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Abstract: Shoot branching is regulated by axillary bud activities, which subsequently grow into
branches. Phytohormones play a central role in shoot branching control, particularly with regard to
auxin, cytokinins (CKs), strigolactones (SLs), and gibberellins (GAs). To further study the molecular
basis for the shoot branching in Salix matsudana, how shoot branching responds to hormones and
regulatory pathways was investigated, and potential genes involved in the regulation of shoot
branching were identified. However, how these positive and inhibitory processes work on the
molecular level remains unknown. RNA-Seq transcriptome expression analysis was used to elucidate
the mechanisms underlying shoot branching. In total, 102 genes related to auxin, CKs, SLs, and GAs
were differentially expressed in willow development. A majority of the potential genes associated with
branching were differentially expressed at the time of shoot branching in S. matsudana, which have
more number of branching. These findings are consistent with the growth and physiological results.
A regulatory network model was proposed to explain the interaction between the four hormones that
control shoot branching. Collectively, the results presented here contribute to a more comprehensive
understanding of the hormonal effects on shoot branching in S. matsudana. In the future, these findings
will help uncover the interactions among auxin, SLs, CKs, and GAs that control shoot branching
in willow, which could help improve plant structures through the implementation of molecular
techniques in targeted breeding.
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1. Introduction

Shoot branching is a highly plastic developmental process that greatly affects plant architecture.
During this process, axillary buds in the axil of the leaves are formed and subsequently outgrow
and develop into branches. Plant hormones are major determinants that control outgrowth of
axillary buds [1,2]. Three classes of plant hormones, auxin, cytokinins (CKs), and strigolactones (SLs),
interact and regulate shoot branching [3–6]. Another hormone, gibberellins (GAs), also plays a role in
shoot branching control [7,8].

Shoot branching is regulated by a network of hormones, in which auxin plays a pivotal
role. Two hypotheses, the second messenger hypothesis (i.e., CKs and SLs) and auxin transport
canalization-based model, suggest that auxin indirectly inhibits shoot branching [9–11]. Auxin moves
down the main stem to prevent new branches from forming, which is dependent on the polar
auxin transport stream (PATS). PIN efflux carrier family-mediated auxin transport members are key

Forests 2020, 11, 287; doi:10.3390/f11030287 www.mdpi.com/journal/forests

http://www.mdpi.com/journal/forests
http://www.mdpi.com
https://orcid.org/0000-0001-6941-0372
http://dx.doi.org/10.3390/f11030287
http://www.mdpi.com/journal/forests
https://www.mdpi.com/1999-4907/11/3/287?type=check_update&version=2


Forests 2020, 11, 287 2 of 14

components in the control of shoot branching, especially PIN-FORMED1 (PIN1). The PIN1 expression
pattern follows the flow of auxin in the stem. Previously, an AUXIN RESISTANT1 (AXR1)-mediated role
of auxin in shoot branching regulation was observed after axillary meristem formation in Arabidopsis [12].
Furthermore, indole-3-acetic acid (IAA) has been implicated in the primary shoot apex and inhibits
axillary bud growth [13]. Moreover, the quadruple knock-out mutant, yuc1,2,4,6 (auxin biosynthesis
genes YUCCA), exhibited increased branching [14].

Unlike auxin, CKs are a class of hormones that directly promote branching and are transported
from roots to shoots [5,15]. The long-distance supply of CK enhances the development of an axillary bud
into a branch. The isopentyl transferase (IPT) gene plays an important role in the control of CK levels
in plants. Transgenic plants expressing the IPT gene, which is involved in CK biosynthesis, exhibit
elevated CK levels that are often accompanied by increased branching phenotype [16]. Tanaka et al. [17]
discovered that the expression level of IPT increased at the node after decapitation in pea (Pisum sativum),
and therefore, proposed that lateral bud outgrowth was due to locally increased CK accumulation.
Arabidopsis response regulators (ARRs), which typically act as CK signaling regulators, also play
essential roles in shoot branching [18,19]. However, IPT-mediated CK synthesis in bud initiation
apparently does not require the ARRs involved in bud activation [18]. Additionally, CKs act as a
second messengers that relay the auxin signal to lateral buds [20]. Auxin inhibits CK synthesis in the
main stem, which is dependent on the AXR1 gene in Arabidopsis [21], as well as regulates CK levels by
the regulation of IPT and cytokinin oxidase (CKX) expression to control shoot branching [17,22].

