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Abstract: The Kaplan turbine is an axial propeller-type turbine that can simultaneously control guide
vanes and runner blades, thus allowing its application in a wide range of operations. Here, turbine
tip clearance plays a crucial role in turbine design and operation as high tip clearance flow can lead
to a change in the flow pattern, resulting in a loss of efficiency and finally the breakdown of hydro
turbines. This research investigates tip clearance flow characteristics and undertakes a transient
fast Fourier transform (FFT) analysis of a Kaplan turbine. In this study, the computational fluid
dynamics method was used to investigate the Kaplan turbine performance with tip clearance gaps
at different operating conditions. Numerical performance was verified with experimental results.
In particular, a parametric study was carried out including the different geometrical parameters
such as tip clearance between stationary and rotating chambers. In addition, an FFT analysis was
performed by monitoring dynamic pressure fluctuation on the rotor. Here, increases in tip clearance
were shown to occur with decreases in efficiency owing to unsteady flow. With this study’s focus
on analyzing the flow of the tip clearance and its effect on turbine performance as well as hydraulic
efficiency, it aims to improve the understanding on the flow field in a Kaplan turbine.

Keywords: Kaplan turbine; tip clearance; computational fluid dynamics; SST turbulence model;
FFT analysis

1. Introduction

Kaplan hydroturbines are widely used in hydropower plants because of their high efficiency over
a wide range of operating conditions. A propeller-type turbine is suitable when the load on the turbine
remains constant. For a Kaplan turbine’s design and operation, tip clearance, which is formed by the
rotating runner blades and the stationary runner chamber [1,2], is essential.

Because of the clearance gap between the blade tips and turbine casing of axial turbomachinery
rotor blades, tip leakage flows are expected. In both compressors and turbines, the tip region flow
tends to include a pressure-driven, oblique leakage flow from the pressure side to the suction side of
the blade, and the roll-up of a tip vortex in the corner bounded by the casing and the blade on the
suction side. Leakage flows then cause efficiency loss because of the increase in tip clearance in Kaplan
turbines [3]. Most previous studies [4–8] that investigate tip vortex loci were performed concerning
gas turbines or compressors and the aim to reduce accompanying losses. Cojocaru [9] investigated
the influence of anticavitation lip profile on the intensity of cavitation erosion in Kaplan turbines,
while Hutton et al. investigated component losses in Kaplan turbines and improved a scaling technique
for model tests [10]. Moreover, there is only a limited number of studies that investigate tip clearance
in propeller turbines, both by numerical simulations and by experimental measurements [11,12].
Roussopoulos and Monkewitz [3] applied particle image velocimetry (PIV) to study the tip vortex and
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cavitation performance caused by the tip clearance of Kaplan turbines, while Nilsson and Davidson [13]
studied tip clearance losses using computational fluid dynamics (CFD) simulations, wherein they
found that a tip clearance of 0.25 mm could reduce the efficiency of a Kaplan water turbine with
a runner diameter of 0.5 m by about 0.5%. On the other hand, Gehrer et al. [14] examined the cavitation
caused by the tip clearance of a Kaplan turbine by simulation in the runner blade optimization based
on an evolutionary algorithm, and Bodkhe [15] studied the experimental analysis of Kaplan turbines
at different operating load conditions. With this, this study shifts the focus on tip clearance losses in
Kaplan turbines.

