclic 

compounds by a cascade [4 + 2] cycloaddition/cyclopentannulation/1,5-sigmatropic rearrangement 

process with Fischer (arylalkynyl)(alkoxy)carbenes [25]. Moreover, dienes 1–3 have been employed to 

synthesize new η4-diene-Fe(CO)3 complexes, which undergo the addition of alkyllithium reagents to 

produce stable and unprecedented conjugated enamine-enol ester- and enamido-enol-Fe(CO)3 

complexes [26]. 

Table 1. Diels-Alder reactions of diene 1 with dienophiles 4–6 a. 

 



Int. J. Mol. Sci. 2012, 13             

 

 

2592

Table 1. Cont. 

Entry Dienophile R1 R2 R3 Reaction Time (h) Product e (%) 

1 4a CO2Et CN H 3.5 7a (73) 
2 b 4a CO2Et CN H 20 7a (30) 
3 c 4a CO2Et CN H 24 7a (20) 
4 d 4a CO2Et CN H 24 7a (20) 
5 4b CO2Et CN p-OMe 4.0 7b (50) 
6 4c CO2Et CN p-Cl 3.5 7c (60) 
7 4d CO2Et CN p-NO2 3.0 7d (80) 
8 4e CO2Et CN m-NO2 3.5 7e (55) 
9 5a CN CN H 4.0 9a (80) 

10 5b CN CN p-OMe 4.5 9b (55) 
11 5c CN CN p-Cl 3.0 9c (75) 
12 5d CN CN p-NO2 3.0 9d (85) 
13 6a CO2Et CO2Et H 5.0 11a (35) 
14 6b CO2Et CO2Et p-OMe 6.0 11b (25) 
15 6c CO2Et CO2Et p-Cl 5.0 11c (30) 

a All entries were carried out under IR irradiation at 50 °C and solvent-free conditions, except entries  

2–4; b Under thermal (50 °C) and solvent-free conditions; c Under thermal conditions (50 °C) in benzene 

as the solvent; d Under thermal conditions (50 °C) in THF as the solvent; e After column chromatography. 

Table 2. Diels-Alder reactions of dienes 2 and 3 with dienophiles 4–6 a. 

 

Entry Diene Dienophile R R1 R2 R3 
Reaction 
Time (h) 

Products 
(endo/exo) b 

Yield c 
(%) 

1 2 4a H CO2Et CN H 4.0 
13a/14a 
(80:20) 

56/32 

2 2 4b H CO2Et CN p-OMe 5.0 
13b/14b 
(75:25) 

65 d 

3 2 4c H CO2Et CN p-Cl 4.5 
13c/14c 
(68:32) 

60 d 
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Table 2. Cont. 

Entry Diene Dienophile R R1 R2 R3 
Reaction 
Time (h) 

Products 
(endo/exo) b 

Yield c 
(%) 

4 2 4d H CO2Et CN p-NO2 4.0 
13d/14d 
(75:25) 

64 d 

5 3 4e p-Cl CO2Et CN m-NO2 4.5 
13e/14e 
(75:25) 

70 d 

6 2 5a H CN CN H 3.0 
15a/16a 
(80:20) 

70 d 

7 2 5b H CN CN p-OMe 4.0 
15b/16b 
(82:18) 

55 d 

8 2 5c H CN CN p-Cl 5.0 
15c/16c 
(90:10) 

75 d 

9 2 5d H CN CN p-NO2 2.0 
15d/16d 
(80:20) 

75/15 

10 3 5b p-Cl CN CN p-OMe 3.0 
15e/16e 
(75:25) 

70/15 

11 2 6a H CO2Et CO2Et H 6.0 
17a/18a 
(100:0) 

23 d 

12 2 6b H CO2Et CO2Et p-OMe 5.0 
17b/18b 
(100:0) 

32 d 

13 2 6c H CO2Et CO2Et p-Cl 4.0 
17c/18c 
(100:0) 

25 d 

a All entries under IR irradiation at 50 °C and solvent-free conditions; b Determined by 1H NMR of the 

crude reaction mixtures, corresponding to the mixture of stereoisomers; c Yields of the products after 

column chromatography; d Yield of the major product. 

Table 3. Domino Knoevenagel condensation/Diels-Alder cycloaddition between diene 2, 

methylene active compounds 20a–c and benzaldehydes 21a–d a. 
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Table 3. Cont. 

Entry 
Methylene 

Active 
Benzaldehyde 

Reaction 
Time (min) 

By-Products 
(%) b 

Adducts 
(endo/exo) c Yield d (%) 

1 20a 21a 35 4a/19 (40:5) 13a/14a (65:35) 43/12 
2 20a 21b 50 4b/19 (52:8) 13b/14b (75:25) 40 e 

3 20a 21c 30 4c/19 (35:5) 13c/14c (68:32) 60 e 

4 20a 21d 40 4d/19 (32:4) 13d/14d (75:25) 64 e 

5 20b 21a 30 5a/19 (40:5) 15a/16a (70:30) 55 e 

6 20b 21b 40 5b/19 (40:10) 15b/16b (85:15) 50 e 

7 20b 21c 30 5c/19 (20:5) 15c/16c (80:20) 65/10 
8 20b 21d 35 5d/19 (25:5) 15d/16d (70:30) 55/15 
9 20c 21a 150 6a/19 (64:36) -- -- 

10 20c 21b 210 6b/19 (70:30) -- -- 
11 20c 21c 240 6c/19 (60:40) -- -- 
12 20c 21d 240 6d/19 (65:35) -- -- 
a An equimolar mixture of 2, 20 and 21 was irradiated with IR at 50 °C, under solvent-free conditions;  
b After column chromatography; c Determined by 1H NMR of the crude reaction; d Yields of the adducts 

after column chromatography; e Yield of the major adduct. 

We have appropriately employed infrared irradiation as an alternative energy source, working under 

solvent-free conditions and with various types of reactions, including Knoevenagel condensation [27–29], 

the Fischer indole reaction [30], the Biginelli reaction [31] and, more recently, the molecular 

rearrangement of perezone into isoperezone [32]. 

In this context, and as part of our ongoing research into the use of infrared irradiation as the energy 

source to promote organic reactions, we herein describe a convenient and versatile synthesis of the 

new substituted tetrahydrobenzo[d]oxazol-2-one derivatives 7, 9, 11 and 13–17, starting from the  

exo-2-oxazolidinone dienes 1–3 and the Knoevenagel adducts 4–6 (Tables 1 and 2), as the dienophiles, 

in the Diels-Alder cycloadditions promoted by infrared irradiation, under solvent-free conditions. 

Moreover, we also carried out an evaluation of how the reactivity and stereoselectivity of these 

cycloadditions are affected by the structural modifications in the diene, as well as in the Knoevenagel 

adducts, such as the replacement of the cyano group by the ethoxycarbonyl group (Tables 1 and 2). In 

addition, we studied the one-pot three-component reactions to obtain the same cycloadducts starting 

from methylene active compounds 20a–c, benzaldehydes 21a–d and exo-2-oxazolidinone diene 2 via a 

cascade Knoevenagel/Diels-Alder process under similar reaction conditions.  

2. Results and Discussion  

2.1. Diels-Alder Cycloaddition with Diene 1 

As we have previously demonstrated, Knoevenagel adducts can be easily prepared using an infrared 

irradiation protocol that employs the condensation reaction of benzaldehydes and active methylene 

compounds, under solvent-free conditions [27–29]. Therefore, we have used this methodology to 

prepare compounds 4–6. The required dienes 1–3 were synthesized according to the already published 

procedure [16–20]. 
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We explored synthetic access to the tetrahydrobenzo[d]oxazol-2-one derivatives 7–11 and 13–18, in 

search of infrared irradiation as a viable promoter of the Diels-Alder cycloadditions, in a two-step 

synthesis, starting from the exo-heterocyclic dienes 1–3 and the Knoevenagel adducts 4–6.  

Initially, the unsubstituted exo-heterocyclic diene 1 was evaluated in terms of reactivity and 

regioselectivity in the Diels-Alder additions toward derivatives 4a–e, which bear activating 

substituents such as ethoxycarbonyl (R1) and cyano (R2) groups. Thus, a mixture of diene 1 and olefin 

4a (1:1.2 mol-equiv., respectively) was irradiated with an infrared lamp [33] at 50 °C for ca. 3.5 h, 

under solvent-free conditions, leading to the total conversion of 1 to afford 7a, judging by the 1H NMR 

analysis of the crude reaction mixture, as a single regioisomeric product in 73% yield. This high 

regioselectivity contrasts with that observed for the thermal Diels-Alder reaction of 1 with 

monosubstituted dienophiles, such as methyl vinyl ketone and methyl propiolate, in which the 

para/meta regioisomeric ratios were lower (from 1:1 up to 8:2) [17].  

The structure of compound 7a was established by spectroscopic analysis. The spectrum of High 

Resolution Mass Spectrometry (HRMS) showed exactly the expected mass (m/z 388.1423); while the 

IR spectrum showed two carbonyl absorption bands (C=O) at 1757 and 1713 cm−1 and a cyano group 

absorption at 2362 cm−1. The 1H and 13C NMR spectral data are consistent with the 

tetrahydrobenzo[d]oxazol-2-one skeleton. It is interesting to note the large difference in the chemical 

shifts (δ) of the diastereotopic CH2 protons at the C-4 position of the cyclohexene ring, since H-4β 

appeared at 2.65 ppm as a ddd (J = 17.1, 4.8, 1.5 Hz) due to the geminal, vicinal and homoallylic 

couplings, respectively; while the signal due to H-4α appeared at 3.13 ppm as a dddd (J = 17.1, 11.4, 

4.2, 2.1 Hz). The large difference in the δ value for these protons could be ascribed to the anisotropic 

effect of the phenyl groups at N-3 and C-5. Decoupling and Nuclear Overhauser Effect (NOE) 

experiments provided additional support for the structure: H-4α showed a three-bond coupling with  

H-5 (3J4–5 = 11.4 Hz); while the signal of protons H-5 (3.46 ppm) and H-4α (3.16 ppm) were enhanced 

when H-4β (2.65 ppm) was irradiated (Figure 1).  

Figure 1. NOE effects observed upon irradiation of proton H-4β for the adduct 7a. 
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Interestingly, when the reaction was carried out under thermal (50 °C) and solvent-free conditions, 

the reaction time was longer and the yield lower (Table 1, entry 2). In an attempt to further improve 

the yield, under thermal conditions (50 °C), benzene and tetrahydrofuran were used as solvents, 

without yielding better results (Table 1, entries 3 and 4).  

Comparing the reaction times (Table 1, entry 1 vs. entries 2–4), it appears that under infrared 

irradiation the reaction was substantially faster (~3.5 h) and the yield was higher (73%). As for the 
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regioselectivity, it was comparable in both cases, only affording regioisomer 7. Analysis of the crude 

reaction mixture by 1H NMR did not show evidence of regioisomer 8.  

To assess the effect of the substituent R3 in the aromatic ring of the dienophiles on the reactivity 

and the regioselectivity, several analogues using both electron-poor and electron-rich substituents in 

4b–e, were used. When 4b, bearing an electron-releasing group, was irradiated in the presence of 1, 

the conversion rate slightly decreased (Table 1, entry 5), giving 7b in a lower yield (50%), together 

with recovered dienophile 4b (50%), However, with the use of dienophile 4d, containing an  

electron-withdrawing group, a higher yield of the corresponding adduct 7d was obtained. The 

reactivity trend of the Diels-Alder cycloaddition of dienophiles 4a–e with 1 (Table 1, entries 4–8) met 

the expectations of a normal electron-demand process [34]. 

Cycloadduct 7e was isolated as yellow crystals (EtOAc/hexane, 8:2) and its para regiochemistry (as 

considered for the relative orientation in the cyclohexene ring between the nitrogen atom and the 

electron-withdrawing groups of the dienophile) was confirmed by X-ray crystallography (Figure 2). 