SLs regulate plant architecture by directly repressing shoot branching in pea, rice (Oryza sativa),
petunia (Petunia hybrida), and Arabidopsis thaliana [23,24]. Lateral bud growth is inhibited by SLs
that are transported upward from the roots to shoots. Shoot branching affects SLs supported
by the SL-dependent interactions between MAX2/D3/RMS4 and/or DWARF14 (D14)/DAD2 [25].
An F-box protein encoded by MAX2 and an α/β hydrolase protein encoded by D14 are locally
required in aboveground plant to suppress shoot branching [26–28]. Studies on branching mutants
have demonstrated that MAX2 and D14 are both related to the downstream SL pathway [23,29,30].
MAX2 and D14 mutants exhibit a highly branched phenotype [25,27,29]. It has also been proposed
that SLs do not operate alone, but collaboratively with other hormones [31].

SLs have been proposed to function as secondary messengers for auxin that inhibit shoot
branching by dampening auxin transport canalization. In Arabidopsis and chrysanthemum
(Dendranthema grandiflorum), the ability of SLs to inhibit bud activation depends on the presence
of competing auxin sources [32]. Furthermore, PIN1 is a plausible downstream target of the SL
pathway in shoot branching regulation, as SLs repress PIN1 expression and accumulation [33,34].
The effects of SL on PIN1 depletion are dependent on MAX2 [25]. In addition to the control of auxin
transport by SLs, auxins are major regulators of SL biosynthesis [4]. The relationship between auxin
and SLs is the converse of auxin and CK [4,35]. CKs act as SL antagonists in lateral bud outgrowth
regulation [36]. The combined effects of increased SL and reduced CK levels are proposed to lead
to bud growth inhibition. SL also affects CK levels. Notably, in a previous study, the CK content of
xylem sap in SL-defective mutants was greatly reduced [37]. Moreover, IPT1 expression increased in
SL mutants of pea [36]. Young et al. [38] thus suggested that auxin and CKs are dominant regulators of
decapitation-induced branching, while SLs are more important in intact plants.

GAs also regulate shoot branching in many plants, including Jatropha curcas, Populus, and sweet
cherry (Prunus avium) [39,40]. Semi-dwarf rice mutants, which are disturbed in GA biosynthesis,
exhibit a more branched shoot phenotype similar to SL mutants [41]. GA-deficient mutants displayed
even greater shoot branching in rice, pea and Arabidopsis [42,43]. Conversely, GA is a positive regulator
of axillary bud outgrowth in J. curcas and papaya (Carica papaya) [7]. Moreover, GA biosynthesis is crucial
for axillary bud formation and activation in hybrid aspen [8,39]. In Populus, the overexpression of GA2ox
produced an increased number of branches [39]. These findings indicate that the mechanism controlling
shoot branching may depend on the balance of GA biosynthesis, catabolism, and receptor abundance.
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Auxin regulates GA biosynthesis by upregulating the expression of GA20ox or GA3ox, or by
downregulating the expression of GA2ox [39,44]. GAs and CKs are positive regulators of shoot
branching and collectively regulate axillary bud outgrowth in J. curcas, similar to the relationship
between SLs and auxin [40]. GAs also interact with or without SLs to regulate shoot branching [7,24,41].
GAs regulate shoot branching together with SLs in J. curcas [7]. However, GA- and SL-deficient
double mutants displayed stronger branching than single mutants in pea, suggesting that GAs act
independently of SLs to repress branching [45].