An unsteady state analysis of hydroturbines can be useful in predicting and analyzing the
instability caused by the unsteady flow field and in developing mitigating techniques to minimize
the effects of these phenomena [16]. Wang et al. [17] investigated the characteristic frequencies in the
unsteady hydraulic behavior of a hydraulic turbine experimentally wherein their results showed that
the pressure fluctuation in a draft tube is stronger than that in the upstream flow passage. A more
recent study by Su et al. [18] investigated the chaotic dynamic characteristics of pressure fluctuation
signals in hydroturbines, and their results revealed that the main energy pressure fluctuations in a draft
tube are located at low-frequency regions. Also recently, Glowacz [19] investigated the fault diagnosis
of a single-phase induction motor based on acoustic signals and then proposed a signal processing
method for early fault diagnosis of electrical and mechanical faults of rotating machines. Glowacz [20]
also analyzed acoustic-based fault diagnoses of commutator motors wherein acoustic signals were
found to be in the range of 88.4–94.6%. Fei [21] performed a fault diagnosis method of bearing by
utilizing lifting wavelet transform (LWT)—self-adaptive phase space reconstruction (SPSR)—singular
value decomposition (SVD) based relevance vector machine (RVM) with the binary gravitational search
algorithm. The results demonstrated that the method could achieve higher diagnostic accuracy for
bearing. Caesarenda et al. [22] investigated on empirical study of feature extraction methods for the
application of low-speed slew bearing monitoring was performed. With this, extensive literature exists
on the CFD method of flow simulation of hydraulic turbines. Wu et al. [23] studied prototype and
model Kaplan turbines and pressure fluctuation through numerical simulations, and their results
revealed that pressure fluctuation in the draft tube suddenly raises both the model and prototype
turbines. Rivetti et al. [24] also studied pressure pulsation in Kaplan turbines and obtained good
results, while Drtina et al. [25] studied hydraulic turbines (i.e., Pelton, Francis, and axial turbines),
both computational and experimental, and demonstrated that the CFD method is effective in simulating
the flow field in fluid machinery. Furthermore, other studies have investigated the validation of the
CFD method in the dynamic behaviors of water turbines [12,26].

At present, the conventional methods for monitoring the stability of the fluid machinery include
pressure fluctuation, acoustic, output, and other inspections. In the running monitoring, the pressure
fluctuation is the major focus to identify the operating conditions. To extract the characteristics of
fluctuated signals, mathematical tools like the fast Fourier transformation (FFT) analysis is often
utilized, wherein the signals’ features in the time domain, frequency domain, or amplitude can be
obtained. Such methods are significantly helpful for the working stability and state inspection of
hydroturbines [27,28]. Therefore, the unsteady pressure fluctuations characteristics in the tip leakage
flow play an important role in load instabilities.

With this, this study focuses on the investigation of the tip clearance flow of a Kaplan turbine
through numerical simulations. Furthermore, unsteady three-dimensional turbulent flow throughout
the full domain of a Kaplan turbine was investigated through simulations, and the pressure pulsation
in the runner and generator (hub) was predicted and analyzed using the FFT analysis.
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2. Numerical Analysis

2.1. Geometrical Model and Meshing

The 3D geometry of the horizontal prototype Kaplan turbine was selected to analyze the flow
characteristics of the hydrological aberration as shown in Figure 1. The runner shape was scanned
using a noncontact portable 3D scanner from the operation site. During scanning, the 3D scanner
generated the 3D geometrical shape of the runner blade through the laser detection technique connected
to the computer; however, the 3D runner blade shape generated was not smoothened out, as shown in
Figure 2. Therefore, the gaps were filled, and the rough geometry was modified using CAD software
ANSYS ICEM to get the original 3D runner shape. The block diagram of the research study is
represented in Figure 3.

The 3D geometry of the casing, generator, guide vane, runner hub, and draft tube domains was
designed by ICEM-CFX from the 2D drawing information provided by Chungju 2 Hydropower Plant,
K-Water, Korea. The original prototype runner geometry is shown in Figure 4. In this study, two model
cases (cases 1 and 2) were invested. The tip clearance gap of case 1 was 1.75 mm and 6 mm (only
two blades) for case 2. Figure 5 shows the tip gap between the runner and runner chamber (adopted
from K-Water). In this figure, A, B, and C represent the gap height between the runner and the runner
housing. The tip gap of A was 6.05 mm, 4.80 mm for B, and 3.35 mm for C. The runner tip clearance
was considered the uniform gap, because it is difficult to make the real shape as well as good grid of
the runner. Table 1 shows the specifications of the model turbine.
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Table 1. Main design parameters of the prototype Kaplan turbine.

