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Abstract: Nanoparticle technology is being incorporated into many areas of molecular 

science and biomedicine. Because nanoparticles are small enough to enter almost all areas 

of the body, including the circulatory system and cells, they have been and continue to be 

exploited for basic biomedical research as well as clinical diagnostic and therapeutic 

applications. For example, nanoparticles hold great promise for enabling gene therapy to 

reach its full potential by facilitating targeted delivery of DNA into tissues and cells. 

Substantial progress has been made in binding DNA to nanoparticles and controlling the 

behavior of these complexes. In this article, we review research on binding DNAs to 

nanoparticles as well as our latest study on non-viral gene delivery using 

polyethylenimine-coated magnetic nanoparticles. 
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1. Introduction 

Nanotechnology describes the creation and utilization of materials, devices, and systems through 

the control of nanometer-sized materials and their application to physics, chemistry, biology, 

engineering, materials science, medicine, and other endeavors. In particular, intensive efforts are in 

progress to develop nanomaterials for medical use as agents that can be targeted to specific organs, 

tissues, and cells. For example, magnetic nanoparticles (MNPs) are being used clinically as contrast 

agents for magnetic resonance imaging (MRI) (Table 1). MRI is a noninvasive technique that can 

provide real-time high-resolution soft tissue information [1,2]. MRI image quality can be further 

improved by utilizing contrast agents that alter proton relaxation rates [3–8]. MNP-based drug delivery 

systems (DDS) [9–11], and treatments of hyperthermia [12–21], using MNPs have been studied for 

over a decade. Furthermore, researchers have reported that MNPs have been useful in hyperthermic 

treatment for various cancers in vivo [22–31]. Nanotechnology-based anti-cancer agent DDS have 

already been approved, such as pegylated liposomal doxorubicin (DOXIL) for ovarian cancer [32–37]. 

MNPs have been used effectively as transfection reagents for introducing nucleic acids (plasmids or 

siRNAs) [38–53], or viruses (retrovirus, or adenovirus) [44,54–56] into cells. Our own research is 

focused on MNP-mediated gene delivery systems (called as “Magnetofection”). 

Table 1. Biomedical Applications of Magnetic Nanoparticles (MNPs). 

 Purpose References 

MRI Diagnosis [1–8,57–61] 
DDS Anti-cancer therapy, Enzyme therapy  [9–11,22–31] 
Hyperthermia Anti-cancer therapy [12–18,33–37] 
Gene Delivery Anti-cancer therapy, Cell transplantation therapy [38–55] 

2. Gene Delivery 

Gene delivery techniques efficiently introduce a gene of interest in order to express its encoded 

protein in a suitable host or host cell. Currently, there are three primary gene delivery systems that 

employ viral vectors (retroviruses and adenoviruses), nucleic acid electroporation, and nucleic acid 

transfection. These systems vary in efficacy (Table 2). Gene delivery by viral vectors can be highly 

efficient (80–90%) but may insert viral vector nucleic acid sequences into the host genome, potentially 

causing unwelcome effects, such as inappropriate expression of deleterious genes. Electroporation is 

also a highly efficient technique for introducing foreign genes into a host (50–70%); however, half of 

the recipient cells die due to the electrical stimulation. Transfection reagents do not efficiently deliver 

nucleic acids into cells (20–30%); however, cell viability is largely preserved and the method is safe 

enough for clinical use. Therefore, this method holds relatively more promise for medical applications, 

provided that its efficiency can be improved. MNPs are already in use by basic researchers to increase 

transfection efficiencies of cultured cells. Thus, MNP-nucleic acid complexes are added to cell culture 

media and then onto the cell surface by applying a magnetic force (Figure 1). 
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Table 2. Gene delivery systems. 

 Expression Type Efficiency (%) Cell Viability (%) Safety 

Virus * Stable, or Transient 80–90% 80–90% Low 
Electroporation Transient 50–70% 40–50% High 
TF reagent ** Transient 20–30% 80–90% High 

* Virus including adenovirus (transient), retrovirus (stable), and lentivirus (stable); ** TF reagent, 
transfection reagents including PEI (Polysciences Inc.), FuGENE HD (Promega), and 
Lipofectamine 2000 (Invitrogen); All values are ours (unpublished experiments). 

Figure 1. MNP gene delivery system (Magnetofection). Plasmids are bound to MNPs, 

which then move from the media to the cell surface by applying a magnetic force. 