The X-ray structure shows that the aryl groups in N-3 and C-5 are almost perpendicular to the 

heterocycle and to the cyclohexene ring, respectively, presenting the following consistent torsion 

angles: −59.7(2)° for C(3a)-N(3)-C(8)-C(9) and −129.20(13)° for C(4)-C(5)-C(12)-C(13).  

Figure 2. Molecular structure of 7e with thermal ellipsoids at the 30% probability level.  

 

Complementarily, with the aim of exploring the scope and limitations of the process, as well as of 

detecting the effect on the cycloadducts induced by the change of the substituents R1 and R2 in the 

dienophiles, the ethoxycarbonyl group in 4 (R1 = CO2Et) was replaced by a CN group and the cyano 

group (R2 = CN) by an ethoxycarbonyl group, to produce a series of benzylidenemalononitriles 5a–d 

(R1 = R2 = CN) and diethyl 2-benzylidenemalonates 6a–c (R1 = R2 = CO2Et), respectively. The reactions 

were performed under identical conditions to those used for 1 and 4a. The reaction of diene 1 with these 

two series of analogous dienophiles 5a–d and 6a–c yielded cycloadducts 9a–d and 11a–c, 

respectively. The fact that in both cases the product was a single para regioisomer indicates a similar 

behavior in the reactions. It is noteworthy that 1H NMR analysis (300 MHz) of the crude mixtures did 

not give evidence of the presence of the corresponding regioisomers 10 and 12. 
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The best yields of the tetrahydrobenzo[d]oxazol-2-one derivatives 9 and 11 corresponded to the 

reactions between exo-heterocyclic diene 1 with benzylidenemalononitriles 5a–d (Table 1, entries  

9–12). In contrast, with the reactions between 1 and the ethyl (E)-2-cyano-3-phenylacrylates 4a–e, the 

corresponding yields of derivatives 7a–e were lower (Table 1, entries 1–8). When the sterically more 

demanding diethyl 2-benzylidenemalonates 6a–c were used, the yields of adducts 11a–c were the 

lowest of all (Table 1, entries 13–15). The reactivity trend found for the Knoevenagel dienophiles can 

also be explained by the higher electron-withdrawing effect of the cyano group in comparison with the 

ethoxycarbonyl group [35]. In accordance with previous reports, the regiochemistry of these 

cycloadditions mainly depends on the electron-donating effect of the nitrogen atom of the heterocycle 

ring of the diene [16]. However, the exclusive formation of the para regioisomer in our case contrasts 

with the tendency of the exo-heterocyclic diene 1 to produce a mixture of para/meta regioisomers [17]. 

This is probably due to the fact that the dienophiles used in the present work are geminally substituted 

by two electron-withdrawing groups, which enhance the reactivity and, consequently, the 

regioselectivity [36].  

2.2. Diels-Alder Cycloaddition with Dienes 2 and 3 

In order to evaluate the effect of the substituent in the exo-heterocyclic diene on the reactivity and 

selectivity in the course of the Diels-Alder reaction, dienes 2 and 3, bearing a methyl group in the 

double bond, were added to dienophiles 4–6.  

The reactions of dienes 2 and 3 with acrylates 4a–e (R1 = CO2Et, R2 = CN) gave, after IR 

irradiation and heating at 50 °C for 4–5 h, mixtures of endo/exo cycloadducts 13a–e/14a–e in 55–88% 

yields (Table 2, entries 1–5). The Diels-Alder reactions were highly regio- and stereoselective, since 

the para (N-Ar/CO2Et and CN groups) derivatives 13 and 14 were the lone regioisomers, and the  

para-endo cycloadducts (endo = syn relative configuration between Me/CO2Et groups) 13a–e were 

obtained in higher yields than the para-exo cycloadducts 14a–e. 

The endo/exo ratios of adducts 13a–e/14a–e were determined by integration of the double signals of 

the methyl groups C-16 in the 1H NMR spectra of the crude mixtures (Table 2, entries 1–5). The 

separation of these mixtures was achieved by column chromatography on silica gel using hexane as 

eluent. The structural elucidation of the main products 13a–e was made on the basis of their 

spectroscopic data (NMR, HRMS and IR). All the data are consistent with the substituted 

tetrahydrobenzo[d]oxazol-2-one skeleton of 13a–e. The 1H NMR spectrum of 13a shows the presence 

of ten aromatic protons at 7.26–7.51 ppm, a quartet integrating for two protons (OCH2CH3) at  

4.09 ppm, and two overlapped signals attributed to H-7 and H-5 protons at 3.49–3.54 ppm. The proton 

H-4α appears as a doublet of doublets of doublets (J = 17.1, 11.1, 1.8 Hz) at 2.93 ppm; while the 

proton H-4β appears as a doublet of doublets (J = 17.1, 5.4 Hz) at 2.62 ppm. There is a signal at  

1.35 ppm as a doublet integrating for three protons (H-16) and at 1.11 ppm (OCH2CH3) as a triplet.  

The 13C NMR spectrum of 13a displays signals for two carbonyl groups at 164.7 ppm (CO2Et) and 

154.0 ppm (C-2), ten signals for vinyl and aromatic carbons at 138.0–120.0 ppm, one signal 

corresponding to the cyano group at 118.2 ppm, and seven signals at 62.9, 52.2, 40.4, 37.0, 27.0, 15.9 

and 13.7 ppm for sp3 carbon atoms. The attributions of the signal were supported by 2D experiments 
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such as Heteronuclear Multiple-Quantum Coherence (HMQC) and Heteronuclear Multiple-Bond 

Coherence (HMBC). 

The relative configuration at C-5, C-6 and C-7 of 13a was determined by NOE experiments (Figure 3), 

where an enhancement of the signals of protons H-5 and H-4α was observed when the signal of H-4β 

was irradiated. Likewise, when H-5 was irradiated, an NOE effect was observed for H-4β and H-13. 

The irradiation of H-4α induced an NOE effect on the signals of H-4β, H-9 and H-13. An enhancement 

of the signals of protons H-5 and H-7 was observed when the signal of H-16 was irradiated. These data 

support a syn relationship between H-4β, H-5 and H-16 protons, and justify assigning the structure of 

the compound 13a as the endo cycloadduct.  

Figure 3. NOE observed upon irradiation of protons H-4β, H-5 and H-16 for the adduct 13a. 

 

The assignment of the stereochemistry of compound 13a was confirmed by X-ray crystallography 

(Figure 4). The phenyl and ethoxycarbonyl groups at the stereogenic C-5 and C-6 centers have a trans 

diequatorial orientation. The torsion angle C(12)-C(5)-C(6)-C(6a) of 48.42(18)° supports the gauche 

conformation for the phenyl and ethoxycarbonyl groups. Meanwhile, the methyl group at the 

stereogenic C-7 center has a pseudoaxial orientation. Therefore, in the solid state, the carbocyclic  

six-membered ring adopts a half-chair conformation. 

Figure 4. Molecular structure of 13a with thermal ellipsoids at the 30% probability level. 
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It is likely that the presence of an electron-donating methyl group in 2 greatly polarizes the  

π-system of the diene, giving rise to the major para regioisomers 13a–e/14a–e. The endo preference 

might be due to both steric and electronic factors which favor the endo transition state (vide infra). 

Similarly, benzylidenemalonitriles 5a–d (R1 = R2 = CN) reacted with dienes 2 and 3 affording a 

mixture of anti/syn diastereoisomers 15–16, respectively, in 55–90% yields, favoring the anti (relative 

configuration between the C-5 phenyl ring with respect to Me-16) cycloadducts 15a–e as determined 

by 1H NMR (300 MHz) analysis of the crude reaction mixture (Table 2, entries 6–10).  

In contrast, the reactions of diene 2 with dienophiles 6a–c (R1 = R1 = CO2Et), under the same 

experimental condition, provided single diastereoisomers 17a–c in low yields (Table 2, entries 11–13), 

due in part to the self-dimerization of diene 2 to adduct 19, isolated as a by-product [17]. These results 

indicate that dienophiles 6a–c are less reactive and more stereoselective that dienophiles 4 and 5. 

It appears that these reactions are sterically sensitive, since the use of the more hindered  

dienophiles 6a–c afforded the corresponding products 17a–c in the poorest yields, although with a  

better stereoselectivity. 

As shown in Tables 1 and 2, the reaction times for diene 2 were similar to those employed for diene 1. 

This is rather unexpected as previously mentioned [17], since the electron-releasing effect of the 

methyl substituent of diene 2 should increase the reactivity in Diels-Alder additions according to 

Alder’s rule. This behavior is also presumably due to the steric effect.  

2.3. Multicomponent Reactions 

In recent years, the development of multicomponent reactions in order to produce biologically 

active compounds has been accelerated and thus has become a very important area of research in 

organic and medicinal chemistry. 

As an attempt to obtain compounds 13–18 more efficiently, we turned our attention to a one-pot 

procedure. Our synthetic strategy was based on the knowledge that the dienophiles 4 and 5 are 

accessible through a simple Knoevenagel condensation between compounds 20a–b and benzaldehydes 

21a–d [27–29], followed by a subsequent Diels-Alder cycloaddition with diene 2, to generate 

cycloadducts 13–16.  

Initially, in this multicomponent approach, a mixture of ethyl 2-cyanoacetate (20a), benzaldehyde 

(21a) and diene 2 was reacted in a 1:1:1 (mol-equiv.) ratio under infrared irradiation and solvent-free 

conditions. After 35 min, this reaction led to the desired mixture of tetrahydrobenzo[d]oxazol-2-ones 

13a/14a (65:35), albeit in moderate yield (55%), along with some amount of 4a and 19 (40% and 5%, 

respectively). It is worth noting that the regio- and stereoselectivity was similar (Table 3, entry 1) to 

those found in the previous methodology (Table 2, entry 1). The Knoevenagel adduct 4a was detected 

from the crude mixture by H1 NMR analysis, which supports the idea that its initial formation was 

accomplished before the intermolecular Diels-Alder reaction with diene 2 took place, to give the 

corresponding adducts.  

A similar behavior was observed for the analogous substrates 21b–d with 20a and diene 2, since the 

cycloadduct mixtures 13b/14b, 13c/14c and 13d/14d were obtained in comparable yields (40–64%) to 

those obtained via the two-step procedure, confirming the efficiency of the multicomponent approach 

(Table 3, entries 2–4). 
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On the other hand, the multicomponent reaction between malononitrile 20b, benzaldehydes 21a–d 

and diene 2 produced fairly good yields of cycloadducts 15a–d/16a–d. However, in the presence of 

diethyl malonate (20c), no domino Knoevenagel condensation/Diels-Alder cycloaddition was observed 

at all. When the reaction temperature was increased to 80 °C, compound 19 was obtained instead of 

the expected adducts 17/18. These results revealed that the dimerization of 2 is also promoted by IR 

irradiation to yield 19. The structure of the latter was established by spectroscopic data and 

corroborated by the study of X-ray diffraction (Figure 5). Previously, we observed the dimerization of 

diene 2 under thermal conditions (xylene, 120 °C, 10 h) [17]. Comparing the NMR data of these 

compounds, we found that there were notable differences in chemical shifts, as well as in the 

difference in their melting points (196–198 °C and 243–244 °C), which suggests that this dimer 

corresponds to different diastereoisomer. This result can be attributed to the probable influence of 

infrared radiation as a source of energy. 

Figure 5. Molecular structure of 19 with thermal ellipsoids at the 30% probability level. 

 

The higher reactivity of ethyl 2-cyanoacetate (20a) and malononitrile (20b) in comparison  

with diethyl malonate (20c), which successively leads to the Knoevenagel condensation and  

Diels-Alder reaction under infrared irradiation conditions, may be explained in terms of the difference 

of acidity constants of the activated methylene: 20c (pKa = 13) [37], 20b (pKa = 11) [38] and 20a  

(pKa = 9) [39]. This acidity can affect the formation of the Knoevenagel products and, consequently, 

the final adduct. In addition, these results also suggest that the steric hindrance generated by the 

ethoxycarbonyl group seems to play a role in controlling the domino reactions and therefore in 

providing acceptable yields. 

