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Abstract: The CO2 solubilities (including CO2 Henry’s constants) and viscosities in ionic liquids
(ILs)/deep eutectic solvents (DESs)-based hybrid solvents were comprehensively collected and
summarized. The literature survey results of CO2 solubility illustrated that the addition of hybrid
solvents to ILs/DESs can significantly enhance the CO2 solubility, and some of the ILs-based
hybrid solvents are super to DESs-based hybrid solvents. The best hybrid solvents of IL–H2O,
IL–organic, IL–amine, DES–H2O, and DES–organic are [DMAPAH][Formate] (2.5:1) + H2O (20 wt %)
(4.61 mol/kg, 298 K, 0.1 MPa), [P4444][Pro] + PEG400 (70 wt %) (1.61 mol/kg, 333.15 K, 1.68 MPa),
[DMAPAH][Formate] (2.0:1) + MEA (30 wt %) (6.24 mol/kg, 298 K, 0.1 MPa), [TEMA][Cl]-GLY-H2O
1:2:0.11 (0.66 mol/kg, 298 K, 1.74 MPa), and [Ch][Cl]-MEA 1:2 + DBN 1:1 (5.11 mol/kg, 298 K, 0.1 MPa),
respectively. All of these best candidates show higher CO2 solubility than their used pure ILs or DESs,
evidencing that IL/DES-based hybrid solvents are remarkable for CO2 capture. For the summarized
viscosity results, the presence of hybrid solvents in ILs and DESs can decrease their viscosities.
The lowest viscosities acquired in this work for IL–H2O, IL–amine, DES–H2O, and DES–organic hybrid
solvents are [DEA][Bu] + H2O (98.78 mol%) (0.59 mPa·s, 343.15 K), [BMIM][BF4] + DETA (94.9 mol%)
(2.68 mPa·s, 333.15 K), [L-Arg]-GLY 1:6 + H2O (60 wt %) (2.7 mPa·s, 353.15 K), and [MTPP][Br]-LEV-Ac
1:3:0.03 (16.16 mPa·s, 333.15 K) at 0.1 MPa, respectively.

Keywords: ionic liquid; deep eutectic solvents; hybrid solvent; CO2 solubility; Henry’s
constant; viscosity

1. Introduction

CO2 emission is an urgent issue due to its main contribution to global warming [1]. It has been
evidenced that CO2 capture is a promising route to mitigate CO2 emissions, and in general, cost,
energy demand, and environmental impact need to be considered when for selecting the potential CO2

capture technologies [2]. At present, the absorption technology with 30 wt % MEA aqueous solution is
the commercialized one. However, this technology with the corresponding solvent has the drawbacks
of high energy demand (4.2 GJ/t CO2), high cost ($0.19–1.31/t CO2), low thermal and chemical stability,
and high volatility and corrosion [3–6], which underlines the necessity for developing greener and
more efficient solvent for CO2 capture.
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Compared with the traditional amine-based solvent, the emerging new absorption solvents of
ionic liquids (ILs) and deep eutectic solvents (DESs) have attracted more and more attention due to
the merits of recyclability, good solvent stability, low energy demand, and environmentally friendly
nature [7]. However, some of the ILs (e.g., [P4442][Cy-Suc], 2567 mPa·s at 303.15 K) [8] and DESs
(e.g., [MTPP][Br]-GLY 1:4, 1658 mPa·s at 298.15 K) [9] have high viscosities that influence the rate of
absorptions, inhibiting their industry applications. To cope with this disadvantage, hybrid ILs or DESs
with water have been strongly recommended [9–14]. For example, Zhang et al. investigated the mass
transfer feature in [BMIM][NO3] + H2O, evidencing that mass transfer increases with the increase of
water content, e.g., the mass transfer of [BMIM][NO3] (95 wt %) + H2O (5 wt %) is 0.55 × 105 m·s−1,
while it is 0.64 × 105 m·s−1 for [BMIM][NO3] (90 wt %) + H2O (10 wt %), which may due to the decrease
of viscosity that from 35.74 ([BMIM][NO3] (95 wt %) + H2O (5 wt %)) to 12.65 mPa·s ([BMIM][NO3]
(90 wt %) + H2O (10 wt %)) [13]. Sarmad et al. studied the viscosity of DES, finding that a small
amount of water has a significant effect on DES viscosity [9]. For instance, at 298 K, the viscosity of
[TEMA][Cl]-GLY (1:2) is 236.59 mPa·s, while it is 72.75 mPa·s for [TEMA][Cl]-GLY-H2O (1:2:0.055).

Except for adding water to decrease the viscosity, organic solvents (e.g., PEG, TEG, and TG) can
substitute water totally or partially to decrease the viscosity or to overcome high energy demand in
IL + H2O [15–17]. The experimental result indicates that TG can significantly decrease the viscosity
of [P66614][4-Triz], especially at low temperatures, i.e., the viscosity of [P66614][4-Triz] is 4640 mPa·s
at 278.15 K, while it is 163 mPa·s for [P66614][4-Triz] + TG (58.2 mol%) [18]. Liu et al. found that the
addition of a certain amount of PEG200 to [Cho][Gly] + H2O not only decreases the viscosity but also
enhances the CO2 solubility, as well as decreases the desorption enthalpy [17].