Willows (Salix spp.) are one of the most important bio-energetic and ornamental plants
worldwide [2,46]. Two willow species, S. matsudana (SM) and S. matsudana var. pseudo-matsudana
(SMP), which exhibit diverse shoot branching numbers, were investigated in this study. The underlying
molecular mechanisms of how auxin, through its interactions with CKs, SLs, and GAs, regulates
shoot branching in willow remains elusive. Therefore, in this study, the effects of hormones on shoot
branching at the molecular level were investigated by RNA-Seq coupled with digital gene expression
(DGE) at different developmental stages in the two willow species. The aim of this study was to depict
hormonal (i.e., auxin, CKs, SLs, and GAs) control of shoot branching in willow and identify potential
genes and pathways, focusing specifically on these four hormones and their interactions.

2. Materials and Methods

2.1. Plant Materials

Current-year branch samples of S. matsudana and S. matsudana var. pseudo-matsudana were
harvested during the growing season of 2012 in Beijing, China (39◦59′18”N, 116◦14′16”E). Plants at
two developmental stages, when buds developed into branches on 16 April 2012 (S1) and at the time
shoot branching and axillary buds developed into branches on 17 July 2012 (S2), were selected to study
shoot branching in SM and SMP. Each branch was divided into two portions, the stem apex and basal
branches, which were collected separately. The branches at S1 were too short, therefore, only the stem
apex were harvested. Samples from three trees at each stage were harvested, frozen in liquid nitrogen,
and stored at −80 ◦C for RNA extraction.

2.2. Hormone Content Measurements

Samples were used for auxin, CKs, SLs, and GAs measurement. The four hormones include
indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), tryptophan, trans-zeatin (tZ), trans-zeatin
riboside (tZR), isopentenyladenine (iP), isopentenyladenosine (iPR), GA1, GA3, GA4, and SLs
(4-deoxyorobanchol). Measurement of hormone content was carried out using an ACQUITY UPLC
H-Class UPLC-MS/MS system (Waters, Milford, MA, USA) and a Xevo TQ-S triple quadruple tandem
mass spectrometer (Waters). A total of 0.15 g samples were extracted in 1.5 mL extraction solvent
(methanol/water/formic acid: 7.9/2/0.1, v/v/v), shaken for 12 h at 4 ◦C, and centrifuged at 12,000 rpm
for 20 min at 4 ◦C. The supernatant was mixed with 1.0 mL extraction buffer, shaken for 1 h at 4 ◦C,
and centrifuged. Then, the two supernatants were combined. Crude extracts were further purified
by loading onto a MAX SPE cartridge (60 mg, 3 mL) (Waters) preconditioned with 4 mL methanol
and 2 mL 0.1 M ammonia solution. The cartridge was sequentially washed with 2 mL 0.1 M ammonia
solution, 2 mL 0.1 M ammonia solution in 60% methanol, eluted with 2.5 mL 1.25 M formic acid in
70% methanol, and dried with nitrogen stream. The dried elution was dissolved with 0.15 mL 5%
acetonitrile containing 0.1% formic acid and 94.9% water for analysis.

The separation was achieved on an ACQUITY UPLC HSS T3 column (100 × 2.1 mm, 1.7 µm;
Waters). The elution gradient was carried out using a binary solvent system (solvent A, 0.1%
formic acid in water; solvent B, 0.1% formic acid in acetonitrile) at a 0.4 mL/min constant flow
rate. Auxin (IPA and tryptophan), CKs (iPR), and GAs (GA1, GA3, and GA4), and their internal
standards were scanned in negative mode, while IAA, CKs (tZ, tZR, and iP), and SLs were analyzed
in positive mode. Hormones were separated by UPLC and analyzed by ESI-MS/MS in the MRM
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mode. The MRM transitions for hormones were as follows: 197.97 > 132.97 (IAA), 188.01 > 58.8 (IPA),
203.08 > 115.9 (tryptophan), 220.03 > 135.93 (tZ), 352.16 > 220.06 (tZR), 336.29 > 204.19 (iP),
202.1 > 133.9 (iPR), 347.2 > 229.16 (GA1), 345.17 > 142.99 (GA3), 331.1 > 257.18 (GA4),
and 331.2 > 96.9 (SLs). UPLC-ESI-MS/MS assays were repeated three biologically, with each
repetition having three replicates. The Student’s t-test were used to determine significant differences in
hormone content. Statistical significance was set at p = 0.05.