2.4. Diels-Alder Regioselectivity and FMO Theory 

The regioselectivity of the Diels-Alder additions of dienes 1–3 to dienophiles 4–6 was rationalized 

in terms of the FMO theory [34]. The geometries of dienes 1 and 2 were previously calculated [17], 
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while the geometries of diene 3 and dienophiles 4–6 were calculated using the B3LYP/6-31G** 

method [40–42] without any symmetry constraints calculation, and employed as the starting point for 

the ab initio molecular orbital calculations, using the RHF/6-31G** basis set [43]. It is noteworthy that 

for derivatives 6, the cis ethoxycarbonyl group to the aryl ring adopts a preferential non-coplanar 

conformation, leaving the trans acrylate moiety in conjugation with the aromatic substituent. This 

conjugation is also observed for derivatives 4. This is probably due to the fact that in this conformation 

the aryl ring is maintained coplanar to the acrylate conjugated π-system, giving rise to a higher stability. 

By using the same basis set, the energies of the FMO were calculated for both dienes and 

dienophiles (Table 4). Since, in the entire series lower, energy gaps were calculated for the interaction 

between HOMOdiene-LUMOdienophile (Normal Electronic Demand) than between the opposite interaction 

LUMOdiene-HOMOdienophile (Inverse Electronic Demand), as illustrated by some examples in Table 5, it 

is then expected that the reaction is conducted under the former interaction. 

Table 4. Ab initio 6-31G** calculations of energies (eV) and coefficients (Ci) of the 

frontier molecular orbitals for dienes 1–3 and dienophiles 4–6 a. 

 

  HOMO LUMO 

Compd b E (eV) C1 C2 C3 C4 ∆Ci
c E (eV) C1 C2 C3 C4 ∆Ci

c)

1 d −8.8051 0.246 0.164 −0.209 −0.326 0.080 2.9065 0.263 −0.245 −0.245 0.258 −0.005

2 d −8.5610 −0.257 −0.199 0.198 0.320 0.063 3.1035 0.274 −0.222 −0.245 0.248 −0.026 

3 −8.6408 −0.277 −0.220 0.199 0.324 0.047 2.7244 0.288 −0.232 −0.247 0.258 −0.030 

4a −8.9382 0.122 0.276 0.015 −0.114 −0.154 1.0104 0.296 −0.210 −0.131 0.113 0.086 

4b −8.4299 −0.084 −0.260 −0.020 0.105 −0.176 1.2204 0.306 −0.203 −0.134 0.112 0.103 

4c −9.0541 0.116 0.265 0.014 −0.109 −0.149 0.7532 0.288 −0.211 −0.126 0.110 0.077 

4d −9.7679 0.160 0.284 0.008 −0.121 −0.124 −0.1056 0.219 −0.196 −0.096 0.092 0.023 

5a −9.2234 0.126 0.275 −0.058  −0.149 0.5331 0.305 −0.227 −0.071  0.078 

5b −8.6859 −0.087 −0.261 0.044  −0.174 0.7611 0.315 −0.219 −0.073  0.096 

5c −9.3227 0.118 0.263 −0.055  −0.145 0.2759 0.298 −0.227 −0.068  0.071 

5d −10.0495 0.163 0.280 −0.073  −0.117 −0.5323 0.238 −0.214 −0.050  0.024 

5c −9.3227 0.118 0.263 −0.055  −0.145 0.2759 0.298 −0.227 −0.068  0.071 

6a −8.6751 0.112 0.257 0.013 −0.100 −0.145 1.7804 0.256 −0.215 −0.153 0.126 0.041 

6b −8.1608 0.043 0.242 0.017 −0.091 −0.199 1.9179 0.272 −0.210 −0.151 0.122 0.062 

6c −8.8008 0.106 0.246 0.012 −0.094 −0.140 1.5032 0.248 −0.215 −0.142 0.119 0.033 

6d −9.5564 0.148 0.271 0.005 −0.108 −0.123 0.5236 −0.164 0.183 0.095 −0.088 −0.019 
a These are the values of the pz coefficients, the relative pz' contributions and their ∆Ci are analogous;  
b The most stable planar (aryl ring-double bond-numbered trans carbonyl group) s-cis (acrylate moiety) 
conformation for olefins 4 and 6, and planar (aryl ring-double bond-cyano group) conformation for 
olefins 5, as shown in the structures at the head of the table; c Carbon 4-carbon 1 for the dienes; carbon 
1-carbon 2 for the dienophile; d Reference 17. 
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Table 5. Energy gaps (eV) of the frontier molecular orbitals for dienes 1–3 and  

dienophiles 4a–6a. 

Diene 

4a a 

Diff. 

5a a 

Diff. 

6a a 

Diff. HOMO-
LUMO 

LUMO-
HOMO 

HOMO-
LUMO 

LUMO-
HOMO 

HOMO-
LUMO 

LUMO-
HOMO 

1 9.8155 11.8447 2.0292 9.3382 12.1299 2.7917 10.5855 11.5816 0.9961 
2 9.5714 12.0417 2.4703 9.0941 12.3269 3.2328 10.3414 11.7786 1.4372 
3 9.6512 11.6626 2.0114 9.1739 11.9478 2.7739 10.4212 11.3995 0.9783 

a HOMOdiene-LUMOdienophile and LUMOdiene-HOMOdienophile. 

As expected, the methyl group attached to the diene moiety in dienes 2 and 3 induced an increase of 

the energy of the HOMO, with respect to the energy of the unsubstituted diene 1. Hence, the reactivity 

of dienes 2 and 3 should be higher than that of diene 1, as observed for the cycloadditions with mono 

substituted dienophiles [17]. Nevertheless, in the case of dienophiles 4–6, the reaction times are very 

similar for all the dienes (Tables 1 and 2), which indicates a similar reactivity as well. It is likely that 

other factors are involved, such as the steric hindrance generated between the dienes and the 

substituents in dienophiles 4–6. Although these factors are not sufficiently important to modify the 

regioselectivity, which is para in the whole series, the preference for the anti relative configuration 

between the methyl group and the aryl ring in adducts 13–17 seems to support their existence. 

Moreover, in spite of the presence of electron-withdrawing groups in the aryl ring of the dienophiles, 

such as the nitro group, which may induce a higher reactivity and higher selectivity [34,36], there is no 

correlation between the stereoselectivity and the structure of the dienophiles bearing other substituents. 

Once again, this suggests the significant effect of the steric repulsions at the transition state, and also 

seems to be the reason for the formation of the single endo stereoisomer (17) in the case of the more 

hindered dienophiles 6 (Table 2, entries 11–13). The stabilizing secondary orbital interactions eventually 

present at the endo transition state may reinforce this preference. 

The exclusive para regioselectivity (N-Ar/CO2Me or CN groups) observed in all the cycloadditions 

can be explained on the basis of the coefficient differences for the HOMOdiene-LUMOdienophile 

interactions (Table 4). These latter should generate the greatest perturbation, since the energy gap is 

smaller than the inverse interactions (LUMOdiene-HOMOdienophile). Indeed, if the largest FMO coefficients 

become bonded preferentially at the transition state [44–47], and considering that the relative 

magnitude of the coefficient of the terminus C-4 is bigger than that of C-1 in the HOMO of dienes 1–3, 

and that the beta C-1 coefficient is bigger than that of the alpha C-2 in the LUMO of olefins 4–6, a 

“para” orientation is expected, in agreement with the experimental results. This para regioselectivity 

supports the idea that the electronic effects also control the course of the reaction, despite the presence 

of steric interactions generated between the methyl group and the geminal disubstituted carbon at the 

vicinal carbons in the adducts 13–17. 

Therefore, for these cycloadditions, the regio and stereoselectivities can be ascribed to the 

electronic effects, which are due to the polarization of the π-systems, and to the steric interactions, the 

latter mainly caused by the polysubstitution of the dienophiles. 
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3. Experimental Section  

3.1. General Procedures and Instrumentation 

All reactions were carried out under nitrogen in anhydrous solvents. All glassware was dried in an 

oven prior to use. All commercially available compounds were used without further purification. 

Tetrahydrofuran and benzene were distilled from sodium benzophenone ketyl under an N2 atmosphere 

prior to use. n-Hexane and ethyl acetate were distilled before use. Melting points (uncorrected) were 

determined with a Fisher-Johns melting point apparatus. 1H NMR and 13C NMR spectra were recorded 

on a Varian Mercury (300 MHz) and Varian VNMR System (500 MHz) instruments, in CDCl3 as 

solvent and with TMS as internal reference. High-resolution mass spectra (HRMS) were obtained with 

a JSM-GCMate II mass spectrometer, and electron impact techniques (70 eV) were employed. X-ray 

data were collected on Siemens P4 and Oxford Diffraction Xcalibur S single-crystal X-ray 

difractometers. Thin-layer Chromatography (TLC) analyses were performed using silica plates and 

were visualized using UV (254 nm) or iodine. The Knoevenagel adducts 4a–e, 5a–d and 6a–c [27–29] 

and the exo-2-oxazolidinone dienes 1–3 [16–20] were prepared by the methods described in  

the literature. 

3.2. General Procedures for the Synthesis of Adducts 7a–e, 9a–d, 11a–c, 13a–e/14a–e, 15a–e/16a–e 

and 17a–c via a Two-Step Reaction. Method A  

A mixture of the Knoevenagel adducts 4a–e, 5a–d, or 6a–c (1.2 equiv.) and the corresponding 

dienes, 1, 2, or 3 (1 mol-equiv.) was placed in a 25 mL two-necked, round-bottomed flask (equipped 

with a reflux condenser, a rubber septum and under nitrogen atmosphere), and the mixture was stirred 

and was irradiated with an infrared lamp [33] at 50 °C for 30 min–6 h under solvent-free conditions 

until the consumption of the diene (tlc). The reaction mixture was allowed to cool to room 

temperature, and then purified by column chromatography over silica gel (230–400 mesh) using  

n-hexane/EtOAc (98:2) as eluent, to afford the corresponding cycloadducts 7a–e, 9a–d, 11a–c,  

13a–e/14a–e, 15a–e/16a–e and 17a–c. 

3.3. General Procedure for the Synthesis of Adducts 13a–d/14a–d and 15a–d/16a–d via a One-Step 

Reaction. Method B 

A mixture of active methylene compounds 20a–c (1 mol-equiv.), benzaldehydes 21a–d (mol-equiv.) 

and the corresponding diene 2 (1 mol-equiv.), was placed in a 25 mL two-necked, round-bottomed 

flask (equipped with a reflux condenser, a rubber septum and under nitrogen atmosphere), and the 

mixture was stirred and was irradiated with an infrared lamp [33] at 50 °C for ~30 min–6 h, under 

solvent-free conditions, until the consumption of the diene (tlc). The reaction mixture was allowed to 

cool to room temperature, and then was purified by column chromatography on silica gel (230–400 mesh) 

using n-hexane/EtOAc (98:2) as eluent, to afford the corresponding cycloadducts 13a–d/14a–d and 

15a–d/16a–d. 

(5S*,6R*)-6-Ethoxycarbonyl-6-cyano-3,5-diphenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (7a). 