 

Oxide nanoparticles mixed with high magnetic moment compounds such as CoFe2O4, NiFe2O4, and 

MnFe2O4 exhibit superior performance compared to other magnetic materials [62,63]. However, these 

nanoparticles are highly toxic to cells, limiting their use for in vivo, and in vitro biomedical 

applications [64–67]. However, iron oxides such as magnetite (Fe3O4) and maghemite (γ-Fe2O3), in 

particular, possess high magnetic moments, are relatively safe, and currently in clinical use as MRI 

contrast agents [57–61]. These iron oxide based-magnetic materials are also suitable for biomedical 

applications. Fe3+ is widely dispersed in the human body so leaching of this metal ion from 

nanoparticles should not reach toxic concentrations [68,69]. As a result, maghemite is a popular choice 

for MNPs used biomedical applications. It is very important to modify the surface of MNPs so that 

they can be used for biomedical applications. Thus, MNPs are coated with compounds such as natural 

polymers (proteins and carbohydrates) [70–75], synthetic organic polymers (polyethylene glycol), 

polyvinyl alcohol, poly-L-lactic acid) [72,76–78], silica [79], and gold [80,81]. These surface coating 

agents prevent nanoparticle agglomeration, cytotoxicity, and add functionality. MNPs agglomerate 

readily in aqueous solutions around pH 7 [82], and it is difficult to control the properties and amounts 

of agglomerated MNPs. The greater toxicity of MNPs compared to those of microparticles can be 

attributed to their high surface to volume ratio [83]. Coating agents prevent the leaching of potentially 

toxic components from MNPs. In fact, the cytotoxicity of uncoated NiFeO4 MNPs is dramatically 
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decreased by coating with cationic polymer, polyethylenimine (PEI) [84–86]. PEI, a cationic polymer, 

is widely used for nucleic acid transfection [87–89] and also serves as a nanoparticle dispersant [90]. 

PEI-coated MNPs enhance transfection efficiency [38,41,42,44–46,48,49,51,54,55]. 

3. Cell Transplantation Therapy Using MNPs 

Autologous cell transplantation has been widely used in the clinic for decades. Delivering therapeutic 

genes to patients using their own cells avoids using immunosuppressive drugs. We reasoned, therefore, 

that a non-viral gene delivery system using iron oxide-based MNPs could provide a powerful tool for 

next-generation therapies. Gene delivery using MNPs has been successful for delivering nucleic acids 

into living cells with high efficiency and low cytotoxicity [38,41,42,44–46,48,49,51,54,55]. Currently, 

there are several methods for inducing cellular differentiation. 

One of these methods, termed direct reprogramming, or direct conversion, has successfully yielded 

induced cardiomyocytes, induced neurons, reprogrammed pancreatic β cells, and induced pluripotent 

stem cells (iPSCs) [91–95]. Direct reprogramming represents a more straightforward strategy to treat 

diseases involving loss of function by specific cell populations compared to approaches requiring an 

intermediate embryonic stem cell. Thus, patient-derived differentiated cells by gene transfer are 

suitable for autologous cell transplantation, potentially resulting in faster patient recoveries. The 

scheme is classified into ex vivo gene therapy. The steps involved in this technique are as follows:  

(1) Patient-derived cells (such as fibroblasts) are cultured in chemically defined media in vitro;  

(2) These cells are transfected by MNPs, and differentiated into functional cells; (3) Differentiated 

cells are isolated by fluorescence-activated cell sorting (FACS); (4) FACS-purified differentiated cells 

are transplanted into the patient’s target tissue (Figure 2).  

Here we briefly describe the magnetofection [96], and our latest study concerning non-viral gene 

delivery using deacylated polyethylenimine coated MNPs. 

Figure 2. Strategy for cell transplantation therapy. A patient’s cells are cultured in 

chemically defined media. MNP-transfected cells by the introduced gene are isolated  

by FACS. FACS-purified differentiated cells are transplanted into the patient. 
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4. Gene Delivery Using MNPs and Magnetic Force 

The mechanism of magnetofection is similar to using transfection reagents (Lipofectamine 2000, 

FuGENE HD, and PEI). The only difference is that the plasmids form complexes with cationic 

polymer-coated MNPs (called as “Magnetoplex”) [42,48,97–99] (Figure 3). Figure 3 shows the two 

difference techniques. The behavior of magnetoplex is readily controlled by magnetic force. Upon 

binding to the cell surface they are taken up by endocytosis [51,100,101]. Thus, the transfection 

efficiency was increased. 

Figure 3. Gene delivery systems using a transfection reagent (cationic polymer) and 

MNPs: (A) Gene delivery system using transfection reagent. The polyplex moves randomly 

in culture medium; (B) Magnetofection system. The magnetoplex only moves to the 

cell surface. 