To further take the benefits of both neoteric and conventional solvents, IL–amine-based and
superbase–amine-based DES hybrid absorbents have also been proposed and developed [19–25].
These hybrid solvents possess certain advantages of low energy demand, low water evaporation,
and high CO2 solubility compared to the commercialized MEA aqueous solution [26]. For example,
Yang et al. reported that [BMIM][BF4] (40 wt %) + MEA (30 wt %) + H2O (30 wt %) has higher CO2

solubility than MEA (30 wt %) + H2O (70 wt %), and the energy demand reduced by 37.2% with respect to
MEA (30 wt %) + H2O (70 wt %) [21]. The CO2 solubilities of four functionalized ILs in MDEA aqueous
solution were investigated and compared with MEA + MDEA aqueous solution [27], showing that the
CO2 solubility of [N2222][Lys] (15 wt %) + MDEA (15 wt %) + H2O (70 wt %) (0.74 mol/mol) > [N1111][Lys]
(15 wt %) + MDEA (15 wt %) + H2O (70 wt %) (0.69 mol/mol) > [N2222][Gly] (15 wt %) + MDEA
(15 wt %) + H2O (70 wt %) (0.64 mol/mol) > [N1111][Gly] (15 wt %) + MDEA (15 wt %) + H2O (70 wt %)
(0.56 mol/mol) > MEA (15 wt %) + MDEA (15 wt %) + H2O (70 wt %) (0.36 mol/mol). For DES hybrid
solvent of [Ch][Cl]-MEA 1:2 + DBN with volume ratio of 1:1, its CO2 solubility improved from 3.29 to
5.11 mol/kg compared with [Ch][Cl]-MEA 1:2 at 298.15 K [25].

To develop the potential IL/DES-based hybrid solvents for CO2 capture, CO2 solubility
(in accordance with Henry’s constant for physical absorption) and viscosity are two key properties.
Furthermore, the selectively for physical absorption and the CO2 absorption enthalpy for chemical
absorption are other concerns in development, while the research is still limited, especially when
compared to those for CO2 solubility and viscosity. Several reviews for IL/DES-based hybrid
solvents from the aspect of CO2 solubility, Henry’s constant, and viscosity have been published.
Babamohammadi et al. summarized the viscosities of IL + H2O and IL + MEA/EG + H2O until 2014
and the CO2 solubilities of ILs (imidazolium- and ammonium-based ILs)-amine hybrid solvents since
2008 [28]. Gao et al. summarized the CO2 solubility of 18 kinds of IL-amine based hybrid solvent
until 2015. Huang et al. reviewed the advantages and disadvantages of five kinds of IL–hybrid
solvents (i.e., IL–organic, normal IL–amine, normal IL aqueous–amine, functionalized IL–amine,
and functionalized IL aqueous–amine) until 2016 for CO2 capture [26], finding that IL–hybrid solvents
can significantly reduce the viscosity. Lian et al. introduced the ILs–hybrid processes for CO2 capture
and compared the CO2 solubilities for IL–DEA/DMEE/ethanol, indicating that IL–ethanol has the
highest solubility of 2.3 mol/mol [29]. Recently, more IL-based hybrid solvents have been developed
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combined with property measurements, making it necessary to update the latest research progress.
Meanwhile, to the best of our knowledge, there is no review article for the DES-based hybrid solvents.

To fulfill this gap and to promote the technology development on CO2 capture in IL/DES-based
hybrid solvents, this review summarizes the CO2 solubilities (including Henry’s constants) and
viscosities of IL-based hybrid solvents since 2016 and DES-based hybrid solvents since 2014 to avoid
the repetition of the published reviews. Finally, the best candidates for IL/DES-based hybrid solvents
were obtained and compared with each other.

2. ILs-Based Hybrid Solvents

Regarding the CO2 solubilities for 73 kinds of IL–H2O and 37 kind of IL–organic-based hybrid
solvents since 2016, 28 types of IL–amine hybrid solvents since 2018 together with 62 Henry’s constants
have been reported. The results were collected and summarized in Tables 1 and 2. The viscosities for
30 kinds of IL–H2O and 121 IL–organic/organic aqueous solution hybrid solvents since 2016, and 15
kinds of IL–amine/amine aqueous solution hybrid solvents since 2018 have been determined, and these
are listed in Table 3. The full names of ILs-based hybrid solvents are displayed in Table S1.

2.1. CO2 Solubility and Henry’s Constant

2.1.1. IL–H2O

The effect of the addition of H2O in [DMAPAH][Formate] (0.5:1, 1.0:1, 2.0:1, 2.5:1) was studied
by Vijayaraghavan et al. [30]. Except for the molar ratio of amine to acid of 0.5:1, CO2 solubility
initially increased up to a certain water amount of 20 wt % (Figure 1); then, it steadily decreased
as the H2O concentration increased. As shown in Figure 1, the best candidate for CO2 capture is
[DMAPAH][Formate] (2.5:1) + H2O (20 wt %) (5.69 mol/kg). The CO2 solubility in [TMGH][Im] + H2O
(1–25 wt %) was studied by Li et al. [12]. The result indicates that CO2 solubility first increased at a
water content range of 1–7 wt %, and then, it decreased when the water content was larger than 7 wt %
in [TMGH][Im], resulting in the best absorption capacity of 4.23 mol/kg for [TMGH][Im] + H2O (7 wt %).
Huang et al. reported that a [P4442][Suc] structure with basic anion can improve the reaction of CO2