Description Dimension

Runner outlet diameter 1648.25 mm
Head 9.2 m

Flow rate 75.3 m3/s
Max. Power 6000 kW

Rotational speed 171.4 rpm
Runner blade 4
Guide vane 16

The model turbine was meshed by ANSYS ICEM-CFX (16.2) based on finite volume methods
(FVM) [29]. Because of the flexibility of the complex design of the hydraulic turbine when solving
complex geometries, the unstructured prism tetrahedron grid system was employed to make the grid.
The total meshing grids of case 1 were 3,167,233 nodes and 16,506,970 elements, and 4,937,129 nodes
and 27,291,793 elements for case 2. The meshing grids are shown in Figure 6. To precisely simulate the
flow in a whole turbine channel, further grid refinement around the blades’ edges is required. In the
blade end surfaces, the volumes’ sizes were controlled as shown in Figure 6. Because of the complex
prototype geometry, the grid becomes large, which is needed for a comparatively fine grid, as numerical
simulations lead to a considerable amount of computational data. To reduce the influence of grid
number on the computational results, a grid independence test is important to check the convergence
of the simulation. The grid independence test was performed at the rated operating condition (GV 67◦

and RV 23◦), and the results found that the efficiency deviation was less than 1% as shown in Figure 7.
The mesh independence test was carried out based on the most accepted grid convergence index (GCI)
method [30–32]. With this, the approximate and extrapolated relative errors can be expressed as:

εa =

∣∣∣∣∣εnew − εold
εnew

∣∣∣∣∣ ∗ 100% (1)
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The grid convergence index (GCI) can be written as:

GCI =
1.25× εa

r2 − 1
(2)

where εa is the relative error, and r is the mesh ratio.
The finite volume approaches of the cells near the wall boundary are irregular, thus possibly

requiring a particular treatment. Prisms can first create a layer of regular prisms near the wall and
then mesh the remaining volume with tetrahedrons [33,34]. This grid approach enhances the near
walls and gives better solutions and convergence of computational methods [33].

The quality of the model turbine grids is represented in Table 2. The estimated numerical
uncertainties in the hydraulic turbine are shown in the Table 3. From the table, the 3,167,233 grid
density showed lower uncertainties. Also, the total meshed element and nodes were different for
each guide vane and runner vane opening angle as represented in Tables 4 and 5 for cases 1 and
2, respectively.

Table 2. Mesh quality of the Kaplan turbine.

Description Elements Nodes Y+

Casing 3,495,838 694,056 ~478
Guide vane 2,744,459 520,788 ~276

Runner 7,054,423 1,313,645 ~597
Draft tube 3,212,250 638,744 ~121

Total 1,6506,970 3,167,233

Table 3. Grid convergence uncertainties in the numerical solutions.

No. Nodes Grid Ratio, r Efficiency (%) Error, εa GCI

1 1698866 1.31 88.602 0.11738 0.2047
2 2225771 1.14 88.706 0.00676 0.0269
3 2551448 1.08 88.712 0.03382 0.2359
4 2770562 1.14 88.742 0.00789 0.0321
5 3167233 1.07 88.749 0.00225 0.0171
6 2935178 0.97 88.747 0.02028 0.5708
7 3002617 0.86 88.729 0.03156 0.1619
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Table 4. Grid numbers for different cases (case 1).

No. Guide Vane Angle (◦) Runner Vane Angle (◦) Elements Nodes

1 23.5 −2.25 6,292,574 1,213,316
2 34.5 3 11,690,834 2,142,607
3 46.87 7.95 8,418,222 1,576,519
4 55 13.07 6,119,611 1,185,878
5 61.82 18.3 6,118,300 1,185,676
6 67 23 16,506,970 3,167,233
7 68.5 23 11,685,688 2,141,639
8 69.1 25 12,626,332 2,305,743
9 72 25 12,628,024 2,306,005

Table 5. Grid numbers for different cases (case 2).