According to Method A, the reaction between 4a (0.330 g, 0.0016 mol) and diene 1 (0.250 g,  
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0.0013 mol), followed by flash column chromatography, afforded 7a (0.380 g, 73%) as a white solid: 

mp 145–146 °C; FT-IR (KBr) νmax 2928, 2362, 1757, 1713, 1598 cm−1; 1H NMR (500 MHz, CDCl3)  

δ 0.87 (t, J = 6.9 Hz, 3H, OCH2CH3), 2.65 (ddd, J = 17.1, 4.8, 1.5 Hz, 1H, H-4β), 3.13 (dddd, J = 17.1, 

11.4, 4.2, 2.1 Hz, 1H, H-4α), 3.16 (dd, J = 16.8, 1.5 Hz, 1H, H-7α), 3.43–3.48 (m, 2H, H-5, H-7β), 

3.92 (q, J = 6.9, 2H, OCH2CH3), 7.32–7.46 (m, 10H, H-Ar); 13C NMR (125 MHz, CDCl3) δ 13.3 

(OCH2CH3), 25.6 (C-4), 31.4 (C-7), 46.5 (C-5), 49.6 (C-6), 63.2 (OCH2CH3), 117.2 (CN),  

120.4 (C-3a), 125.0 (C-9), 125.1 (C-10), 128.0 (C-13), 128.1 (C-11), 128.8 (C-14), 129.5 (15),  

130.1 (C-7a), 133.3 (C-8), 136.4 (C-12), 154.0 (C-2), 166.5 (CO2CH2CH3); HRMS (EI+) calcd for 

C22H16N4O4 388.1423, found (M+) 388.1436. 

(5S*,6R*)-6-Ethoxycarbonyl-6-cyano-5-(4-methoxyphenyl)-3-(phenyl)-4,5,6,7-tetrahydrobenzo[d] 

oxazol-2-one (7b). According to Method A, the reaction between 4b (0.44 g, 0.0019 mol) and diene 1 

(0.300 g, 0.0016 mol), followed by flash column chromatography, afforded 7b (0.330 g, 50%) as a 

pale yellow solid: mp 168–169 °C; FT-IR (KBr) νmax 2934, 2244, 1769, 1716, 1598 cm−1; 1H NMR 

(500 MHz, CDCl3) δ 0.94 (t, J = 7.2 Hz, 3H, OCH2CH3), 2.61 (ddd, J = 16.2, 4.8, 1.2 Hz, 1H, H-4β), 

3.06 (dddd, J = 16.2, 11.4, 4.2, 1.2 Hz, 1H, H-4α), 3.14 (dd, J = 16.2, 2.1 Hz, 1H, 7α), 3.39–3.46 (m, 

2H, H-5, H-7β), 3.78 (s, 3H, OCH3), 3.96 (q, J = 7.2 Hz, 2H, OCH2CH3), 6.85 (d, J = 8.7 Hz, 2H, H-14), 

7.30 (d, J = 8.7 Hz, 2H, H-13), 7.36–7.48 (m, 5H, H-Ar); 13C NMR (125 MHz, CDCl3) δ 13.4 

(OCH2CH3), 25.6 (C-4), 30.1 (C-7), 45.6 (C-5), 49.8 (C-6), 55.2 (OCH3), 63.1 (OCH2CH3),  

114.3 (C-14), 117.5 (CN), 120.8 (C-3a), 125.4 (C-9), 128.3 (C-11), 128.6 (C-12), 129.6 (C-13),  

129.9 (C-10), 130.4 (C-7a), 133.5 (C-8), 154.0 (C-2), 159.7 (C-15), 166.5 (CO2CH2CH3); HRMS (EI+) 

calcd for C16H16N2O3 418.1529, found (M+) 418.1526. 

(5S*,6R*)-6-Ethoxycarbonyl-5-(4-chlorophenyl)-6-cyano-3-(phenyl)-4,5,6,7-tetrahydrobenzo[d]oxazol- 

2-one (7c). According to Method A, the reaction between 4c (0.452 g, 0.0019 mol) and diene 1 (0.300 g, 

0.0016 mol), followed by flash column chromatography, afforded 7c (0.400 g, 60%) as a pale yellow 

solid: mp 175–177 °C; FT-IR (KBr) νmax 2910, 2256, 1762, 1710, 1566 cm−1; 1H NMR (300 MHz, 

CDCl3) δ 0.96 (t, J = 7.0 Hz, 3H, OCH2CH3), 2.63 (ddd, J = 16.8, 4.8, 1.8 Hz, 1H, H-4β), 3.05 (dddd, 

J = 16.8, 11.4, 4.8, 2.1 Hz, 1H, H-4α), 3.16 (dd, J = 16.5, 1.8 Hz, 1H, H-7α), 3.41 (ddd, J = 16.5, 4.2, 

1.8 Hz, 1H, H-7β), 3.45 (dd, J = 11.4, 4.8 Hz, 1H, H-5), 3.98 (qd, J = 7.2, 2.0 Hz, 2H, OCH2CH3), 

7.30–7.47 (m, 9H, H-Ar); 13C NMR (75.4 MHz, CDCl3) δ 13.5 (OCH2CH3), 25.5 (C-4), 31.3 (C-7), 

45.7 (C-5), 49.4 (C-6), 63.3 (OCH2CH3), 116.9 (CN), 120.2 (C-3a), 125.1 (C-9), 128.2 (C-11),  

129.0 (C-10), 129.6 (C-13), 129.7 (C-14), 130.0 (C-7a), 133.2 (C-8), 134.8 (C-15), 134.9 (C-12), 

154.0 (C-2), 166.4 (CO2CH2CH3); HRMS (EI+) calcd for C23H19N2O4Cl 422.1033,  

found (M+) 422.1032. 

(5S*,6R*)-6-Ethoxycarbonyl-6-cyano-5-(4-nitrophenyl)-3-(phenyl)-4,5,6,7-tetrahydrobenzo[d]oxazol- 

2-one (7d). According to Method A, the reaction between 4d (0.47 g, 0.0019 mol) and diene 1 (0.300 g, 

0.0016 mol), followed by flash column chromatography, afforded 7d (0.550 g, 80%) as a pale yellow 

solid: mp 161–163 °C; FT-IR (KBr) νmax 2982, 2246, 1770, 1743, 1600 cm−1; 1H NMR (300 MHz, 

CDCl3) δ 0.97 (t, J = 6.5 Hz, 3H, OCH2CH3), 2.68 (ddd, J = 18.5, 4.5, 1.5 Hz, 1H, H-4β), 3.09 (dddd, 

J = 18.5, 11.5, 4.5, 2.0 Hz, 1H, H-4α), 3.22 (dd, J = 16.5 Hz, 0.5, 1H, H-7α), 3.43 (ddd, J = 16.5, 4.5, 

2.0 Hz, 1H, H-7β), 3.61 (dd, J = 12.0, 4.5 Hz, 1H, H-5), 4.01 (qd, J = 6.5, 1.6 Hz, 2H, OCH2CH3), 

7.36–7.48 (m, 5H, H-Ar), 7.27 (d, J = 9.0 Hz, 2H, H-13), 8.21 (d, J = 9.0 Hz, 2H, H-14); 13C NMR 
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(75.4 MHz, CDCl3) δ 13.5 (OCH2CH3), 25.4 (C-4), 30.5 (C-7), 45.7 (C-5), 49.0 (C-6),  

63.6 (OCH2CH3), 116.5 (CN), 119.9 (C-3a), 123.9 (C-9), 125.0 (C-10), 128.3 (C-11), 129.4 (C-13), 

129.7 (C-14), 129.7 (C-8), 133.0 (C-7a), 143.6 (C-12), 148.0 (C-15), 153.8 (C-2), 166.0 

(CO2CH2CH3); HRMS (EI+) calcd for C23H19N3O6 433.1274, found (M+) 433.1272. 

(5S*,6R*)-6-Ethoxycarbonyl-6-cyano-5-(3-nitrophenyl)-3-(phenyl)-4,5,6,7-tetrahydrobenzo[d]oxazol- 

2-one (7e). According to Method A, the reaction between 4e (0.413 g, 0.0019 mol) and diene 1 (0.300 g, 

0.0016 mol), followed by flash column chromatography, afforded 7e (0.380 g, 55%) as a pale yellow 

solid: mp 180–181 °C; FT-IR (KBr) νmax 2925, 2244, 1771, 1741, 1531 cm−1; 1H NMR (500 MHz, 

CDCl3) δ 0.96 (t, J = 7.2 Hz, 3H, OCH2CH3), 2.69 (ddd, J = 16.8, 4.8, 1.5 Hz, 1H, H-4β), 3.12 (dddd, 

J = 16.8, 11.4, 5.7, 2.1 Hz, 1H, H-4α), 3.22 (dd, J = 16.8, 1.5 Hz, 1H, H-7α), 3.45 (ddd, J = 16.8, 3.9, 

2.1 Hz, 1H, H-7β), 3.65 (dd, J = 11.4, 4.8 Hz, 1H, H-5), 4.01 (qd, J = 7.2, 1.8 Hz, 2H, OCH2CH3), 

7.35–7.50 (m, 5H, H-Ar), 7.57 (t, J = 7.5 Hz, 1H, H-16), 7.83 (d, J = 7.5 Hz, 1H, H-17), 8.21 (dd,  

J = 7.5, 1.8 Hz, 1H, H-15), 8.26 (dd, J = 7.5, 1.8 Hz, 1H, H-13); 13C NMR (125 MHz, CDCl3) δ 13.9 

(OCH2CH3), 24.7 (C-4), 31.9 (C-7), 45.8 (C-5), 49.5 (C-6), 64.0 (OCH2CH3), 116.3 (CN),  

120.0 (C-3a), 123.7(C-13), 123.8 (C-15), 125.0 (C-9), 128.2 (C-11), 129.4 (C-10), 130.2 (C-7a),  

130.3 (C-17), 133.3 (C-8), 134.2 (C-16), 139.0 (C-12), 148.2 (C-14), 153.8 (C-2),  

166.2 (CO2CH2CH3). HRMS (EI+) calcd for C23H19N3O6 433.1273, found (M+) 433.1273.  

6,6-Dicyano-3,5-diphenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (9a). According to Method A, 

the reaction between 5a (0.345 g, 0.0022 mol) and diene 1 (0.350 g, 0.0018 mol), followed by flash 

column chromatography, afforded 9a (0.510 g, 80%) as a pale yellow solid: mp 150–151 °C; FT-IR 

(KBr) νmax 2933, 2251, 1769, 1720, 1501 cm−1; 1H NMR (300 MHz, CDCl3) δ 2.76 (dd, J = 17.1,  

5.4 Hz, 1H, H-4β), 3.02–3.13 (m, 2H, H-4α, H-7α), 3.41–3.49 (m, 1H, H-7β), 3.46 (dd, J = 10.8,  

5.4 Hz, 1H, H-5), 7.35–7.50 (m, 10H, H-Ar); 13C NMR (75.4 MHz, CDCl3) δ 24.5 (C-4), 32.5 (C-6), 

37.3 (C-7), 46.6 (C-5), 113.3 (CN), 113.6 (CN), 121.1 (C-3a), 125.3 (C-9), 127.9 (C-15), 128.0 (C-14), 

128.5 (C-11), 129.7 (C-13), 129.8 (C-10), 129.8 (C-7a), 132.8 (C-8), 134.9 (C-12), 153.6 (C-2); 

HRMS (EI+) calcd for C21H15N3O2 341.1164, found (M+) 341.1165. 

6,6-Dicyano-5-(4-methoxyphenyl)-3-phenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (9b). According 

to Method A, the reaction between 5b (0.436 g, 0.0023 mol), and diene 1 (0.370 g, 0.0019 mol) 

followed by flash column chromatography, afforded 9b (0.400 g, 55%) as a pale yellow solid:  

mp 157–159 °C; FT-IR (KBr) νmax 2935, 2252, 2217, 1768, 1598 cm−1; 1H NMR (300 MHz, CDCl3)  

δ 2.73 (dd, J = 16.8, 4.8 Hz, 1H, H-4β), 2.97–3.03 (m, 1H, H-4α), 3.39–4.01 (m, 2H, H-7α, H-7β), 

3.44 (dd, J = 10.5, 5.1 Hz, 1H, H-5), 3.78 (OCH3), 6.92 (d, J = 8.7 Hz, 2H, H-14), 7.33–7.39 (m, 5H, 

H-Ar), 7.45 (d, J = 8.5 Hz, 2H, H-13); 13C NMR (75.4 MHz, CDCl3) δ 24.4 (C-4), 32.2 (C-7),  

37.6 (C-6), 45.7 (C-5), 55.2 (OCH3), 113.4 (CN), 113.7 (CN), 114.5 (C-14), 121.0 (C-3a), 125.1 (C-9), 

126.8 (C-11), 127.9 (C-13), 129.3 (C-10), 129.4 (C-12), 130.8 (C-7a), 132.8 (C-8), 153.6 (C-2),  

160.3 (C-15); HRMS (EI+) calcd for C22H17N3O3 371.1270, found (M+) 371.1270. 