and [P4442][Suc] aqueous solution by forming bicarbonate and conjugate acid [31]. The result indicates
that the CO2 solubility of [P4442][Suc] + H2O (3.3 wt %) (1.9 mol/mol) is slightly higher than [P4442][Suc]
(1.87 mol/mol); however, the addition of 8.8 and 17.6 wt % of H2O to [P4442][Suc] has a negative effect
on their CO2 solubilities compared with [P4442][Suc]. As shown in Table 1, various compositions of
[P4444][HCOO] in water were measured at 0.1 MPa in the temperature range of 248.75–324.65 K for
CO2 solubility and compared with [N2224][Ac] and [N2222][Ac] [32]. The results indicate that the CO2

solubility of [P4444][HCOO] + H2O first increased from 0.01 to 1 mol/mol at the water contents range of
29–66 mol% and then decreased with the increase of water contents of 70–91 mol%. Temperature also
affects the absorption performance of [P4444][HCOO] + H2O. For example, at 273.15 K, the CO2 solubility
of [P4444][HCOO] + H2O (<80 mol%) is higher than [N2224][Ac] + H2O and [N2222][Ac] + H2O, while
at 298.15 K, it is higher than [N2224][Ac] + H2O at a water content less than 50 mol%, but it is lower at a
water content high than 50 mol%. For 323.15 K, the CO2 solubility in [P4444][HCOO] + H2O (<80 mol%)
is lower than [N2222][Ac] + H2O. Nathalia et al. [33] evidenced that there are three processes for
CO2 capture in [BMMIM][Im] and [BMMIM][Ac] aqueous solutions, i.e., physical, CO2–imidazolium
adduct generation, and bicarbonate formation, resulting in a maximum CO2 solubility of 8.15 mol/mol
in [BMMIM][Im] + H2O (99.9 mol%). The CO2 solubility in [P4443][Gly] + H2O (59.9, 80.1, 90, 95 wt %)
was measured at temperatures ranging from 278.14 to 348.05 K and pressures of 0.1–7.75 MPa [34].
A feature of physical absorption in these hybrid solvents was observed. The best CO2 solubility of
2.44 mol/kg was acquired for [P4443][Gly] + H2O (59.9 wt %) at 298.06 K and 4.6 MPa. Aghaie et al.
tested the CO2 solubilities of [HMIM][Tf2N], [HMIM][FAP], and [BMIM][Ac] aqueous solutions [35].
The result indicates that the CO2 solubility reduced by 45% in these three ILs aqueous solutions
compared to the solubility of CO2 in pure IL at 298 K and water content of 10 wt %.
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2.1.2. IL–Organic/Organic Aqueous Solution

Huang et al. investigated the CO2 capture capacity in [TETAH][Lys] + ethanol + H2O [36], finding
that the CO2 solubility first increases with the increase of volume ratio of ethanol in water from 10:0 to
5:5 v/v, and then, it decreases from 5:5 to 2:8 v/v. Compared with the reported results, the maximum
CO2 solubility of 2.45 mol/mol for [TETAH][Lys] + ethanol + H2O (5:5 v/v) is higher than those of
[P6444][Lys] [37], [C2NH2MIM][Lys] [38], and [TETAH][Lys] + H2O. Taheri et al. measured the CO2

solubility of [AMIM][Tf2N] + methanol at temperature and pressure ranges of 313.2–353.2 K and
0.98–6.19 MPa, respectively, indicating that the presence of methanol in [AMIM][Tf2N] enhances the
CO2 solubility and results in a maximum of 3.89 mol/mol [39].