No. Guide Vane Angle (◦) Runner Vane Angle (◦) Elements Nodes

1 23.5 −2.25 11,109,862 2,007,133
2 34.5 3 42,082,030 7,466,191
3 46.87 7.95 8,783,048 1,643,035
4 55 13.07 6,647,494 1,281,519
5 61.82 18.3 14,069,184 2,603,090
6 67 23 27,291,793 4,937,129
7 68.5 23 12,210,473 2,236,618
8 69.1 25 18,238,111 3,309,172
9 72 25 18,239,803 3,309,434

2.2. Governing Equations

Numerical analysis of the fluid flow was based on the continuity and momentum equations [25,35],
which are expressed as Equations (3) and (4) as follows, respectively:

∂ui
∂xi

= 0 (3)

ρ(
∂ui
∂t

+ u j
∂ui
∂x j

) = −
∂p
∂xi

+
∂
∂x j

(
µ
∂ui
∂x j
− ρu′i u

′

j

)
(4)

where ρ and µ are density and dynamic viscosity respectively, p is the pressure scalar, −ρu′i u
′

j is the
apparent turbulent stress tensor.

For numerical simulation, the turbine domain was considered with its steady-state, incompressible
flow. The runner domain was rotating on the z-axis at a given rotating speed, and the casing and draft
tube were on a stationary domain. The turbine domain is shown in Figure 8. The analysis boundaries
were imposed on the inlet and the outlet as static pressure of 90,221 Pa and 0 Pa on each domain
model. All boundary walls were assumed to be smooth with a nonslip condition. A frozen rotor was
applied to couple the rotation and stationary domain for steady analysis. The rotational speed was
171.4 rpm. Menter’s shear stress transport (SST) turbulence model was used to solve the turbulence
behavior of the flowing fluid [36,37]. The residual value was of 1 × 10−5 was controlled by convection
criteria. The unsteady simulation was carried out to investigate the dynamic behavior of the model
Kaplan turbine. The time step of the 3◦ rotation of the runner blade was selected. In general, 4–5 cycles
would be enough to get the stable unsteady flow, but because of the limitation of computer resources,
two rotation cycles were made for case 1, and five cycles for case 2. Therefore, the time step was
7.29 × 10−3 s. The total time for case 1 was 0.70 s, and 1.75 s for case 2. The transient stator–rotor
was accounted to couple the rotation and stationary interface for the unsteady analysis. Furthermore,
the FFT analysis of the Kaplan turbine investigated the stability of the operating conditions.
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2.3. Calculation of Hydraulic Performance

The hydraulic performance of the Kaplan turbine was calculated using three parameters, namely
the head, power, and efficiency of the hydraulic turbine [1]. Based on the simulation results,
the performance of the Kaplan turbine can be estimated. The hydraulic head is calculated from
the measured pressure, fluid velocity, and elevation at the inlet and outlet measuring sections.
The hydraulic head is defined as:

H =

(
p
ρg

+
v2

2g
+ z

)
1
−

(
p
ρg

+
v2

2g
+ z

)
2

(5)

Hydraulic power is Ls and obtained as the rate of the mechanical energy removal from the flowing
fluid stream; it is defined as:

Lw = ρQgH (6)

The flow rate Q across any face S can be expressed as

Q = V · S =
n∑

i=1

VniSi (7)

where n is the number of the cells, Vni is the calculated individual velocity along the face normal vector,
and Si is the area of a face cell. As the neglecting friction and torque generated by pressure changes in
turbomachinery, the shaft power Ls of the hydraulic machine is defined as:

Ls = ωTsha f t (8)

where ω is the angular speed of the runner, and Tshaft is the torque of the machine shaft. Lastly,
the efficiency, ηt of the turbine is expressed as:

ηt =
Ls

Lw
=
ωTsha f t

ρQgH
(9)

where ρ is the density of water, g is the gravitational acceleration, and H is the turbine working head.