5-(4-Chlorophenyl)-6,6-dicyano-3-phenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (9c). According 

to Method A, the reaction between 5c (0.482 g, 0.0025 mol) and diene 1 (0.400 g, 0.0021 mol), 

followed by flash column chromatography, afforded 9c (0.60 g, 75%) as a pale yellow solid:  

mp 179–181 °C; FT-IR (KBr) νmax 2923, 2215, 1778, 1549 cm−1; 1H NMR (300 MHz, CDCl3) δ 2.75 
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(dd, J = 17.5, 5.0 Hz, 1H, H-4β), 3.01–3.07 (m, 1H, H-4α), 3.42–3.47 (m, 3H, H-5, H-7α, H-7β),  

7.35–7.50 (m, 9H, H-Ar); 13C NMR (75.4 MHz, CDCl3) δ 24.4 (C-4), 29.6 (C-7), 37.2 (C-6), 46.1  

(C-5), 113.1 (CN), 113.4 (CN), 120.8 (C-3a), 125.3 (C-9), 127.9 (C-7a), 128.6 (C-11), 129.7, 129.7, 

129.8, 129.9 (C-10, C-13, C-14), 132.8 (C-8), 133.3 (C-15), 136.0 (C-12), 153.6 (C-2); HRMS (EI+) 

calcd for C21H14ClN3O2 375.0774, found (M+) 375.0774. 

6,6-Dicyano-5-(4-nitrophenyl)-3-phenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (9d). According to 

Method A, the reaction between 5d (0.383 g, 0.0019 mol) and diene 1 (0.300 g, 0.0016 mol) followed 

by flash column chromatography, afforded 9d (0.525 g, 85%) as a pale yellow solid: mp 166–167 °C; 

FT-IR (KBr) νmax 2918, 2220, 1772, 1599 cm−1; 1H NMR (300 MHz, CDCl3) δ 2.80 (dd, J = 17.7, 5.1 Hz, 

1H, H-4β), 3.01–3.16 (m, 1H, H-4α), 3.45–3.50 (m, 2H, H-7α, H-7β), 3.60 (dd, J = 10.5, 5.1 Hz, 1H, 

H-5), 7.30–7.55 (m, 5H, H-Ar), 7.62 (d, J = 8.5 Hz, 2H, H-13), 8.30 (d, J = 8.5 Hz, 2H, H-14);  
13C NMR (75.4 MHz, CDCl3) δ 24.3 (C-4), 32.6 (C-7), 36.8 (C-6), 46.3 (C-5), 113.0 (CN), 113.3 

(CN), 120.5 (C-3a), 124.5 (C-14), 125.3 (C-9), 127.8 (C-7a), 128.8 (C-11), 129.4 (C-13), 129.9 (C-

10),  

133.0 (C-8), 141.5 (C-12), 149.0 (C-15), 153.0 (C-2); HRMS (EI+) calcd for C21H14N4O4 386.1015, 

found (M+) 386.1015. 

6,6-Diethoxycarbonyl-3,5-diphenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (11a). According to 

Method A, the reaction between 6a (0.445 g, 0.0018 mol) and diene 1 (0.280 g, 0.0015 mol), followed 

by flash column chromatography, afforded 11a (0.243 g, 35%) as a white solid: mp 124–125 °C;  

FT-IR (KBr) νmax 2926, 1770, 1732, 1502 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.16 (t, J = 7.2 Hz, 3H, 

OCH2CH3), 1.20 (t, J = 6.9 Hz, 3H, OCH2CH3), 2.58 (d, J = 16.8 Hz, 1H, H-4α), 3.11 (ddd, J = 16.8, 

3.9, 2.4 Hz, 1H, H-7β), 3.22–3.32 (m, 2H, H-4α, H-7α), 3.94 (dd, J = 7.2, 2.4 Hz, 1H, H-5), 4.09 (qd,  

J = 7.2, 4.8 Hz, 2H, OCH2CH3), 4.19 (qd, J = 6.9, 4.8 Hz, 2H, OCH2CH3), 7.13–7.45 (m, 10H, H-Ar); 
13C NMR (75.4 MHz, CDCl3) δ 13.8 (OCH2CH3), 13.8 (OCH2CH3), 24.5 (C-4), 25.4 (C-7), 42.5 (C-5), 

58.3 (C-6), 61.8 (OCH2CH3), 62.1 (OCH2CH3), 120.2 (C-3a), 125.1 (C-13), 127.8 (C-11), 127.8 (C-15), 

128.0 (C-10), 128.7 (C-9), 129.4 (C-14), 132.1 (C-7a), 133.6 (C-8), 139.8 (C-12), 154.5 (C-2), 168.3 

(CO2CH2CH3), 169.5 (CO2CH2CH3); HRMS (EI+) calcd for C25H25NO6 435.1681, found (M+) 435.1681. 

6,6-Diethoxycarbonyl-5-(4-methoxyphenyl)-3-phenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (11b). 

According to Method A, the reaction between 6b (0.624 g, 0.0022 mol) and diene 1 (0.350 g,  

0.0018 mol), followed by flash column chromatography, afforded 11b (0.215 g, 25%) as a white solid: 

mp 140–141 °C; FT-IR (KBr) νmax 2929 1769, 1729, 1504 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.20–1.23 

(m, 6H, OCH2CH3), 2.85 (d, J = 16.8, 1H, H-4α), 3.11 (ddd, J = 16.8, 3.6, 2.2 Hz, 1H, H-7β),  

3.23–3.32 (m, 2H, H-4β, H-7α), 3.48–3.56 (m, 1H, H-5), 3.76 (s, 3H, OCH3), 4.08–4.18 (m, 4H, 

OCH2CH3), 6.78 (d, J = 9.0 Hz, 2H, H-13), 7.07 (d, J = 9.0 Hz, 2H, H-14), 7.31–7.42 (m, 5H, H-Ar); 
13C NMR (75.4 MHz, CDCl3) δ 13.8 (OCH2CH3), 13.9 (OCH2CH3), 24.8 (C-7), 25.4 (C-4), 42.5 (C-5), 

55.1 (C-6), 61.8 (OCH2CH3), 62.1 (OCH2CH3), 113.8 (C-14), 120.2 (C-3a), 125.1 (C-9), 127.8 (C-11), 

129.0 (C-13), 129.4 (C-12), 131.8 (C-10), 132.1 (C-7a), 154.4 (C-2), 159.0 (C-15), 168.5 

(CO2CH2CH3), 169.5 (CO2CH2CH3); HRMS (EI+) calcd for C26H27NO7 465.1787, found (M+) 465.1787. 

5-(4-Chlorophenyl)-6,6-diethoxycarbonyl-3-phenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (11c). 

According to Method A, the reaction between 6c (0.542 g, 0.0019 mol) and diene 1 (0.300 g, 0.0016 mol), 
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followed by flash column chromatography, afforded 11c (0.225 g, 30%) as a white solid: mp 167–169 °C; 

FT-IR (KBr) νmax 2981, 1770, 1732, 1503 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.18 (t, J = 7.5 Hz, 3H, 

OCH2CH3), 1.19 (t, J = 7.5 Hz, 3H, OCH2CH3), 2.57 (dd, J = 17.1, 2.4 Hz, 1H, H-4α), 3.08 (ddd,  

J = 17.1, 3.3, 2.4 Hz, 1H, H-7β), 3.18–3.30 (m, 2H, H-4β, H-7α), 3.90 (dd, J = 6.9, 2.4 Hz, 1H, H-5), 

4.05–4.21 (m, 2H, OCH2CH3), 7.10 (d, J = 8.7 Hz, 2H, H-13), 7.24 (d, J = 8.7 Hz, 2H, H-14),  

7.30–7.46 (m, 5H, H-Ar); 13C NMR (75.4 MHz, CDCl3) δ 13.8 (OCH2CH3), 13.9 (OCH2CH3), 24.8 (C-7), 

25.4 (C-4), 42.2 (C-5), 58.2 (C-6), 61.9 (OCH2CH3), 62.2 (OCH2CH3), 120.0 (C-3a), 125.1 (C-9), 

127.9 (C-11), 128.8 (C-14), 129.4 (C-13), 129.5 (C-10), 132.0 (C-15), 133.7 (C-7a), 138.3 (C-12), 

154.4 (C-2), 168.2 (CO2CH2CH3), 169.3 (CO2CH2CH3); HRMS (EI+) calcd for C25H24NO6Cl 

469.1292, found (M+) 469.1292. 

(5R*,6S*,7R*)-6-Cyano-6-ethoxycarbonyl-7-methyl-3,5-diphenyl-4,5,6,7-tetrahydrobenzo[d]oxazol- 

2-one (13a). (5R*,6S*,7S*)-6-Cyano-6-ethoxycarbonyl-7-methyl-3,5-diphenyl-4,5,6,7-tetrahydrobenzo 

[d]oxazol-2-one (14a). According to Method A, the reaction between 4a (0.480 g, 0.0023 mol) and 

diene 2 (0.400 g, 0.0020 mol) gave a mixture of isomers 13a/14a (80:20) as a white solid. The isomers 

were separated by flash column chromatography, giving 0.450 g (56%) of 13a as white solid, mp  

165–166 °C and 0.250 g (32%) of 14a as a pale yellow solid, mp 165–167 °C. Data of 13a: FT-IR 

(KBr) νmax 2984, 2362, 1769, 1750, 1500 cm−1; 1H NMR (500 MHz, CDCl3) δ 1.11 (t, J = 7.2 Hz, 3H, 

OCH2CH3), 1.35 (d, J = 6.9 Hz, 3H, H-16), 2.62 (dd, J = 17.1, 5.4 Hz, 1H, H-4β), 2.93 (ddd, J = 17.1, 

11.1, 1.8 Hz, 1H, H-4α), 3.49–3.54 (m, 2H, H-5, H-7), 4.09 (q, J = 7.2 Hz, 2H, OCH2CH3), 7.26–7.51 

(m, 10H, H-Ar); 13C NMR (125 MHz, CDCl3) δ 13.7 (OCH2CH3), 15.9 (C-16), 27.0 (C-4), 37.0 (C-7), 

40.4 (C-5), 52.2 (C-6), 62.9 (OCH2CH3), 118.2 (CN), 120.0 (C-3a), 125.2 (C-9), 128.1 (C-11),  

128.2 (C-15), 128.4 (C-14), 128.7 (C-13), 129.6 (C-10), 133.3 (C-7a), 134.6 (C-8), 138.0 (C-12), 

154.0 (C-2), 164.7 (CO2CH2CH3); Data of 14a. FT-IR (KBr) νmax 2984, 2262, 1769, 1750, cm−1;  
1H NMR (500 MHz, CDCl3) δ 0.86 (t, J = 7.2 Hz, 3H, OCH2CH3), 1.42 (d, J = 6.9 Hz, 3H, H-16), 

3.13 (ddd, J = 17.1, 11.7, 4.5 Hz, 1H, H-4α), 3.48–3.53 (m, 2H, H-5, H-7), 3.95 (q, J = 7.2 Hz, 2H, 

OCH2CH3), 7.24–7.58 (m, 10H, H-Ar); 13C NMR (125 MHz, CDCl3) δ 13.4 (OCH2CH3), 15.7 (C-16), 

26.8 (C-4), 36.4 (C-7), 154.1 (C-2); HRMS (EI+) calcd for C24H22N2O4 402.1579,  

found (M+) 402.1580. 