In order to overcome the drawbacks of high CO2 capture enthalpy and water volatilization in ILs
aqueous solution, PEG200 was introduced in [Cho][Gly] + H2O [17]. CO2 solubility was measured in
such solvent at 308.15–338.15 K and pressure lower than 0.68 MPa, and the CO2 desorption enthalpy
was estimated. Owing to its physical–chemical properties, [Cho][Gly] (30 wt %) + PEG200 (30 wt %)
+ H2O (40 wt %) has a higher CO2 solubility (0.41–1.23 mol/kg) and regeneration efficiency (95%)
compared with [Cho][Gly] (30 wt %) + H2O (70 wt %). Li et al. found that the addition of PEG200 to
[Cho][Pro] not only improves the absorption rate but also enhances the desorption efficient, resulting
in a maximum CO2 solubility of about 0.6 mol/mol for [Cho][Pro] + PEG200 with the mass ratios of 1:1,
1:2, 1:3, respectively [40]. PEG400 was introduced to [P4444][Gly], [P4444][Ala], and [P4444][Pro] [41],
evidencing that [P4444][Pro] + PEG400 (70 wt %) (1.61 mol/kg) > [P4444][Gly] + PEG400 (70 wt %)
(1.58 mol/kg) > [P4444][Ala] + PEG400 (70 wt %) (1.57 mol/kg). The effect of three types of PEG
(i.e., PEG200, PEG300, and PEG400) and water content on the CO2 solubility in [DETAH][Br] and
[DETAH][BF4] at 293.15 K and 0.1 MPa was investigated by Chen et al. [42]. The result evidenced that
the CO2 solubility follows the order of [DETAH][Br] + PEG200 (1.18 mol/mol) > [DETAH][Br] + PEG300
(0.87 mol/mol) > [DETAH][BF4] + PEG200 (0.65 mol/mol) > [DETAH][Br] + PEG300 (0.32 mol/mol) at
a mass ratio of [DETAH][Br]:PEG = 1:4. Additionally, the CO2 solubility in [DETAH][Br] + PEG200
+ H2O (4.7 wt %) (1.18 mol/mol) is higher than that in [DETAH][Br] + PEG200 + H2O (1.3 wt %)
(1.05 mol/mol), which may be because water weakens the interaction of the IL cation and anion
and enhances the interaction with CO2. Due to the high CO2 solubility of PEO1000 (0.35 mol/mol,
323 K, 4.98 MPa), it is introduced to [N4111][Tf2N]. A maximum CO2 solubility of 1.16 mol/mol
was acquired at 323 K, 4.99 MPa for [N4111][Tf2N] + PEO1000 (75 mol%), which is higher than
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that of pure [N4111][Tf2N] (0.14 mol/mol, 323 K, 5 MPa) [43]. Additionally, a higher amount of
PEO1000 in [N4111][Tf2N] corresponds to higher CO2 solubility, which is attributed to the strong
interaction between CO2 and PEO. However, Jiang et al. [44] found that increasing the molar fraction
of TEG in [BMIM][BF4]/[BMIM][BF4] + H2O results in a decrease of CO2 solubilities, which is on the
contrary of the result from Lepre et al. [43]. Moreover, with increasing the [BMIM][BF4] contents in
[BMIM][BF4] + TEG mixtures, the Henry’s constant is increased (Table 2) [44]. The Henry’s constant
of [BMIM][BF4] + TEG is higher than [BMIM][BF4] but lower than TEG, indicating that CO2 is more
soluble in [BMIM][BF4]. The CO2 solubilities of [P66614][3-Triz] + TG (30 mol%) and [P66614][4-Triz] + TG
(30 mol%) at 313.15–353.6 K and pressure less than 3 MPa were measured by Fillion et al. [18]. The CO2

solubility of [P66614][4-Triz] + TG (30 mol%) is 2.23 mol/mol at 313.15 K and 3.03 MPa, which is higher
than [P66614][3-Triz] + TG (30 mol%) (1.55 mol/mol, 313.15 K, and 2.68 MPa). [TEPAH][2-MI] combined
with propan-1-ol (NPA) and EG was used for CO2 capture [45]. The result indicates that the CO2

solubility in [TEPAH][2-MI] + NPA + EG can reach up to 1.72 mol/mol, which was much higher than
that of [C3OHmim]Cl + MEA (0.3 mol/mol) [46], AMP + MEA + H2O (0.5 mol/mol) [47], [P66614][Gly]
(1.26 mol/mol) [48], and TETA + AMP + ethanol (1.03 mol/mol) [49].

2.1.3. IL–Amine/Amine Aqueous Solution

Three base-rich diamino ILs of [DMAPAH][Formate], [DMEDAH][Formate], and [DMAPAH]
[Octanoate] were synthesized with different molar ratios of base to acid (0.5:1, 1.0:1, 2.0:1, and 2.5:1,
respectively) and hybrid with MEA for CO2 capture, respectively [30]. According to Table 1 and
Figure 2, the hybrid solvents of the synthesized ILs with an additional MEA showed enhanced CO2

solubility, which agrees with the studies from Zeng et al. [50] and Meng et al. [51] that applied MDEA
and DMEE as the hybrid solvents to [DMAPAH][Ac] and [N1111][Lys], respectively. Among them,
[DMAPAH][Formate] (2.0:1) + MEA (30 wt %) with 6.24 mol/kg was identified to be the best one for CO2

capture. The CO2 capture performance in [BMPyrr][DCA] (5 wt %) + DEA (35 wt %) + H2O (60 wt %)
and [BMPyrr][DCA] (10 wt %) + DEA (30 wt %) + H2O (60 wt %) were studied by Salleh et al. [52] and
compared with DEA (40 wt %) + H2O (60 wt %). The result indicates that the CO2 solubility increases
with increasing the [BMPyrr][DCA] amount in the hybrid solvent. However, the CO2 solubilities of
these two hybrid solvents are lower than those in DEA (40 wt %) + H2O (60 wt %).
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In conclusion, (1) a certain amount of water in ILs (mainly for chemical-based ILs) can enhance
the CO2 solubility, due to the decrease in viscosity and the formation of new products (e.g., carbamate
and bicarbonate). However, excess water in ILs corresponds to a low ILs concentration and results
in the decrease of CO2 solubility; (2) the IL–organic and IL–organic aqueous solution as absorbents
exhibit remarkable CO2 capture performances, including high absorption capacity and low desorption
enthalpy. The organic molecular weight, type, and water content in ILs can affect their CO2 capture
performance. Based on the summarized result, the organic solvent with low molecular weight together
with a certain amount of water is beneficial for capturing CO2; (3) IL–MEA shows better CO2 capture
performance than that of IL–MDEA and IL–DMEE; additionally, the IL–amine based hybrid solvent has
higher CO2 solubility than that of IL–H2O and IL–organic hybrid solvents. The best for each of them
are [DMAPAH][Formate] (2.0:1) + MEA (30 wt %) (6.24 mol/kg, 298 K, 0.1 MPa), [DMAPAH][Formate]
(2.5:1) + H2O (20 wt %) (4.61 mol/kg, 298 K, 0.1 MPa), and [P4444][Pro] + PEG400 (70 wt %) (1.61 mol/kg,
333.15 K, 1.68 MPa). Sometimes, the presence of water in IL–organic/amine hybrid solvents improves
the CO2 solubility.