3. Results and Discussion

3.1. Validation of Numerical Results

To confirm the numerical results, simulation results were validated with experimental data.
Figures 9 and 10 show the comparison of the experiment and the numerical values at different operating
conditions for the tip clearance interval of 1.75 mm. It is seen from that figure that both results had
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almost similar trends. Therefore, it was revealed that the results of the computer simulations agree
with the experimental results.Energies 2019, 12, x FOR PEER REVIEW 9 of 15 
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3.2. Performance Characteristics

Computer simulations were conducted at different flow rates by changing guide vane and runner
vane opening angles of the Kaplan turbine for cases 1 and 2. The guide vane opening angles varied
from 23.5◦ to 72.0◦, and the runner vane opening angles varied from −4◦ to 25◦ for cases 1 and 2.
The simulations were conducted with output ranging from 1000 to 6000 kW. Figure 11 shows the runner
vane angle versus efficiency and runner vane angle versus power performance characteristics of the
CFD results of the Kaplan turbine for cases 1 and 2. From the graph, at the rated operating condition
for case 1, the efficiency was found as 88.72%, and power was 5.64 MW at a flow rate of 70.39 m3/s;
however, for case 2, the efficiency was only 84.06%, and power was 5.59 MW at a flow rate of 74.31 m3/s.
It was expected to get the desired output at the rated condition of 6 MW, but the computed power was
slightly less than 6 MW. It is also seen that the output difference was only 0.69%. Figure 12 shows
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the guide vane angle efficiency and versus flow rate performance characteristics of the CFD results
for cases 1 and 2. It is seen from Figure 12 that the average deviation of the flow rate was only 1.46%.
On top of this, the average efficiency was only 1.54%. In the case of efficiency at the rated condition,
the difference was only 4.59% as shown in Figures 11 and 12.
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3.3. Effect of Tip Clearance

The analysis of the internal flow characteristics was performed at the rated condition (GV 67◦ and
RV 23◦), which is mostly operated during power generation. Tip clearance flow creates a vortex that
separates from the runner blade suction side and gives rise to a local pressure reduction near the tip
on the suction side of the runner blade and at the center of the tip vortex. In this region, if the static
pressure falls below the vapor pressure of the liquid water flowing through the turbine, then cavitation
will occur. Figure 13 shows the tip clearance velocity and pressure profiles distribution in a plane
view. It is observed that the tip clearance vortex impacts on the shroud of the runner, where pressure
suddenly drops into the center of the runner; here, pressure is gradually increased, and velocity is
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decreased near the runner blade trailing edge. In this case, a possible cavitation scenario could be
formed inside the tip vortex [13].
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Figure 14 shows the blade-to-blade velocity contour for the models for cases 1 and 2 at rated
conditions; here, for case 1, the flow velocities inside the turbine are well predicted. No recirculation
zone was found inside the runner and shroud tip gap. However, for case 2, the flow instability occurred
near the tip of the runner, velocity is increased at the center of the runner suction side, and the flow is
highly unsteady. Moreover, the tip clearance gap increases the turbulent kinetic energy and reduces
the output of the turbine. Figure 15 shows the turbulent kinetic energy in the vicinity of the draft tube
of cases 1 and 2 at a rated condition. It was observed that for case 1, the turbulent kinetic energy at
the exit of the runner outlet was symmetrical in the up and down directions, and for case 2, it was
asymmetric, which may be because of the instability of the flow near the uneven tip gap of the runner.
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3.4. Pressure Pulsation Analysis