2.3. Sample Preparation for Transcriptome and DGE Profiling Analysis

Two branch samples at two developmental stages of the two willow species were selected for
transcriptome analysis. For each sample, an equal number of branches from three individual trees
were pooled for RNA extraction using TRIZOL reagent (Invitrogen, Carlsbad, CA, USA) following
the manufacturer’s instructions. RNA-Seq libraries were prepared using an Illumina TruSeq RNA
Sample Prep Kit (Illumina, San Diego, CA, USA). The library was sequenced on an Illumina HiSeqTM

2000 platform (Illumina, San Diego, CA, USA). Transcript quantification from RNA-Seq data was
performed in a previous study [46]. In each DGE library, tag sequences were mapped to the reference
sequences generated in the RNA-Seq-based transcriptome. Gene expression levels were estimated by
RSEM for each sample [47].

2.4. Screening of Differentially Expressed Genes (DEGs)

The expression of each gene was normalized to the expected number of Fragments Per Kilobase of
transcript sequence per Millions base pairs sequenced (FPKM). Quantitative real-time PCR (qRT-PCR)
analysis was performed to validate the expression levels of DEGs from RNA-Seq and DGE data in a
previous study [46]. Based on the quantification of transcript results, nine pairwise comparisons in
six DGE libraries of the two willow species at two developmental stages using two different branch
portions were analyzed. Differential expression analysis of the two samples was performed using the
DEGseq R package. DEGs were obtained with the thresholds: p-value ≤ 0.05 and an absolute value
of the log2 (fold change) ≥ 1. The context likelihood of relatedness algorithm method was used to
construct a gene regulatory network using the hormone-related DEGs [48].

3. Results

3.1. Growth and Endogenous Hormone Analysis

SM and SMP buds developed into branches from S1. In SM, part of the branches stopped growing,
while others (56.7%) germinated several axillary buds and developed into new branches from S2.
In SMP, branches continued to grow and part of the branches (36.7%) germinated small axillary buds
and developed into new branches. Additionally, the average number of shoot branching in SM (3.4)
was greater than SMP (1.9).

To determine the effects of hormones on shoot branching, the four endogenous hormone contents
of auxin, CKs, SLs, and GAs in the willow branches at the two development stages were compared.
Hormone concentration measurements revealed that IAA levels in SM significantly increased in the
stem apex compared to SMP (Figure 1A), but decreased in the basal branches. Moreover, at S2, the IAA
levels in the stem apex were significantly higher than the basal branches of SMP. Measurements of
the IPA contents in the stem apex increased by 176.86% in SMP compared to the basal branches,
but decreased by 42.4% in SM. Furthermore, the IPA levels at S1 were significantly higher than S2 in
willows. In SM, the tryptophan levels were significantly higher than SMP. The tryptophan contents
significantly increased in the stem apex at S2 compared to the basal branches in willows. The total
contents of active forms of CK, including tZ and iP, were significantly lower in SM than SMP at S2 in
basal branches (Figure 1B). The content of tZ and iP in the stem apex at S2 were significantly higher
than in the basal branches of SM. However, the tZR content was significantly higher in SM than SMP.
The contents of iPR in SM were significantly higher at S1 and lower at S2 compared to SMP. The SLs
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levels in SMP decreased by 11.71% in the stem apex at S1, but increased by 41.43% in the stem apex
and by 118.28% in the basal branches at S2 compared to SM (Figure 1C). The content of SLs at S1
were higher than at S2 in SM. Furthermore, the GA1 contents in branches of SM were lower than
SMP (Figure 1D). The contents of GA3 in the stem apex of SM were significantly higher than SMP.
In particular, the GA4 content markedly increased compared to GA1 and GA3. The contents of GA4 in
the stem apex of SM at S2 were higher than SMP and significantly higher at S2 than at S1.
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auxin (A), CKs (B), SLs (C), and GAs (D). SM and SMP represent S. matsudana and S. matsudana var.
pseudo-matsudana, respectively. 1T, 2T, and 2B represent the stem apex (T) and basal branch (B) at the
two different developmental stages. Error bars represent SE (n = 3). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
CKs, cytokinins; SLs, strigolactones; GAs, gibberellins; IAA, indole-3-acetic acid; IPA, indole-3-propionic
acid; tZ, trans-zeatin; tZR, trans-zeatin riboside; iP, isopentenyladenine; iPR, isopentenyladenosine.