2.2. Viscosity

2.2.1. IL–H2O

The viscosities of IL–H2O hybrid solvents are given in Table 3. Figure 3 displays the viscosities of
[DEA][Bu] + H2O [14]; the result indicated that the [DEA][Bu] has a strong hygroscopic characteristic.
The viscosity of [DEA][Bu] + H2O decreases with the increase of water content and temperature.
Yasaka et al. found that the viscosities of [P4444][HCOO] + H2O decreased with water contents from 25
(356 mPa·s) to 91 mol% (14.4 mPa·s), corresponding to an increase of the CO2 solubility between the
water conetnt of 25 and 50 mol%, and then, they decrease from 50 to 91 mol%, which is regarded as
the typical property of carboxylate ILs [32]. Aghaie et al. measured the viscosities of [HMIM][Tf2N],
[HMIM][FAP], and [BMIM][Ac] aqueous solutions at 298–333 K, 2 MPa, and water mass percentages
of 0.1, 1, 2, 5, and 10 wt %, respectively [35]. The result indicates that water has a significant effect on
[BMIM][Ac] viscosity, e.g., the viscosity of [BMIM][Ac] decreased from 47.64 (pure IL) to 3.77 (10 wt %
H2O) mPa·s at 333 K. However, for [HMIM][Tf2N] and [HMIM][FAP], their viscosities only slightly
decrease at 0.1–10 wt % water. For example, the viscosity of [HMIM][FAP] at 333 K is 20.72 mPa·s,
while it is 20.47 mPa·s for [HMIM][FAP] + H2O (10 wt %). Additionally, increasing the water amount
in these three ILs results in the decrease of CO2 solubility.
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2.2.2. IL–Organic/Organic Aqueous Solution

For [TETAH][Lys] + H2O + ethanol, it was observed that its viscosity increased with the decrease
amount of ethanol, corresponding to a decreased CO2 solubility [36]. Liu et al. found that the
viscosities of [Cho][Gly] (84.3–7.2 mPa·s), PEG200 (31.8–8.8 mPa·s), and [Cho][Gly] + PEG200 (70 wt %)
(101.3–28.6 mPa·s) are much higher than that of [Cho][Gly]/H2O + PEG200 (30 wt %) (7.96–3.43 mPa·s)
at 308.15–338.15 K [17]. To avoid the decrease of absorption rate by increasing PEG200, less than
30 wt % of PEG200 was recommended to [Cho][Gly] + PEG200 + H2O. The viscosities of [P4444][Gly],
[P4444][Ala], and [P4444][Pro] hybrid with PEG400 were measured at 298.15–393.15 K and 0.1 MPa [41].
The result indicates that the viscosities of these amino-acid ILs + PEG400 are about half with respect to
the pure amino acid ILs at 298.15 K. Chen et al. reported that the viscosity of the [DETAH][Br] + PEG200
(80 wt %) is 71.7 mPa·s at 293.15 K and 0.1 MPa [42]. Despite the viscosities’ increases with the increasing
long-chain polymers, i.e., [N4111][Tf2N] + PEO222 < [N4111][Tf2N] + PEO500 < [N4111][Tf2N] + PEO1000,
[N4111][Tf2N] + PEO1000 was proposed for CO2 capture due to the higher CO2 solubility of the pure
PEO1000 [43]. The viscosities for 18 kinds of ILs (imidazolium- and phosphonium-based) + TG at
different of mole ratio of each of these ILs at 278.15–323.15 K and 0.1 MPa were studied [18], evidencing
that the presence of TG can significantly decrease the viscosity, resulting in about 50 mPa·s for these
hybrid solvents (Table 3).

2.2.3. IL–Amine

As shown in Table 3, the viscosities of the [N1111][Lys] + DMEE and [BMIM][BF4] + DETA hybrid
solvents increased with increasing the content of ILs and decreasing temperature [51,53]. Based on the
study of Meng et al. [51], the viscosity of [N1111][Lys] + DMEE significantly decreased when the IL is
<60 wt % compared to the pure [N1111][Lys].

From Table 3, it can be found that the viscosities of IL-based hybrid solvents are very sensitive
to H2O, organic, and amine solvents. Their viscosities can significantly decrease with the increased
amount of H2O, PEG, TEG, TG, DMEE, and DETA; however, it increases with the increased amount of
methanol. The lowest viscosity obtained from Table 3 for IL–H2O, IL–organic, and IL–amine based
hybrid solvents are [DEA][Bu] + H2O (98.78 mol%) (0.59 mPa·s, 343.15 K), [N1114][Tf2N] + PEO222
(75.06 mol%) (2.57 mPa·s, 353.15 K), and [BMIM][BF4] + DETA (94.9 mol%) (2.68 mPa·s, 353.15 K) at
0.1 MPa, respectively.
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Table 1. CO2 solubility of ionic liquid (IL)-based hybrid solvents.

IL-Based Hybrid Solvents T/K P/MPa CO2 Solubility (mol
CO2/kg Absorbent)

CO2 Solubility (mol
CO2/mol IL) Ref.