For an unsteady flow analysis, the flow simulation was determined as 69.1◦ for the guide vane,
25◦ for the runner vane, and 8.5 m for the head. This was done to investigate the phenomenon in
which the output of the guide vane does not increase appropriately even if the drop of the actual
vane is lower than the rated value during operation of the Kaplan turbine. Because the unsteady flow
causes vibration to a large extent, the pressure pulsation analysis near the runner and the generator
was analyzed using FFT. The x-, y-, and z-axes are x, y, and z, respectively. As a result of the analysis,
the pressure variation of the runner vane of the standard Kaplan turbine is similar to the x in the
horizontal direction and the y in the vertical direction within 1.5 times, and the maximum size level is
106 as shown in Figure 16a. Figure 16b shows the pressure pulsation results near the Kaplan turbine
runner at unsteady intervals. Having an increased tip gap of unsteady flow, the oscillations on the
horizontal axis are more than 10 times greater than the vertical axis, which is 10 times more than the
normal Kaplan turbine pressure pulsations. For measuring the frequency of the generator, it was
found that the pressure fluctuations generated by the generator were not significantly different from
the pressure fluctuations of the vertical axis to the horizontal axis in the direction of the axial runner as
shown in Figure 17a. As shown in Figure 17b, the pressure fluctuation occurs in the same cycle as the
pressure fluctuation period of 6–7 Hz occurring in the runner vane. It was considered that the vibration
caused by the unbalance flow of the runner vane of the tip gap of Kaplan turbine was transmitted to
the generator.
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4. Conclusions

This study was based on the steady and unsteady flow analyses with varying tip gaps between
the runner and the discharge ring of the Kaplan turbine through a computerized flow analysis.
For numerical analysis, three-dimensional modeling of the existing Kaplan turbine was performed
from the drawing and scanning shape data. The performance analysis of the existing turbine was
accomplished by changing the runner vane opening from −4◦ to 25◦ and the guide vane opening
from 23.5◦ to 72.0◦. The computed results were compared with the experimental data provided by
the manufacturer to verify the validity of the simulation. The performance of the standard tip gap
(1.75 mm) and that of an abnormal tip gap (6 mm) of the Kaplan turbines were also compared. It was
confirmed that the output of the turbine decreased when the interval was generated. In the comparison
of the results, in both cases, the flow rate of case 2 was 1.46% less than of the conventional turbine,
and the output difference was a maximum of 81 kW. In the case of efficiency, the difference between
both cases was only 4.59% within the rated range. The internal flow field and the turbulent kinetic
energy distribution was also observed and found that unsteady flow occurred as the gap became higher
than usual, and pressure fluctuation and period were confirmed at the peripheral part of the vane.
Through the FFT analysis, it was confirmed that the vibration caused by the flow instability of the
runner vane was transmitted to the generator. To reduce the dynamic vibration effect of the turbine,
the tip gap of the machine should be minimized. Therefore, repairing the runner and discharge ring
gap within the normal range should be considered because this flow may cause severe vibrations to
the runner. The study notes that the simulation results did not consider the bearing and mechanical
loss of the turbine that occurred in the machine. The thrust bearing, shaft seals, and guide bearings
into the model could be a great interest for further research combined with the FFT analysis.
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Nomenclature

CFD Computational Fluid dynamics
FFT Fast Fourier Transformation
GCI Grid convergence index
g Acceleration due to gravity, m/s2
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H Head, m
Ls Shaft power, kW
p Pressure, Pa
Q Flow rate, m3/s
r Mesh ratio
Si Area of a face cell
Tshaft Torque, N·m
t Time, s
ui Velocity vector, m/s
v Velocity of fluid, m/s
Vni Velocity along the face normal vector
x Component of position vector, m
z Elevation of water level, m
Greek Symbols
ρ Density, kg/m3

ηt Turbine efficiency, %
ω Angular velocity, rad/s
µ Viscosity, Pa·s
Subscript
i, j Tensor indices
1, 2 Inlet, outlet
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