Method B. Reaction of ethyl 2-cyanoacetate 20a (0.200 g, 0.0017 mol), benzaldehyde 21a  

(0.184 g, 0.0017 mol) with exo-2-oxazolidinone diene 2 (0.350 g, 0.0017 mol) gave a mixture of 

isomers 13a/14a (65:35). The isomers were separated by flash column chromatography, giving 0.340 g 

(43%) of 13a and 0.095 g (12%) of 14a. 

(5R*,6S*,7R*)-6-Cyano-6-ethoxycarbonyl-5-(4-methoxyphenyl)-7-methyl-3-phenyl-4,5,6,7-

tetrahydrobenzo[d]oxazol-2-one (13b). (5R*,6S*,7S*)-6-Cyano-6-ethoxycarbonyl-5-(4-methoxyphenyl) 

-7-methyl-3-phenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (14b). According to Method A, the 

reaction between 4b (0.480 g, 0.0020 mol) and diene 2 (0.350 g, 0.0017 mol) gave a mixture of 

isomers 13b/14b (75:25) as a pale yellow solid, which was purified by flash column chromatography, 

to yield 0.520 g (65%) of major isomer 13b as pale yellow solid: mp 172–174 °C. Data of 13b: FT-IR 

(KBr) νmax 2933, 2200, 1767, 1754, 1501 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.14 (t, J = 7.2 Hz, 3H, 

OCH2CH3), 1.37 (d, J = 6.9 Hz, 3H, H-16), 2.59 (dd, J = 17.1, 4.8 Hz, 1H, H-4β), 2.86–2.95 (m, 1H, 

H-4α), 3.46–3.51 (m, 2H, H-5, H-7), 3.83 (s, 3H, OCH3), 4.09 (q, J = 7.2 Hz, 2H, OCH2CH3), 6.84 (d, 
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J = 8.7 Hz, 2H, H-14), 7.27–7.47 (m, 7H, H-Ar). Signals attributed to minor isomer 14b: 0.92 (t,  

J = 7.2 Hz, 3H, OCH2CH3), 1.42 (d, J = 6.9 Hz, 3H, H-16), 2.38 (dd, J = 17.1, 4.8 Hz, 1H, H-4β),  

3.08 (dd, J = 16.8, 10.9 Hz, 1H, H-4α), 3.43–3.60 (m, 2H, H-5, H-7), 3.96 (q, J = 7.2 Hz, 2H, 

OCH2CH3); 
13C NMR (75.4 MHz, CDCl3) δ 14.0 (OCH2CH3), 16.2 (C-16), 27.2 (C-7), 31.2 (C-4), 

37.1 (C-5), 52.8 (C-6), 55.4 (OCH3), 63.1 (OCH2CH3), 114.2 (C-14), 118.0 (CN), 120.3 (C-3a),  

125.4 (C-9), 127.5 (C-11), 129.5 (C-13), 129.8 (C-10), 130.0 (C-8), 133.4 (C-7a), 134.8 (C-12),  

152 (C-2), 159.5 (CO2CH2CH3), 165.0 (C-15); HRMS (EI+) calcd for C25H24N2O5 432.1685,  

found (M+). 432.1681. 

Method B. Reaction of ethyl 2-cyanoacetate 20a (0.190 g, 0.0017 mol) and benzaldehyde 21b 

(0.230 g, 0.0017 mol) with exo-2-oxazolidinone diene 2 (0.350 g, 0.0017 mol) gave a mixture of 

isomers 13b/14b (75:25). The isomers were separated by flash column chromatography, giving  

0.300 g (40%) of major isomer 13b.  

(5R*,6S*,7R*)-5-(4-Chlorophenyl)-6-cyano-6-ethoxycarbonyl-7-methyl-3-phenyl-4,5,6,7-

tetrahydrobenzo[d]oxazol-2-one (13c). (5R*,6S*,7S*)-5-(4-Chlorophenyl)-6-cyano-6-ethoxycarbonyl-

7-methyl-3-phenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (14c). According to Method A, the 

reaction between 4c (0.500 g, 0.0020 mol) and diene 2 (0.350 g, 0.0017 mol) gave a mixture of 

isomers 13c/14c (90:10) as a pale yellow solid, which was purified by flash column chromatography, 

to yield 0.570 g (75%) of major isomer 13c as pale yellow solid: mp 182–184 °C. Data of 13c: FT-IR 

(KBr) νmax 2931, 2230, 1773, 1719, 1544 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.16 (t, J = 6.9 Hz, 3H, 

OCH2CH3), 1.33 (d, J = 6.9 Hz, 3H, H-16), 2.58 (dd, J = 16.8, 5.1 Hz, 1H, H-4β), 2.89 (ddd, J = 16.8, 

11.1, 1.6 Hz, 1H, H-4α), 3.46–3.54 (m, 2H, H-5, H-7), 4.11 (qd, J = 6.9, 1.5 Hz, 2H, OCH2CH3),  

7.28–7.47 (m, 9H, H-Ar); 13C NMR (75.4 MHz, CDCl3) δ 13.7 (OCH2CH3), 15.8 (C-16), 27.0 (C-4), 

37.0 (C-7), 40.1 (C-5), 52.2 (C-6), 62.9 (OCH2CH3), 118.2 (CN), 120.0 (C-3a), 125.2 (C-9),  

128.1 (C-10), 128.4 (C-11), 129.4 (C-13), 129.6 (C-14), 133.2 (C-8), 134.5 (C-7a), 146.0 (C-12), 

148.0 (C-15), 154.0 (C-2), 164.2 (CO2CH2CH3); HRMS (EI+) calcd for C24H21N2O4Cl 436.1190, 

found (M+) 436.1186.  

Method B. Reaction of ethyl 2-cyanoacetate 20a (0.17 g, 0.0015 mol) and benzaldehyde 21c  

(0.200 g, 0.0015 mol) with exo-2-oxazolidinone diene 2 (0.300 g, 0.0015 mol) gave a mixture of 

isomers 13c/14c (68:32). The isomers were separated by flash column chromatography, giving 0.456 g 

(64%) of major isomer 13c. 

(5R*,6S*,7R*)-6-Cyano-6-ethoxycarbonyl-7-methyl-5-(4-nitrophenyl)-3-phenyl-4,5,6,7-

tetrahydrobenzo[d]oxazol-2-one (13d). (5R*,6S*,7S*)-6-Cyano-6-ethoxycarbonyl-7-methyl-5-(4-

nitrophenyl)-3-phenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (14d). According to Method A, the 

reaction between 4d (0.513 g, 0.0020 mol) and diene 2 (0.350 g, 0.0017 mol) gave a mixture of 

isomers 13d/14d (85:15) as a pale yellow solid, which was purified by flash column chromatography, 

to yield 0.660 g (80%) of major isomer 13d as white solid: mp 178–180 °C. Data of 13d: FT-IR (KBr) 

νmax 3078, 2983, 2240, 1764, 1710, 1520 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.19 (t, J = 6.9 Hz, 3H, 

OCH2CH3), 1.34 (d, J = 7.0 Hz, 3H, H-16), 2.64 (dd, J = 16.5, 4.8 Hz, 1H, H-4β), 2.94 (ddd, J = 16.5, 

11.4, 1.5 Hz, 1H, H-4α), 3.56–3.67 (m, 2H, H-5, H-7), 4.14 (qdd, J = 6.9, 4.5, 2.7 Hz, 2H, OCH2CH3), 

7.37–7.45 (m, 5H, H-Ar), 7.71 (d, J = 8.7 Hz, 2H, H-13), 8.19 (d, J = 8.7 Hz, 2H, H-14). Signals 

attributed to minor isomer 14d: 0.95 (t, J = 6.9 Hz, 3H, OCH2CH3), 1.47 (d, J = 7.0 Hz, 3H, H-16), 
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3.12 (ddd, J = 16.5, 11.4, 1.5 Hz, 1H, H-4α), 3.99 (qdd, J = 6.9, 4.5, 2.7 Hz, 2H, OCH2CH3); 
13C NMR 

(75.4 MHz, CDCl3) δ 13.8 (OCH2CH3), 15.7 (C-16), 26.7 (C-4), 37.0 (C-7), 40.0 (C-5), 51.7 (C-6), 

63.4 (OCH2CH3), 117.6 (CN), 119.4 (C-3a), 123.7 (C-9), 125.2 (C-10), 128.3 (C-11), 129.4 (C-13), 

129.6 (C-14), 133.0 (C-8), 133.1 (C-7a), 134.3 (C-12), 147.6 (C-15), 153.8 (C-2), 164.4 

(CO2CH2CH3); HRMS (EI+) calcd for C24H21N3O6 447.1430, found (M+). 447.1450. 

Method B. Reaction of ethyl 2-cyanoacetate 20a (0.17 g, 0.0015 mol) and benzaldehyde 21d (0.220 g, 

0.0015 mol) with exo-2-oxazolidinone diene 2 (0.300 g, 0.0015 mol) gave a mixture of isomers 

13d/14d (75:25). The isomers were separated by flash column chromatography, giving 0.419 g (64%) 

of major isomer 13d. 

(5R*,6S*,7R*)-3-(4-Chlorophenyl)-6-cyano-6-ethoxycarbonyl-7-methyl-5-(3-nitrophenyl)-4,5,6,7-

tetrahydrobenzo[d]oxazol-2-one (13e). (5R*,6S*,7S*)-3-(4-Chlorophenyl)-6-cyano-6-ethoxycarbonyl-

7-methyl-5-(3-nitrophenyl)-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (14e). According to Method A, 

the reaction between 4e (0.280 g, 0.0015 mol) and diene 3 (0.300 g, 0.0012 mol) gave a mixture of 

isomers 13e/14e (75:25) as a pale yellow solid, which was purified by flash column chromatography, 

to yield 0.430 g (70%) 13e as a pale yellow solid: mp 180–182 °C; FT-IR (KBr) νmax 2926, 2230, 

1772, 1749, 1529 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.19 (t, J = 7.2 Hz, 3H, OCH2CH3), 1.34 (d,  

J = 6.9 Hz, 3H, H-16), 2.67 (dd, J = 17.2, 5.4 Hz, 1H, H-4β), 2.95 (ddd, J = 17.2, 11.1, 1.8 Hz, 1H,  

H-4α), 3.57 (q, J = 6.9 Hz, 1H, H-7), 3.65 (dd, J = 11.1, 5.4 Hz, 1H, H-5), 4.13 (q, J = 7.2 Hz, 2H, 

OCH2CH3), 7.33 (d, J = 8.7 Hz, 2H, H-9), 7.43 (d, J = 8.7 Hz, 2H, H-10), 7.55 (t, J = 8.1 Hz, 1H,  

H-17), 7.91 (d, J = 8.1 Hz, 1H, H-18), 8.18 (d, J = 8.4, 3 Hz, 1H, H-15), 8.36 (dd, J = 1.8, 1.2 Hz, 1H, 

H-13). Signals attributed to minor isomer 14e: 0.92 (t, J = 7.2 Hz, 3H, OCH2CH3), 1.42 (d, J = 6.9 Hz, 

3H, H-16), 3.17 (ddd, J = 17.1, 11.1, 1.8 Hz, 1H, H-4α), 4.02 (qd, J = 7.2, 2.1 Hz, 2H, OCH2CH3), 

7.82 (d, J = 8.1 Hz, 1H, H-17), 8.21 (d, J = 8.4 Hz, 1H, H-15); 13C NMR (75.4 MHz, CDCl3) δ 13.8 

(OCH2CH3), 15.8 (C-16), 26.7 (C-4), 36.9 (C-7), 39.9 (C-5), 51.8 (C-6), 63.4 (OCH2CH3), 117.5 (CN), 

119.2 (C-3a), 123.3 (C-11), 124.3 (C-17), 126.4 (C-13), 129.9 (C-10), 134.0 (C-8), 134.1 (C-9),  

134.7 (C-15), 139.9 (C-18), 144.0 (C-14), 148.0 (C-2), 164.3 (CO2CH2CH3); HRMS (EI+) calcd for 

C24H20ClN3O6 481.1040, found (M+) 481.1039. 