3.2. DGE Analysis and Mapping Reads to the Transcriptome

Six DGE libraries were constructed from two willow species at two different developmental
stages and separated into two branch portions (Table 1). The total number of clean reads per library
ranged from 5.6–7.2 million. In order to control the quality of the libraries, the Q30 and GC content
of the sequences were inspected. In each DGE library, the tag sequences were mapped to the
reference sequences generated in the RNA-Seq based transcriptome [46]. Results revealed a substantial
proportion of clean reads that matched (78.12%–81.47%). In total, 70,504 mapped genes were detected
in the six libraries. For functional annotation, 52,578 unigenes (74.57%) were successfully annotated in
at least one database (Nr, Nt, Pfam, COG, Swiss-Prot, KEGG, and GO).

3.3. Screening of DEGs and Functional Annotation Analysis

To better understand the hormonal control of shoot branching in willow, plant hormones related to
auxin, CKs, SLs, and GAs were used for further analysis. To identify DEGs, nine pairwise comparisons
were analyzed and 5,816 DEGs were identified. Among them, 102 hormone-related DEGs were found
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(Table S1). The largest number of DEGs was identified in SM2B vs. SM1T (62) and SM2T vs. SMP2T (61),
while the fewest were found in SM2B vs. SM2T (3).

To identify the biological functions involved in the hormonal control of shoot branching,
the 102 hormone-related DEGs were mapped in the GO database. Only the biological processes were
used for GO analysis. Of the 102 genes, 89 (87.25%) were assigned to 23 GO terms associated with
hormone regulation (Figure 2). Many biological processes associated with responses to hormonal
signals, biosynthesis, transport, and metabolism were identified. In the biological process category,
auxin-activated signaling pathway (57.30%), response to auxin (31.46%), and auxin polar transport
(17.98%) comprised the majority.

Table 1. Basic characteristics of the six DGE libraries.

Category S. matsudana S. matsudana var. pseudo-matsudana

Stages S1 S2 S2 S1 S2 S2
Tissues Stem apex Stem apex Basal branch Stem apex Stem apex Basal branch

Sample name SM1T SM2T SM2B SMP1T SMP2T SMP2B
Clean reads 6,630,850 6,382,060 6,728,207 6,490,499 7,159,844 5,637,627

Q30 (%) 95.14% 95.21% 95.09% 95.25% 95.33% 95.11%
GC content (%) 44.46% 44.34% 43.76% 44.45% 44.59% 44.05%
Total mapped 80.96% 78.68% 78.69% 80.22% 81.47% 78.12%

Number of unigenes 58,457 58,225 58,373 57,792 57,523 58,325

Q30 percentage is proportion of nucleotides with quality value larger than 30 in reads. GC percentage is proportionof
guanidine and cytosine nucleotides among total nucleotides.
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3.4. Regulatory Patterns of Hormone-Related DEGs

Based on expression differences, the 102 hormone-related DEGs were used for the expression
pattern analysis. The number of DEGs in the stem apex between SM and SMP at S2 and between S1
and S2 in SM was greater than other pairwise comparisons (Figure 3). These results were in accordance
with the growth observations, in which, the timing of shoot branching occurred at S2 and the number
of branching of SM was higher than SMP.