IL–H2O

[DMAPAH][Formate] (0.5:1, 1.0:1, 2.0:1, 2.5:1) + H2O (20, 33, 42, 49,
59, 75 wt %) 298.15 0.1 0.41–0.14, 2.73–0.77,

4.23–1.41, 4.61–1.41 [30]

[P4442][Suc] + H2O (3.3, 8.8, 17.6 wt %) 293 0.1 1.9, 1.24, 0.81 [31]
[TMGH][Im] + H2O (1, 2, 3, 5, 7, 10, 15, 20, 25 wt %) 313.15 0.1 3.39–4.23 [12]

[P4444][HCOO] + H2O (29, 32, 38, 50, 66, 70, 73, 79, 86, 91 mol%) 248.75–333.15 0.1 0.01–1 [32]
[BMMIM][Im] + H2O (67, 91, 99, 99.9 mol%) / 2 1.29, 2.30, 0.83, 0.55 0, 0, 0.36, 8.15 [33]

[BMMIM][Im] + H2O (99 mol%) / 1 0.45 [33]
[BMMIM][Ac] + H2O (67, 99.9 mol%) / 2 0, 6.95 [33]

[P4443][Gly] + H2O (59.9, 80.1, 90, 95 wt %) 278.09–348.10 0.103–7.53 0.091–2.44 0.23–12.13 [34]
[HMIM][Tf2N] + H2O (0.1, 1, 2, 5, 10 wt %) 298–333 2 0.30–0.13 [35]
[HMIM][FAP] + H2O (0.1, 1, 2, 5, 10 wt %) 298–333 2 0.48–0.14 [35]
[BMIM][Ac] + H2O (0.1, 1, 2, 5, 10 wt %) 298–323 2 0.46–0.32 [35]

[Cho][Gly] + H2O (70 wt %) 308.15–338.15 0.0046–0.68 0.36–1.24 0.21–0.74 [17]

IL–organic/organic aqueous solution

[TETAH][Lys] + ethanol + H2O
(H2O:ethanol = 8:2, 6:4, 5:5, 4:6, 3:7, 2:8 v:v) 303 0.1 2.45–1.53 [36]

[AMIM][Tf2N] + methanol (20, 50, 80 wt %) 313.2–353.2 0.98–6.19 2.15–3.89 [39]
[Cho][Gly] (30 wt %) + PEG200 (10 wt%) + H2O (60 wt %) 308.15–338.15 0.0054–0.68 0.37–1.22 0.22–0.72 [17]
[Cho][Gly] (30 wt %) + PEG200 (20 wt%) + H2O (50 wt %) 308.15–338.15 0.0039–0.68 0.41–1.21 0.24–0.72 [17]
[Cho][Gly] (30 wt %) + PEG200 (30 wt%) + H2O (40 wt %) 308.15–338.15 0.0065–0.68 0.41–1.23 0.24–0.73 [17]

[Cho][Pro] + PEG200 (50, 67, 75 wt %) 308.15–353.15 0.0041–0.11 0.099–0.61 [40]
[P4444][Gly] + PEG400 (70 wt %) 333.15–413.15 0.088–1.7 0.19–1.58 0.19–1.23 [41]
[P4444][Ala] + PEG400 (70 wt %) 333.15–413.15 0.093–1.7 0.11–1.57 0.11–1.26 [41]
[P4444][Pro] + PEG400 (70 wt %) 333.15–413.15 0.096–1.71 0.15–1.61 0.17–1.41 [41]

[DETAH][Br] + PEG200 (80 wt %) 293.15 0.1 1.18 [42]
[DETAH][Br] + PEG300 (80 wt %) 293.15 0.1 0.87 [42]
[DETAH][Br] + PEG400 (80 wt %) 293.15 0.1 0.32 [42]

[DETAH][BF4] + PEG200 (80 wt %) 293.15 0.1 0.65 [42]
[DETAH][Br] + PEG200 + H2O (1.3, 4.7 wt %) 293.15 0.1 1.05, 1.18 [42]

[N1114][Tf2N] + PEO1000 (10.44, 28.27, 50.22, 75.31 mol%) 323, 343 0.02–0.5 0.0057–1.16 [43]
[BMIM][BF4] + TEG (20, 50, 80 mol%) 273.15–353.15 0.42–3.55 0.051–1.72 [44]
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Table 1. Cont.

IL-Based Hybrid Solvents T/K P/MPa CO2 Solubility (mol
CO2/kg Absorbent)

CO2 Solubility (mol
CO2/mol IL) Ref.

[BMIM][BF4] (56 mol%) + TEG (14 mol%) + H2O (30 mol%) 293.15–333.15 0.38–4.17 0.051–0.96 [44]
[BMIM][BF4] (35 mol%) + TEG (35 mol%) + H2O(30 mol%) 293.15–333.15 0.57–4.37 0.079–1.4 [44]
[BMIM][BF4] (14 mol%) + TEG (56 mol%) + H2O(30 mol%) 293.15–333.15 0.64–4.46 0.15–1.84 [44]

[P66614][3-Triz] + TG (30 mol%) 313.15–353.6 0.037–2.75 0.06–1.55 [18]
[P66614][4-Triz] + TG (30 mol%) 313.15–353.6 0.07–3.03 0.075–2.23 [18]

[TEPAH][2-MI] + NPA + EG 303.15 0.1 1.72 [45]

IL-amine/amine aqueous solution

[BMPyrr][DCA] (5 wt %) + DEA (35 wt%) + H2O (60 wt %) 333.15 0.5–0.7 0.49–0.71 [52]
[BMPyrr][DCA] (10 wt %) + DEA (30wt%) + H2O (60 wt %) 333.15 0.5–0.7 0.58–0.81 [52]