 

Many researchers have described magnetofection methods (Table 3). They modified the surface of 

iron oxide-based MNPs to increase transfection efficiency and reduce cytotoxicity. To achieve this, 

some investigators selected coating agents such as anionic surfactants (oleic acid, lauroyl  

sarcosinate) [42,50,102], a non-ionic water-soluble surfactant (Pluronic F-127) [42], fluorinated 

surfactant (lithium 3-[2-(perfluoroalkyl) ethylthio]propionate) [54], a polymer (polyethylene glycol,  

poly-L-lysine, poly(propyleneimine) dendrimers) [40,103,104], carbohydrates (Chitosan, Heparan 

sulfate) [41,47], silica particles (MCM48) [49], proteins (serum albumin, streptavidin) [40,55], 

hydroxyapatite [105], phospholipids [49,50], a cationic cell penetrating peptide (TAT peptide) [43],  

non-activated virus envelope (HVJ-E) [47], a transfection reagent (Lipofectamine 2000) [53], and viruses 

(adenovirus, retrovirus) [44,54–56]. These coating agents are often used in conjunction with PEI. PEI is a 

well-known cationic gene carrier with high transfection efficiency. However, the high toxicity, depended 

on its molecular weight, has limited its use as a potential gene carrier. Thus, the PEI was modified to 

increase transfection efficiency, and decrease cytotoxicity [88,106]. To enhance transfection  
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efficiency, most researchers used the PEI, or the modified PEI to coat the nanoparticle  

surface [38,41,42,44–46,48,49,51,54,55,102,107]. PEI-coated MNPs are stable in water, bind nucleic 

acids, and control MNP behavior by magnetic force. In addition, linear PEI possesses low cytotoxicity 

compared with branched PEI in vivo and in vitro [108,109] The highest transfection efficiencies have 

been achieved using 25,000 molecular weight linear PEI [89]. However, PEI cytotoxicity due to its acyl 

groups has been described [88]. Therefore, our group focused on commercial deacylated PEI 

(Polyethylenimine “Max” (PEI “Max”), Polysciences Inc.) as an MNP (γ-Fe2O3, d = 70 nm, CIK 

NanoTek) coating agent. 

Deacylated polyethylenimine (linear, 25,000 molecular weight) is built from the same polymer 

backbone as the popular linear polyethylenimine, and possesses high cationic reactivity. PEI  

“Max”-coated MNPs (PEI max-MNPs) are stable in deionized water, and positively charged. Thus, 

PEI max-MNPs electrostatically bind to plasmids. We attempted to introduce the green fluorescent 

protein (GFP) gene into a mouse embryonic carcinoma cell line, P19CL6 using PEI max-MNPs, and 

succeeded in establishing a highly efficient and low cytotoxic gene delivery system [107]. 

Furthermore, we applied this system to human fetal lung-derived fibroblasts (TIG-1 cells) using six-

well plates. Using MNPs, the transfected gene’s expression level increased 2- to 4-fold under optimum 

conditions (Figure 4, unpublished data). Furthermore, to assess whether the multiple plasmids were 

expressed in a single cell, we attempt to induce the expression of three fluorescent proteins GFP, cyan 

fluorescent protein (CFP), and yellow fluorescent protein (YFP). Most cells expressed these three 

proteins (Figure 5, unpublished data) indicating that gene delivery using MNPs could introduce and 

allow expression of multiple genes in a single cell. 

Figure 4. Optimum conditions for PEI max-MNPs magnetofection. To optimize 

conditions, we varied volume (A) and time on the magnetic plate (B). These results were 

evaluated by quantitative real-time RT-PCR. The relative expression level (GFP/GAPDH) 

in the human fetal lung-derived fibroblasts (TIG-1 cells) treated with PEI max alone (A), 

and in the absence of magnetic force (0 h) (B) was defined as 1. Optimal transfection 

conditions were established when TIG-1 cells were treated with 0.8 μg PEI max-MNPs and 

2.0 μg pCAG-GFP for 8 h on the magnetic plate in either a six-well plate or a 35 mm dish. 

The asterisk (*) indicates a significant difference (P < 0.05). 
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Table 3. Summary of magnetofection literature. 