The proportion of genes related to auxin was remarkably high. Based on the GO terms in the
biological processes category associated with auxin biosynthesis, signals, transport, and metabolism,
65 auxin-related genes were confirmed (Figure 3A). Most genes were down-regulated in SM
(SM vs. SMP). The number of DEGs in the stem apex between SM and SMP at S2 was the greatest.
Notably, four PIN1 gene members (c60720_g1, c61704_g5, c62767_g1, and c65489_g7) were identified.
The four genes were down-regulated in SM at S2.
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Figure 3. Expression patterns of DEGs related to auxin (A), CKs (B), SLs (C), and GAs (D). SM and SMP
represent S. matsudana and S. matsudana var. pseudo-matsudana, respectively. 1T, 2T, and 2B represent the
stem apex (T) and basal branch (B) at the two different developmental stages. Details of the 102 DEGs
are provided in Table S1.

However, only one gene (c60720_g1) was differentially expressed in SMP and up-regulated in
the stem apex at S2. Additionally, a total of 14 CK-related genes were identified (Figure 3B). All CK
signaling-related genes (CRE1, AHP1, AHK4, ARRs, and RPN12A) were down-regulated in SM at S2
(S2 vs. S1). However, two CK biosynthesis-related genes (IPT3 and IPT5) were up-regulated in SM
(SM vs. SMP).

For SLs, only three genes (MAX2A, c59815_g2; KAI2, c56849_g1; DAD2, c59671_g1) were
differentially expressed (Figure 3C). DAD2 is an ortholog of D14 and KAI2 is a paralogue of D14 in
Arabidopsis. D14 and MAX2 are involved in SL signal transduction. DAD2 was up-regulated in SM (SM
vs. SMP) at S2 and down-regulated in the stem apex of SMP at S2 (S2 vs. S1). However, MAX2A and
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KAI2 were not differentially expressed between the two different development stages in SM and SMP
or at the same stage in the stem.

We further analyzed the expression patterns of whole genes involved in GA biosynthesis (GA20ox)
and degradation (GA2ox). Three GA20ox (c55294_g1, c55695_g1, and c57581_g1) and two GA2ox
(c59623_g1 and c60122_g1) gene members were identified. Three GA20ox were up-regulated in the
stem apex of SM and up-regulated in the basal branches of SMP at S2 (Figure 3D), except in the basal
branches of SM, while GA2ox was down-regulated in SM and in the basal branches of SMP at S1.
Additionally, the DELLA protein GAI was down-regulated in SM at S2.

3.5. Transcriptional Networks Associated with Hormone Genes

To explore the relationship between the hormone-related genes and shoot branching, we performed
a gene regulation network analysis (Figure 4, Table S2). We set score above 4.5 to identify the tightly
regulated relationship between all pairs of genes [48]. Hormone-related transcription factors (TFs) were
analyzed as source genes. Our results revealed that most TFs were auxin- (52.78%) and GAs-related
(30.56%) genes. TFs with the highest connectivity (score >5.0) included CKs (RPN12A and AHK4),
an auxin-binding protein (ABP20), and GAs (SCL3 and GID1B). The CK-related TF, RPN12A, may help
control the degradation of one or more factors that repress CK signaling and plays an important role
in balancing cell expansion during shoot development. It is also involved in the response to auxin
and was down-regulated in SM and at S2. Therefore, the increased branching in SM may be a result
of the crosstalk between CK and auxin. Further detailed analyses on the function of these genes in
the regulation network could provide novel insights into the hormonal control of shoot branching.
Non-hormonal genes involved in the control of shoot branching were beyond the scope of this study.
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4. Discussion