(5R*,7R*)-6,6-Dicyano-7-methyl-3,5-diphenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (15a). 

(5R*,7S*)-6,6-Dicyano-7-methyl-3,5-diphenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (16a). 

According to Method A, the reaction between 5a (0.386 g, 0.0025 mol) and diene 2 (0.420 g, 0.0020 

mol) gave a mixture of isomers 15a/16a (80:20) as a pale yellow solid, which was purified by flash 

column chromatography, to yield 0.520 g (70%) of major isomer 15a as pale yellow solid: mp 145–147 °C. 

Data of 15a: FT-IR (KBr) νmax 2979, 2210, 2215, 1777, 1523 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.71 

(d, J = 7.2 Hz, 3H, H-16), 2.70 (ddd, J = 17.1, 4.8, 2.1 Hz, 1H, H-4β), 3.14 (ddd,  

J = 17.1, 11.4, 4.0 Hz, 1H, H-4α), 3.48 (dd, J = 11.4, 4.8 Hz, 1H, H-5), 3.54–3.58 (m, 1H, H-7),  

7.35–7.50 (m, 10H, H-Ar). Signals attributed to minor isomer 16a: 1.67 (d, J = 7.2 Hz, 3H, H-16);  
13C NMR (75.4 MHz, CDCl3) δ 13.8 (C-16), 24.8 (C-4), 38.6 (C-7), 45.7 (C-6), 47.6 (C-5),  

112.0 (CN), 113.5 (CN), 120.7 (C-3a), 125.2 (C-9),128.0 (C-11), 128.5 C (15), 129.4 (C-14), 129.7 

(C-13), 129.8 (C-10), 131.9 (C-7a), 132.2 (C-12), 135.3 (C-8), 154.0 (C-2); HRMS (EI+) calcd for 

C22H17N3O2 355.1320, found (M+) 355.1319.  
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Method B. Reaction of malononitrile 20b (0.114 g, 0.0017 mol) and benzaldehyde 21a (0.184 g, 

0.0017 mol) with exo-2-oxazolidinone diene 2 (0.350 g, 0.0017 mol) gave a mixture of isomers 

15a/16a (70:30). The isomers were separated by flash column chromatography, giving 0.340 g (55%) 

of major isomer 15a. 

(5R*,7R*)-6,6-Dicyano-5-(4-methoxyphenyl)-7-methyl-3-phenyl-4,5,6,7-tetrahydrobenzo[d]oxazol- 

2-one (15b). (5R*,7R*)-6,6-Dicyano-5-(4-methoxyphenyl)-7-methyl-3-phenyl-4,5,6,7-tetrahydrobenzo 

[d]oxazol-2-one (16b). According to Method A, the reaction between 5b (0.60 g, 0.0030 mol) and 

diene 2 (0.500 g, 0.0024 mol) gave a mixture of isomers 15b/16b (82:18) as a pale yellow solid, which 

was purified by flash column chromatography, to yield 0.528 g (55%) of major isomer 15b as pale 

yellow solid: mp 150–152 °C. Data of 15b: FT-IR(KBr) νmax 2977, 2936, 2235, 2230, 1776, 1597, cm−1; 
1H NMR (300 MHz, CDCl3) δ 1.68 (d, J = 7.2 Hz, 3H, H-16), 2.66 (ddd, J = 17.1, 4.8, 2.1 Hz, 1H,  

H-4β), 3.08 (ddd, J = 17.1, 11.4, 3.9 Hz, 1H, H-4α), 3.47 (dd, J = 11.4, 4.8 Hz, 1H, H-5) 3.52 (qdd,  

J = 7.2, 3.9, 2.1 Hz, 1H, H-7), 3.80 (s, 3H, OCH3), 6.92 (d, J = 8.7 Hz, 2H, H-14), 7.34–7.48 (m, 7H, 

H-9, H-10, H-11, H-13). Signals attributed to minor isomer 16b: 1.67 (d, J = 7.2 Hz, 3H, H-16);  
13C NMR (75.4 MHz, CDCl3) δ 13.8 (C-16), 24.7 (C-4), 38.3 (C-7), 46.1 (C-6), 46.7 (C-5),  

55.2 (OCH3), 111.8 (CN), 113.4 (CN),114.5 (C-14), 120.4 (C-3a), 125.2 (C-9), 127.2 (C-12),  

128.4 (C-11), 129.3 (C-13), 129.7 (C-10), 132.0 (C-7a), 132.9 (C-8), 153.7 (C-2), 160.3 (C-15); 

HRMS (EI+) calcd for C23H19N3O3 385.1426, found (M+) 385.1411.  

Method B. Reaction of malononitrile 20b (0.114 g, 0.0017 mol) and benzaldehyde 21b (0.236 g, 

0.0017 mol) with exo-2-oxazolidinone diene 2 (0.350 g, 0.0017 mol) gave a mixture of isomers 

15b/16b (85:15). The isomers were separated by flash column chromatography, giving 0.478 g (50%) 

of major isomer 15b. 

(5R*,7R*)-5-(4-Chlorophenyl)-6,6-dicyano-7-methyl-3-phenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-

one (15c). (5R*,7S*)-5-(4-Chlorophenyl)-6,6-dicyano-7-methyl-3-phenyl-4,5,6,7-tetrahydrobenzo[d] 

oxazol-2-one (16c). According to Method A, the reaction between 5c (0.336 g, 0.0017 mol) and diene 

2 (0.300g, 0.0015 mol) gave a mixture of isomers 15c/16c (90:10) as a pale yellow solid, which was 

purified by flash column chromatography, to yield 0.435 g (75%) of major isomer 15c as pale yellow 

solid: mp 172–173 °C. Data of 15c: FT-IR (KBr) νmax 2926, 2230, 1754, 1520 cm−1; 1H NMR  

(500 MHz, CDCl3) δ 1.62 (d, J = 6.9 Hz, 3H, H-16), 2.94 (dd, J = 8.5, 3.0 Hz, 1H, H-4β), 3.31 (ddd,  

J = 17.1, 11.4, 3.9, Hz, 1H, H-4α), 3.91–3.99 (m, 1H, H-7), 4.03 (dd, J = 11.4, 5.1 Hz, 1H, H-5),  

7.40–7.66 (m, 9H, H-Ar). Signals attributed to minor isomer 16c; 13C NMR (125 MHz, CDCl3)  δ 14.5 

(C-16), 24.3 (C-4), 38.6 (C-7), 43.2 (C-5), 47.3 (C-6), 112.1 (CN), 113.0 (CN), 125.7 (C-9),  

128.2 (C-14), 128.4 (C-11), 129.0 (C-13), 130.3, (C-10), 131.0 (C-15), 132.0 (C-7a), 133.4 (C-8), 

134.0 (C-12), 154.0 (C-2); HRMS (EI+) calcd for C22H16N3O2Cl 389.0931, found (M+) 389.0901.  

Method B. Reaction of malononitrile 20b (0.131 g, 0.0019 mol) and benzaldehyde 21c (0.027 g, 

0.0019 mol) with exo-2-oxazolidinone diene 2 (0.400 g, 0.0019 mol) gave a mixture of isomers 

15c/16c (70:30). The isomers were separated by flash column chromatography, giving 0.425 g (55%) 

of 15c and 0.11 g (15%) of 16c. 

(5R*,7R*)-6,6-Dicyano-7-methyl-5-(4-nitrophenyl)-3-phenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one 

(15d). (5R*,7S*)-6,6-Dicyano-7-methyl-5-(4-nitrophenyl)-3-phenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-

2-one (16d). According to Method A, the reaction between 5d (0.53 g, 0.0026 mol) and diene 2 (0.450 g, 
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0.0022 mol) gave a mixture of isomers 15d/16d (80:20) as a pale yellow solid. The isomers were 

separated by flash column chromatography, giving 0.670 g (75%) of 15d as pale yellow solid,  

mp 169–171 °C and 0.134 g (15%) of 16d as a pale yellow solid, mp 170–171 °C. Data of 16d: FT-IR 

(KBr) νmax 2925, 2215, 1772, 1599, cm−1; 1H NMR (300 MHz, CDCl3) δ 1.66 (d, J = 6.9 Hz, 3H,  

H-16), 3.03 (ddd, J = 16.8, 4.8, 2.1 Hz, 1H, H-4β), 3.41 (ddd, J = 16.8, 11.4, 3.9 Hz, 1H, H-4α),  

3.92–4.01 (m, 1H, H-7), 4.27 (dd, J = 11.4, 4.8 Hz, 1H, H-5), 7.48–7.57 (m, 5H, H-9, H-10, H-11), 

7.95 (d, J = 8.9 Hz, 2H, H-13), 8.35 (d, J = 8.9 Hz, 2H, H-14). Signals attributed to minor isomer 16d: 

1.61 (d, J = 6.9 Hz, 3H, H-16), 3.09 (ddd, J = 16.8, 4.8, 2.1 Hz, 1H, H-4β), 3.29 (ddd, J = 16.8, 11.4, 

3.9 Hz, 1H, H-4α), 3.81–3.84 (m, 1H, H-7), 4.24 (dd, J = 8.4, 4.8 Hz, 1H, H-5); 13C NMR (75.4 MHz, 

DMSO-d6) δ 13.9 (C-16), 24.6 (C-4), 38.2 (C-7), 46.0 (C-6), 46.5 (C-5), 112.8 (CN), 114.2 (CN), 

121.2 (C-3a), 124.7 (C-14), 126.1 (C-9), 128.7 (C-11), 128.8 (C-10), 130.1 (C-13), 132.5 (C-7a),  

131.1 (C-8), 134.4(C-12), 144.5 (C-8), 149.2 (C-15), 154.0 (C-2); HRMS (EI+) calcd for C22H16N4O4 

400.1171, found (M+) 400.1165.  

Method B. Reaction of malononitrile 20b (0.170 g, 0.0015 mol) and benzaldehyde 21d (0.300 g, 

0.0019 mol) with exo-2-oxazolidinone diene 2 (0.300 g, 0.0019 mol) gave a mixture of isomers 

15d/16d (70:30). The isomers were separated by flash column chromatography, giving 0.431 g (55%) 

of 15d and 0.165 g (15%) of 16d. 