Author Year Vector Magnetic Nanoparticles Modifying Agent Targeting Cell, or Tissue TF Efficiency Cell Viability (% of Control) Reference 

Kami D 2011 Plasmid  Iron oxide (γ-Fe2O3) PEI max (MW: 25 k) P19CL6 * 82% 100% [107] 

Pickard MR 2011 Plasmid NeuroMag - Neural precursor cell * 30% 70% [39] 

Hashimoto M 2011 
Adenovirus, 

Biotin 
SPION PEI, Streptoavidin HeLa ** 4-fold - [55] 

  
Adenovirus, 

Biotin 
SPION PEI, Streptoavidin NIH3T3 ** 10-fold -  

  
Adenovirus, 

Biotin 
SPION PEI, Streptoavidin Mouse embryonic brain - -  

Biswas S 2011 Plasmid Iron oxide (Fe3O4) Aminooxy, Oxime ether MCF-7 ** 1425-fold 89% [110] 

B González 2011 Plasmid SPION Poly(propyleneimine) dendrimers Saos-2 osteoblasts * 12% 75% [104] 

Zhang H 2010 Plasmid  SPION Branch PEI (MW: 25 k) NIT3T3 * 64% 100% [38] 

  siRNA SPION Branch PEI (MW: 25 k) NIT3T3 * 77% 100%  

Song HP 2010 Plasmid PolyMag Tat peptide U251 * 60% 80% [43] 

  Plasmid PolyMag Tat peptide Rat spinal cord ** 2-fold -  

Arsianti M 2010 Plasmid Iron oxide Branch PEI (MW: 25 k) BHK-21 - 60–90% [51] 

Shi Y 2010 Plasmid Magnetite Hyperbranch PEI (MW: 10 k) COS-7 ** 13-fold - [45] 

Ang D 2010 Plasmid Magnetite Branch PEI (MW: 25 k) COS-7 ** 6-fold 70% [46] 

Tresilwised N 2010 Adenovirus Iron oxide (Fe2O3, Fe3O4) 
Branch PEI (MW: 25 k),  

Zonyl FSA fluorosurfactant 
EPP85-181RDB ** 10-fold - [54] 

Namgung R 2010 Plasmid SPION PEG, Branch PEI (MW: 25 k) HUVEC ** 12-fold 80% [48] 

Yiu HH 2010 Plasmid Iron oxide (Fe3O4) 
PEI (MW: 25 k), MCM48  

(Silica particle) 
NCI-H292 ** 4-fold - [49] 

HC Wu 2010 Plasmid Magnetite Hydroxyapatite Rat marrow stromal cells * 60–70% 100% [105] 

Namiki Y 2009 Plasmid Magnetite Oleic acid, Phospholipid HSC45 ** 8-fold - [50] 

  siRNA Magnetite Oleic acid, Phospholipid 
Tissue sample from gastric 

cancer 
- -  

Kim TS 2009 Plasmid PolyMag - Boar spermatozoa - - [52] 

Kievit FM 2009 Plasmid SPION PEI (MW: 25 k) C6 * 90% 10% [41] 

  Plasmid SPION PEI (MW: 25 k), Chitosan C6 * 45% 100%  

  Plasmid PolyMag - C6 * 32% 66%  
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Table 3. Cont. 

Author Year Vector Magnetic Nanoparticles Modifying Agent Targeting Cell, or Tissue TF Efficiency Cell Viability (% of Control) Reference 

Lee JH 2009 siRNA MnMEIO Serum albumin, PEG-RGD MDA-MB-435-GFP * 30% - [40] 

Li Z 2009 Plasmid Iron oxide Poly-L-lysine Lung tissue  *** 60% - [103] 

Yang SY 2008 Plasmid Iron oxide (Fe3O4) Lipofectamine 2000 He99 - - [53] 

  Plasmid Iron oxide (Fe3O4) DOTAP:DOPE He99 - -  

Pan X 2008 Plasmid Magnetite 
Oleic acid, Branch PEI (MW: 25 k), 

Transferrin 
KB ** 300-fold 92% [102] 

Mykhaylyk O 2007 Plasmid Iron oxide (Fe2O3, Fe3O4) Branch PEI (MW: 25 k) H441 * 49% - [42] 

  Plasmid Iron oxide (Fe2O3, Fe3O4) Pluronic F-127 H441 * 37% -  

  Plasmid Iron oxide (Fe2O3, Fe3O4) Lauroyl sarcosinate H441 - -  

  Plasmid Iron oxide (Fe2O3, Fe3O4) 
Branch PEI (MW: 25 k), 

 Lauroyl sarcosinate 
H441 - -  

Morishita N 2005 Plasmid Iron oxide (γFe2O3) HVJ-E, protamine sulfate BHK-21 ** 4-fold - [47] 