[DMAPAH][Formate] (1.0:1, 2.5:1) + MEA 298.15 0.1 3.82, 4.52 [30]
[DMEDAH][Formate] (1.0:1, 2.5:1) + MEA 298.15 0.1 3.52, 4.07 [30]

[DMAPAH][Formate] (0.5:1, 1.0:1, 2.0:1, 2.5:1) + MEA (30 wt %) 298.15 0.1 2.85, 4.57, 6.24, 5.89 [30]
[DMAPAH][Octanoate] (0.5:1, 1.0:1, 2.0:1, 2.5:1) + MEA (30 wt %) 298.15 0.1 2.29, 2.69, 3.30, 3.65 [30]

[DMAPAH][Ac] + MDEA
(20, 33, 43, 50, 60, 67, 80 mol%) 308.15 0.0–3.0 0–3.13 [50]

[DMAPAH][Ac] + MDEA (50 mol%) 298.15–328.15 0.0–3.0 0–3.21 [50]
[N1111][Lys] + DMEE (95, 90, 80, 60, 40 wt %) 303 0.1 0.28–1.69 1.22–0.61 [51]

[N1111][Lys] + DMEE (80 wt %) 313, 323 0.1 0.76, 0.72 [51]

The CO2 solubility unit with mole scale for reference [45] is mol CO2/mol absorbent, while in [52] is mol CO2/mol amine.

Table 2. Henry’s constant of IL-based hybrid solvents.

IL-Based Hybrid Solvents T (K) Henry’s Constant (MPa) Ref.

IL–H2O

[P4443][Gly] + H2O (59.9, 80.1, 90%, 95 wt %) 278.14–348.05 2.8–5.05, 1.53–3.3, 0.87–2.81, 0.35–1.03 [34]
[Cho][Gly] + H2O (70 wt %) 308.15–338.15 40.56–58 [17]

IL–organic

[Cho][Gly] (30 wt %) + PEG200 (10 wt %) + H2O (60 wt %) 308.15–338.15 36.6–52.2 [17]
[Cho][Gly] (30 wt %) + PEG200 (20 wt %) + H2O (50 wt %) 308.15–338.15 33–47.03 [17]
[Cho][Gly] (30 wt %) + PEG200 (30 wt %) + H2O (40 wt %) 308.15–338.15 31.49–46.79 [17]

[BMIM][BF4] + TEG (20, 50, 80 mol%) 273.15–353.15 4.84–20.02, 5.65–22, 6.48–27.63 [44]
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Table 3. Viscosity of IL-based hybrid solvents.

IL-Based Hybrid Solvents T/K P/MPa Viscosity (mPa·s) Ref.

IL-H2O

[DEA][Bu] + H2O (98.78, 95.49, 90.01, 85.7, 79.49, 69.36, 51.21, 33.16, 2.6 mol%) 283.15–343.15 0.1
2.24–0.59, 6.91–1.10, 19.26–2.25, 32.03–3.24,

56.72–4.81, 106.48–7.09, 158.58–9.28,
158.29–9.64, 130.18–8.70

[14]

[P4444][HCOO] + H2O (25, 50, 60, 74, 80, 91 mol%) 298.15 0.1 356, 146, 97, 48, 35.3, 14.4 [32]

[HMIM][Tf2N] + H2O (0.1, 1, 2, 5, 10 wt %) 298–333 2 69.18–18.6, 66.54–18.2, 63.71–17.54,
55.95–15.7, 45.05–13.01 [35]

[HMIM][FAP] + H2O (0.1, 1, 2, 5, 10 wt %) 298–333 2 88.09–20.71, 84.54–20.70, 80.76–20.66,
70.4–20.6, 56.01–20.47 [35]

[BMIM][Ac] + H2O (0.1, 1, 2, 5, 10 wt %) 298–333 2 389–45.30, 225.86–30.04, 135.5–20.45,
44.08–8.78, 14.34–3.77 [35]

IL–organic/organic aqueous solution

[TETAH][Lys] + ethanol + H2O (H2O:ethanol = 8:2, 6:4, 5:5, 4:6, 3:7, 2:8 v:v) 303 0.1 2.57, 3.00, 3.50, 3.81, 3.74, 3.51 [36]
[Cho][Gly] + PEG200 (70 wt %) 308.15–338.15 0.1 101.3–28.6 [17]

[Cho][Gly]/H2O + PEG200 (30 wt %) 308.15, 338.15 0.1 7.96, 3.43 [17]
[P4444][Gly] + PEG400 (70 wt %) 298.15–393.15 0.1 180.47–8.96 [41]
[P4444][Ala] + PEG400 (70 wt %) 298.15–393.15 0.1 216.64–9.13 [41]
[P4444][Pro] + PEG400 (70 wt %) 298.15–393.15 0.1 481–14.1 [41]

[DETAH][Br] + PEG200 (80 mol%) 293.15 0.1 71.7 [42]
[N1114][Tf2N] + PEO222 (26.23, 50.07, 75.06 mol%) 293.15–353.15 0.1 135.22–2.57 [43]
[N1114][Tf2N] + PEO500 (20.90, 44.22, 70.40 mol%) 293.15–353.15 0.1 135.22–7.51 [43]
[N1114][Tf2N] + PEO1000 (25.04, 50.22, 75.31 mol%) 318.15–353.15 0.1 51.72–17.22 [43]