Many hormones are essential for shoot branching, in particular, auxin, CKs, SLs and GAs. In this
study, we conducted a comprehensive analysis of the hormone-related genes involved in the control
of shoot branching in two willow species. Auxin was the first hormone identified to play a key role
in the control shoot branching. Our results showed that the amounts of IAA in the stem apex was
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enhanced in SM compared to SMP (Figure 1A), and the difference in this effect was observed in
the basal branches. High IAA contents inhibit axillary buds outgrowth and may partly explain the
dormancy of axillary buds [49,50]. Additionally, PIN genes were down-regulated in the stem apex and
were always accompanied by enhanced auxin levels. Compared to SMP, the four PIN1 genes were
down-regulated in SM at S2. Similarly, other PIN genes (PIN3 and PIN5) were down-regulated at S2.
Previously, AXR1 mutations were found to result in increased shoot branching in Arabidopsis [12,13],
causing changes in SCFTIR1/AFB dependent auxin-responsive gene expression [4]. High auxin level
might also induced AXR1 gene expression [50]. However, AXR1 was not differentially expressed in
two willows or at the two developmental stages. Moreover, TIR1 was down-regulated in the basal
branches of SM at S2.

CKs directly promote shoot branching by activating axillary buds. Compared to SMP, the amounts
of tZ and iPR decreased in SM, while iP increased (Figure 1). Additionally, tZR, tZ, and iPR decreased
at S2 in SM, while iP increased. Previously, branching mutants were found to exhibit greatly reduced
amounts of the ZR, Z, and iPR in the xylem sap compared to wild-type plants [37]. These results
indicated that the precursors (tZR and iPR) were not effectively converted into active CKs forms (iP) in
SMP due to the lower expression levels of LOG1, a CK biosynthesis related genes [51]. In this study,
compared to SMP, the expression levels of IPT genes (IPT3 and IPT5) increased in the stem apex of SM
(Figure 3). Compared to S1, these genes were up-regulated in SM at S2. These results suggested that
CK may regulate shoot branching by locally promoting CK synthesis in the stem apex. In a previous
study, IPT3 and IPT5 loss-of-function mutants exhibited reduced CK levels and significant reductions
in branching [18]. These findings are consistent with the role for CK in promoting shoot branching.
In this study, the RNA-Seq data revealed that CK signaling-related genes were down-regulated in
SM at S2, including AHK4 and four ARRs genes (ARR2, 3, 8, and 9) in the CK response pathway.
CKX functions in CK degradation and LOG functions in CK biosynthesis, both were not differentially
expressed in this study. In a previous study, a mutant lacking type-A ARRs exhibited reduced shoot
branching compared to wild-type plants [19].

SLs are a novel class of plant hormone that inhibit shoot branching. DAD2 may be involved in the
SL signal transduction of shoot branching inhibition [28]. Mutations in petunia, rice and Arabidopsis
elicit the typical highly branched SL-deficient phenotype [25,29,52]. DAD2 interacts with MAX2A in an
SL-dependent manner [52]. Like DAD2, mutations in MAX2A are associated with a highly branched
phenotype [27,53]. MAX2 is necessary for karrikins and SL responses, while KAI2 is not required
for SL-mediated responses [30]. There may be MAX2-independent perception of SLs, possibly via
KAI2 [25]. In this study, compared to SMP, DAD2 was up-regulated at the time of shoot branching (S2)
in SM, and the SLs contents were lower in SM. At S2, DAD2 was down-regulated in the stem apex
of SMP and MAX2A was down-regulated in the basal branches of SM. Additionally, SLs levels at S2
were lower than S1 (Figure 1). These findings are consistent with aforementioned descriptions of shoot
branching numbers. MAX2 recognizes the branching-specific targets in willow [2]. It will be important
for carrying out the interaction between DAD2, MAX2, and SLs in plant.

The role of GAs in shoot branching has been characterized, and its biosynthesis is crucial for
shoot branching [8,41]. Mutants defective in GA biosynthesis displayed a highly branched shoot
phenotype in rice [24,41]. Plants defective in GA biosynthesis showed typical GA-deficient phenotypes,
such as dwarfism [42], which is often correlated with increased branching. The overexpression of
GA catabolism genes (GA2ox1 and GA2ox8) reduces GA levels and leads to increased branching and
dwarf phenotypes, respectively [54,55]. In this study in the stem apex, GA2ox1 and GA2ox8 were
down-regulated at S2 (S2 vs. S1) in SM and SMP, and GA2ox1 was down-regulated in SM (SM vs.
SMP) at S1. GA2oxs are responsible for reducing active GAs levels in plants [42,54,55]. GA4 was the
dominant bioactive GA in willow [46]. Consistently, in this study, the GA4 contents were markedly
higher than GA1 and GA3 (Figure 1D). GA3 and GA4 possess similar abilities that stimulate branching
from lateral buds of sweet cherry [56]. GA concentration measurements revealed that the GA3 and GA4