  Plasmid Iron oxide (γ-Fe2O3) HVJ-E, heparin sulfate Liver, BALB/c mice (8 weeks age) ** 3-fold -  

Scherer F 2002 Plasmid SPION PEI (MW: 800 k) NIH3T3 ** 5-fold - [44] 

  Adenovirus SPION PEI (MW: 800 k) K562 ** 100-fold -  

  Retrovirus SPION PEI (MW: 800 k) NIH3T3 * 20% -  

Mah C 2002 Adenovirus Avidinylated magnetite Biotunylated heparan sulfate C12S * 75% - [56] 

  Adenovirus Avidinylated magnetite Biotunylated heparan sulfate Adult 129/SvJ mice - -  

* indicates % of fluorescent positive cells analyzed by flow cytometric analysis.  

** indicates analysis by luciferase activity assay compared with control. Transfection efficiency was indicated optimal transfection condition.  

*** indicates transfection without magnetic force. 

PEI: Polyethylenimine; PEI max: Deacaylated PEI; MNP: Magnetic nanoparticle; SPION: Superparamagnetic iron oxide nanoparticle; MW: Molecular weight; TF: transfection; PolyMag: Commercial 

Magnetofection reagent), NeuroMag (Commercial Magnetofection reagent); HVJ-E: hemagglutinating virus of Japan-envelope; DOTAP: 1,2-dioleoyl- 3-trimethylammonium-propane;  

DOPE: 1,2-dioleoyl-3-sn- phosphatidyl-ethanolamine; Tat peptide: cationic cell penetrating peptide; MeMEIO: Manganese-doped magnetism-engineered iron oxide; PEG: polyethylene glycol, Zonyl FSA 

fluorosurfactant: Lithium 3-[2-(perfluoroalkyl)ethylthio]propionate). 
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Figure 5. Transfection of TIG-1 cells with multiple genes using PEI max-MNPs. TIG-1 

cells were simultaneously transfected with GFP, CFP, and YFP expression vector 

plasmids. TIG-1 cells were treated with 0.8 μg of PEI max-MNPs and 0.7 μg each of 

pCAG-GFP (GFP, provided by Dr. Nishino), pPhi-Yellow-N (YFP, Evrogen), and 

pAmCyan1-C1 (CFP, Clonetech) for 8 h on the magnetic plate in a six-well plate or a 35 

mm dish. White bar indicates 200 µm. 

 

5. Conclusions 

The great promise of gene therapy for treating devastating, incurable diseases has yet to be realized. 

Less toxic and more efficient systems will be required, and robust research efforts in this regard are 

currently underway. Rapid advances have been made in adapting nanoparticle technology for basic 

biomedical and clinical research. Nanoparticles are already being used clinically to enhance MRI 

imaging, and drug delivery for cancer patients. Our own research has focused on gene delivery 

systems for autologous cell transplantation therapy, in which the patient’s own cells are transfected 

with the gene required to correct their condition. In particular, our laboratory and those of others have 

aimed to optimize magnetofection by developing better nanoparticle coating agents [38,40–51,53–55]. 

Nanoparticle size is another important parameter but there were few reports addressing this subject [111]. 

Since cells endocytose MNPs [51,100,101], MNP size has significant implications for transfection 

efficiency. PEI-MNPs forms magnetoplex, which increased its influence on the magnetic force. 

Furthermore, MNP size influences cytotoxicity [112], and more studies on this aspect of MNP 

technology will be crucial for enhancing transfection efficiencies. 

The two research groups reported the important developments in the field of magnetofection. The 

first is the influence of the oscillating magnetic force on transfection [113,114]. The second is the use 

of MNP-heating, and -transfection [15,16]. The purpose of these studies have increased the efficiency 

of transfection, and/or induced a fever by oscillating MNPs for hyperthermia. The latter, a combination 

of MNP-heating and -transfection, was expected to research the efficacy of both hyperthermia and 

gene delivery. In the future, the studies of magnetofection using the oscillating MNPs could be 

developed as a novel methodology.  

We found that PEI is an excellent cationic polymer for dispersing MNPs and that its water 

solubility, stability, and low toxicity contribute to enhancing transfection efficiency [95,115–119]. 
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Derivation of iPSCs with the use of non-viral gene delivery using PEI max MNPs should provide a 

powerful tool for treating diseases such as Alzheimer’s, Huntington’s, and Parkinson’s by autologous 

cell transplantation. Reprogramming cells requires the action of multiple transcription factors. Our 

studies demonstrate that MNP-mediated transfection efficiently introduces at least three genes in a 

single cell. This indicates the feasibility of our system for one-step reprogramming. 
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