(5R*,7R*)-3-(4-Chlorophenyl)-6,6-dicyano-5-(4-methoxyphenyl)-7-methyl-4,5,6,7-tetrahydrobenzo 

[d]oxazol-2-one (15e). (5R*,7S*)-3-(4-Chlorophenyl)-6,6-dicyano-5-(4-methoxyphenyl)-7-methyl-

4,5,6,7-tetrahydrobenzo[d]oxazol-2-one (16e). According to Method A, the reaction between 5b 

(0.280 g, 0.0015 mol) and diene 3 (0.300 g, 0.0012 mol) gave a mixture of isomers 15e/16e (75:25) as 

a pale yellow solid. The isomers were separated by flash column chromatography, giving 0.387 g 

(70%) of 15e as pale yellow solid, mp 162–163 °C and 0.083 g (15%) of 16e as a pale yellow solid, 

mp 162–163 °C. Data of 15e: FT-IR (KBr) νmax 2935, 2250, 1760, 1496 cm−1; 1H NMR (300 MHz, 

CDCl3) δ 1.67 (d, J = 6.6 Hz, 3H, H-16), 2.69 (ddd, J = 17.4, 5.1, 2.1 Hz, 1H, H-4β), 3.09 (ddd,  

J = 17.4, 11.7, 3.9 Hz, 1H, H-4α), 3.45 (dd, J = 10.8, 5.1 Hz,1H, H-5), 3.47–3.82 (m, 1H, H-7), 3.82 

(s, 3H, OCH3), 6.96 (d, J = 9.0 Hz, 2H, H-14), 7.33 (d, J = 9.0 Hz, 4H, H-13, H-9), 7.40 (d, J = 9.0 

Hz, 2H, H-9), 7.46 (d, J = 9.0 Hz, 2H, H-10); 13C NMR (75.4 MHz, CDCl3) δ 14.1 (C-16), 25.1 (C-4),  

38.7 (C-7), 46.3 (C-6), 47.1 (C-5), 55.6 (OCH3), 112.1 (CN), 113.6 (CN), 114.9 (C-14), 120.4 (C-3a), 

126.7 (C-9), 127.3 (C-12), 129.5 (C-13), 130.2 (C-10), 131.7 (C-8), 132.5 (C-7a), 134.6 (C-11),  

153.7 (C-2), 160.5 (C-15). Data of 16e. Yield: 57% (pale yellow solid, mp 163–165 °C); FT-IR (KBr) 

νmax 2935, 2235, 1760, 1609 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.63 (d, J = 6.9 Hz, 3H, H-16),  

2.83–2.98 (m, 2H, H-4), 3.37–3.39 (m, 1H, H-7), 3.54–3.57 (m, 1H, H-5), 3.82 (s, 3H, OCH3), 6.94 (d, 

J = 8.7 Hz, 2H, H-14), 7.31 (d, J = 8.7 Hz, 4H, H-13, H-9), 7.45 (d, J = 9.0 Hz, 2H, H-10); 13C NMR 

(75.4 MHz, CDCl3) δ 15.1 (C-16), 24.5 (C-4), 35.1 (C-7), 42.3 (C-6), 43.3 (C-5), 55.3 (OCH3),  

112.8 (CN), 113.6 (CN), 114.6 (C-14), 119.6 (C-3a), 126.4 (C-12), 126.5 (C-9), 129.4 (C-13),  

129.9 (C-10), 131.3 (C-8), 133.0 (C-7a), 134.3 (C-11), 153.4 (C-2), 160.4 (C-15); HRMS (EI+) calcd 

for C23H18N3O3Cl 419. 1036, found (M+) 419. 1036. 

(5R*,7R*)-6,6-Diethoxycarbonyl-7-methyl-3,5-diphenyl-4,5,6,7-tetrahydrobenzo[d]oxazol-2-one 

(17a). According to Method A, the reaction between 6a (0.44 g, 0.0017 mol) and diene 2 (0.300 g, 

0.0015 mol) produced only the isomer 17a (0.154 g, 23%) as pale yellow solid: mp 132–133 °C.  
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FT-IR: νmax 2980, 1770, 1727, 1503 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.18 (t, J = 7.2 Hz, 3H, 

OCH2CH3), 1.26 (t, J = 7.2 Hz, 3H, OCH2CH3), 1.38 (d, J = 6.9 Hz, 1H, C-16), 2.42 (ddd, J = 17.4, 

4.8, 2.1 Hz, H-4α), 3.49–3.59 (m, 2H, H-7, H-4β), 3.82 (dd, J = 6.6, 2.1 Hz, 1H, H-5), 4.04–4.27 (m, 

4H, OCH2CH3), 7.23–7.45 (m, 10H, H-Ar); 13C NMR (75.4 MHz, CDCl3) δ 13.6 (C-16),  

13.8 (OCH2CH3), 14.0 (OCH2CH3), 26.3 (C-7), 29.5 (C-4), 43.3 (C-5), 61.1 (C-6), 61.3 (OCH2CH3), 

61.4 (OCH2CH3), 119.5 (C-3a), 125.2 (C-9), 127.7 (C-11), 128.0 (C-12), 128.4 (C-14), 128.6 (C-13), 

129.3 (C-10), 133.6 (C-8), 135.1 (C-7a), 154.7 (C-2), 168.5 (CO2CH2CH3) 169.3 (CO2CH2CH3). 

HRMS (EI+) calcd for C26H27NO6 449.1838, found (M+) 449.1838. 

(5R*,7R*)-6,6-Diethoxycarbonyl-5-(4-methoxyphenyl)-7-methyl-3-phenyl-4,5,6,7-tetrahydrobenzo 

[d]oxazol-2-one (17b). According to Method A, the reaction between 6b (0.58 g, 0.0028mol) and 

diene 2 (0.350 g, 0.0017 mol) produced only the isomer 17b (0.269 g, 32%) as a pale yellow solid: mp 

143–145 °C. FT-IR: νmax 2980, 1768, 1727, 1504 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.20 (t,  

J = 7.2 Hz, 3H, OCH2CH3), 1.26 (t, J = 7.2 Hz, 3H, OCH2CH3), 1.37 (d, J = 6.6 Hz, 3H, H-16),  

2.38 (ddd, J = 17.1, 4.8, 2.4 Hz, 1H, H-4α), 3.47–3.56 (m, 2H, H-4β, H-7), 3.75 (s, 3H, OCH3),  

3.78 (dd, J = 6.9, 2.4 Hz, 1H, H-5), 4.10–4.26 (m, 4H, OCH2CH3), 6.77 (d, J = 8.7 Hz, 2H, H-14),  

7.04 (d, J = 8.7 Hz, 2H, H-15), 7.28–7.45 (m, 5H, H-Ar); 13C NMR (75.4 MHz, CDCl3) δ 13.6 (C-16), 

13.8 (OCH2CH3), 13.9 (OCH2CH3), 26.5 (C-4), 29.5 (C-7), 42.5 (C-5), 55.1 (OCH3), 61.2 (C-6),  

61.2 (OCH2CH3), 61.3 (OCH2CH3), 113.8 (C-14), 119.5 (C-3a), 125.2 (C-9), 127.7 (C-11),  

129.1 (C-10), 129.3 (C-13), 132.5 (C-12), 133.7 (C-7a), 135.2 (C-8), 154.7 (C-2), 158.9 (C-15),  

168.6 (CO2CH2CH3), 169.3 (CO2CH2CH3). HRMS (EI+) calcd for C26H27NO6 479.1944,  

found (M+) 479.1898. 

(5R*,7R*)-5-(4-Chlorophenyl)-6,6-diethoxycarbonyl-7-methyl-3-phenyl-4,5,6,7-tetrahydrobenzo[d] 

oxazol-2-one (17c). According to Method A, the reaction between 4a (144 mg, 2.0 mmol) and diene 2 

(162 mg, 1.0 mmol) produced only the isomer 17c (0.121 g, 25%) as a pale yellow solid: mp 166–168 °C. 

FT-IR: νmax 2980, 1770, 1729, 1597 cm−1; 1H NMR (300 MHz, CDCl3) δ 1.20 (t, J = 7.2 Hz, 3H, 

OCH2CH3), 1.25 (t, J = 7.2 Hz, 3H, OCH2CH3), 1.38 (d, J = 6.6 Hz, 1H, H-16), 2.40 (dd, J = 17.4,  

2.4 Hz, 1H, H-4α), 3.44–3.52 (m, 2H, H-4β, H-7), 3.80 (dd, J = 6.9, 2.4 Hz, 1H, H-5), 4.08–4.26 (m, 

4H, OCH2CH3), 7.09 (d, J = 8.4 Hz, 2H, H-14), 7.22 (d, J = 8.4 Hz, 1H, H-13), 7.31–7.45 (m, 5H,  

H-Ar); 13C NMR (75.4 MHz, CDCl3) δ 13.7 (C-16), 13.8 (OCH2CH3), 13.8 (OCH2CH3), 29.6 (C-7), 

31.4 (C-4), 42.5 (C-5), 60.8 (C-6), 61.4 (OCH2CH3), 61.5 (OCH2CH3), 119.2 (C-3a), 125.0 (C-9), 

127.7 (C-11), 128.6 (C-10), 129.3 (C-13), 129.5 (C-14), 130.4 (C-7a), 133.5 (C-15), 135.0 (C-8), 

138.8 (C-12), 154.5 (C-2), 168.3 (CO2CH2CH3), 168.9 (CO2CH2CH3). HRMS (EI+) calcd for 

C26H26NO6Cl 483.1448, found (M+) 483.1445. 

Dimerization of Diene 2. According to Method B, the reaction between 20a (0.250 g, 0.0023 mol), 

21c (0.375 g, 0.0023 mol) and diene 2 (0.474 g, 0.0023 mol), produced two products: 4a (0.375 g, 

64%) and dimer 19 (0.0.340 g, 36%) as a pale yellow crystal (acetone/hexane). 19: mp 196–198 °C; IR 

(KBr) νmax 2924, 17850, 1762, 1706, 1501, 1245 cm−1; 1H NMR (500 MHz, CDCl3) δ 1.38 (d,  

J = 6.9 Hz, 3H, H-8), 1.81 (d, 1H, J = 6.9 Hz, 3H, H-14), 2.00–2.10 (m, 1H, H-4β), 2.14–2.20 (m, 1H, 

H-5β), 2.34–2.41 (m, 1H, H-4α), 2.62–2.75 (m, 1H, H-5α), 2.95–3.08 (m, 1H, H-7α), 4.70 (q,  

J = 6.9 Hz, 1H, H-13), 7.22–7.48 (m, 10H, H-Ar); 13C NMR (125 MHz, CDCl3) δ 10.2 (C-14),  

10.3 (C-8), 17.3 (C-4), 32.2 (C-5), 34.0 (C-7), 67.5 (C-6), 99.5 (C-13), 118.9 (C-3a), 124.9 (C-16), 
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127.9 (C-20), 128.0 (C-22), 129.5 (C-18), 129.8 (C-21), 130.0 (C-17), 133.0 (C-15), 133.4 (C-19), 

134.9 (C-7a), 145.6 (C-12), 154.2 (C-2), 154.3 (C-10); HRMS (EI+) calcd for C24H22N2O4 402.1579, 

found (M+) 402.1578. 

3.4. X-ray Structure Study of 7e, 13a and 19 

Single crystals were obtained by slow evaporation of concentrated solutions of 7e  

(n-hexane/AcOEt, pale yellow solid), 13a (n-hexane/CH2Cl2, white solid), and 19 (n-hexane/AcOEt, 

pale yellow). These were mounted on glass fibers. Crystallographic measurements were performed on 

a Siemens P-4 difractometer using Mo KR radiation (graphite crystal monochromator, λ = 71073 Ǻ) at 

room temperature. Three standard reflections, which were monitored periodically, showed no change 

during data collection. Unit cell parameters were obtained from least-squares refinement of 26 

reflections in the range 2° < 2θ < 20°. Intensities were corrected for Lorentz and polarization effects. 

No absorption correction was applied. Anisotropic temperature factors were introduced for all  

non-hydrogen atoms. Hydrogen atoms were placed in idealized positions and their atomic coordinates 

refined. Structures were solved using the SHELXTL [48], SHELX97 [49], or SIR92 [50] programs as 

implemented in the WinGX suite [51] and refined using SHELXTL or SHELX97 within WinGX, on a 

personal computer. In all cases ORTEP and packing diagrams were made with PLATON and  

ORTEP-3 [52–53]. 

3.5. Theoretical Calculations 

The ab initio HF/6-31G(d,p) and DFT B3LYP/6-31G(d,p) calculations were carried out using 

Gaussian 03 [43] (PC-Linux). Geometries were calculated at the B3LYP/6-31G(d,p) level, and these 

were employed as the starting point for optimizations at the same level. The energies and coefficients 

of the frontier molecular orbitals were obtained at single point from the HF/6-31G(d,p) level. 

4. Conclusions  

In summary, we have successfully developed a new, efficient, regio- and stereoselective  

Diels-Alder reaction between a series of Knoevenagel adducts as dienophiles and exo-2-oxazolidinone 

dienes. This process was also satisfactorily carried out via the one-pot, three-component reaction 

between the corresponding benzaldehydes, the active methylene compounds and the exo-2-oxazolidinone 

dienes. Both methodologies were promoted by infrared irradiation, as an eco-friendly energy source 

for the first time, under solvent-free conditions. In all the cases, the para-endo cycloadducts were 

favored, with respect to the meta or para-exo adducts. An additional advantage of these methods is the 

fact that the use of a solvent and the activation of the reactions by an acid catalyst were unnecessary, 

finding environmentally friendly protocols. 
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