levels were reduced in the stem apex of SMP at S2. This result suggested that GAs inhibited branching.
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Conversely, GA was found to be a positive regulator of shoot branching in J. curcas due to overexpressing
the GA biosynthesis gene, GA20ox1 [7]. In this study, GA20ox1 was up-regulated in the stem apex of
SM (SM vs. SMP) at S2 and up-regulated at S1 (S2 vs. S1). Additionally, DELLA proteins are the main
repressors of GA signaling. Recessive DELLA protein mutants exhibited reduced shoot branching
and/or altered branching patterns [43]. We found that the DELLA protein GAI was down-regulated in
SM at S2. These data indicate that branching in willow is considerably more sensitive to GAs at time of
shoot branching (S2).

Based on the growth results, the hormone content and expression analysis of hormone-related
genes, and results of previous studies on these genes in other plants [1,4,13,19,25,57], we propose
a regulatory network model to explain the interaction between auxin, CKs, SLs, and GAs in the
control of shoot branching in S. matsudana (Figure 5). Collectively, auxin transported in the main stem
through PAT could repress CK synthesis by inhibiting IPTs, which are dependent on AXR1 functions,
and thereby inhibits bud activation [5,21,50]. With the exception of IPT, auxin regulates CK levels
through the regulation CKX to control shoot branching. Additionally, CK treatment resulted in an
increased accumulation of PIN3 via an unknown mechanism [19]. Moreover, AHK4 and B-type ARRs
regulators are required for CK-stimulated PIN1 degradation [58]. In addition, auxin-SL interactions
are critical for branching control. SLs are thought to act upstream of auxin by modulating PAT in the
main shoot. Substantial auxin depletion results of increased branching are explained, at least in part by
reducing SL synthesis [9]. The capacity of PATS is regulated by the MAX pathway, in which MAX1,
MAX3, and MAX4 (and their homologs in pea, petunia, and rice) function in SL synthesis. SL regulates
PIN1 levels through MAX2. Previously, MAX2 expression was repressed by GA and CK treatment in
J. curcas [7]. SLs are also known to reduce auxin transport capacity, which is correlated with reduced
PIN1 accumulation in stems. However, Ward et al. [2] found that SLs were only effective at inhibiting
isolated willow buds in the presence of an apical auxin source. IAA negatively regulated shoot
branching by maintaining high SL and low CK contents in intact plants. Furthermore, GA catabolism
genes (GA2ox), GA biosynthesis gene (GA20ox), and DELLA protein mutants exhibited reduced or
increased shoot branching. Clearly, GAs and CKs are corporately regulate shoot branching, this finding
requires further investigation.
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5. Conclusions

Our study showed that auxin, CKs, SLs, and GAs might play central roles in shoot branching
control in willow. Most of DEGs were differentially expressed at the time of shoot branching happened
in S. matsudana, which have more number of branching. This is well in accordance with our results of
growth and hormone contents. The genes linked to auxin (PIN1, PIN3, and TIR1), CKs (IPT3, IPT5,
AHK4, CKX, and ARRs), SLs (MAX2 and DAD2), and GAs (GA2ox, GA20ox, and GAI) were probably
responsible for shoot branching. The genes with differential expression patterns were used to construct
a regulatory network model to reveal the interaction between auxin, CKs, SLs, and GAs in the control
of shoot branching in willow. These results will be helpful to the focus of our future research on the
four hormones.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/3/287/s1,
Table S1: Statistics of the 102 DEGs associated with auxin, CKs, SLs, and GAs for shoot branching in willow,
Table S2: Details of the gene regulation network of hormone-related genes in willow.
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