[P66614][4-NO2imid] + TG (18.9, 40.4 mol%) 278.15–323.15 0.1 1503–57 [18]
[P66614][4,5-CNimid] + TG (20.1, 40.1 mol%) 278.15–323.15 0.1 1051–63 [18]

[P66614][Tf2N] + TG (19.1, 36.6, 55.9, 66.4 mol%) 278.15–323.15 0.1 589–51 [18]
[P66614][2-CH3,5-NO2imid] + TG (15.1, 39.9 mol%) 278.15–323.15 0.1 2535–57 [18]
[P66614][DCA] + TG (9.9, 20.3, 29.9, 50.1, 65.2 mol%) 278.15–323.15 0.1 1130–54 [18]
[HMIM][Tf2N] + TG (9.9, 19, 27.6, 41.3, 54.4 mol%) 278.15–293.15 0.1 171–50 [18]

[P66614][BrBnIm] + TG (10.2, 13.8, 21.8, 34.6, 47.8, 63.8 mol%) 278.15–323.15 0.1 4400–51 [18]
[P66614][Ac] + TG (10.3, 20.7, 29.9, 40, 49.9 mol%) 278.15–323.15 0.1 1130–57 [18]

[HMMIM][Tf2N] + TG (10.2, 20.5, 30.6, 39.9, 49.9, 59.9 mol%) 278.15–323.15 0.1 370–48 [18]
[P66614][4-Triz] + TG (4.6, 12.6, 19.6, 24.9, 30.6, 39, 48.4, 58.2 mol%) 278.15–323.15 0.1 3290–53 [18]

[P66614][3-Triz] + TG (8.3, 12.2, 20.7, 31, 39.8, 50.1, 70 mol%) 278.15–323.15 0.1 1180–51 [18]
[P44412][3-Triz] + TG (6.2, 12.3, 15.5, 21.4, 30.5, 39.5, 49.5, 59.6 mol%) 278.15–323.15 0.1 1980–57 [18]
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Table 3. Cont.

IL-Based Hybrid Solvents T/K P/MPa Viscosity (mPa·s) Ref.

[P2228][4-NO2pyra] + TG (5.1, 10.2, 19.9, 30, 40.4, 50.3 mol%) 278.15–323.15 0.1 1010–55 [18]
[P2228][4-NO2imid] + TG (10, 20, 30.1, 40.1, 50.1 mol%) 278.15–323.15 0.1 700–55 [18]

[P2228][2-CH3,5-NO2imid] + TG (3.6, 6.7, 11.5, 23.3, 30, 39.9, 50, 59.8 mol%) 278.15–323.15 0.1 2730–51 [18]
[mm(butene)im][4-NO2pyra] + TG (4.8, 10, 19.9, 29.9, 39.9, 50, 60 mol%) 278.15–323.15 0.1 4300–51 [18]

[P2224][2-CH3,5-NO2imid] + TG (4.8, 10.2, 20.1, 29.9, 40.1, 50.1 mol%) 278.15–323.15 0.1 1540–57 [18]
[pmmim][4-NO2pyra] + TG (5, 10, 20.1, 30.2, 39.9, 49.9, 60 mol%) 278.15–323.15 0.1 5420–59 [18]

[TEPAH][2-MI] + NPA + EG 303.15 0.1 3.66 [45]

IL–amine

[N1111][Lys] + DMEE (95, 90, 80, 60, 40 wt %) 303–333 0.1 12.09–4.88, 20.70–6.98, 30.00–9.30, 80.46–20,
101.86–25.35 [51]

[BMIM][BF4] + DETA (94.9, 80.14, 70.02, 60.05, 50.08, 40.95, 30.26, 19.88, 10.52,
5.04 mol%) 298.15–333.15 0.1

6.71–2.68, 12.1–4.89, 17.35–6.69, 23.66–8.72,
31.54–11.19, 40.07–13.88, 52.59–17.57,
67.10–21.30, 82.58–24.18, 91.94–24.54

[53]
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3. DESs-Based Hybrid Solvents

The CO2 solubility data for 33 kinds of DESs-based hybrid solvents, together with viscosities for
six types of DESs-based hybrid solvents since 2016, and Henry’s constants for 21 kinds of DES-based
hybrid solvents since 2013 have been reported, as summarized in Tables 4 and 5. The full names of the
studied components of DESs are given in Table S1.

3.1. CO2 Solubility

3.1.1. DES–H2O

The CO2 solubility of DESs using water as a hybrid solvent was investigated by Sarmad et al. at
298.15 K and pressure up to 2 MPa (Table 4) [9]. From this study, the CO2 solubility of DES-based hybrid
solvents can be affected by four factors. (1) The first is pressure: the CO2 solubility increased with
the increasing pressure. For instance, the CO2 solubility of [TEMA][Cl]-GLY-H2O 1:2:0.11 increased
from 0.025 to 0.66 mol/kg at a pressure range of 0.14 to 1.74 MPa. (2) The second factor is the mole
ratio of water: the CO2 solubility of [TEMA][Cl]-GLY-H2O 1:2:0.05 first decreased at pressure range of
0.23–0.85 MPa, and then, it increased from 1.25 to 1.98 MPa compared with [TEMA][Cl]-GLY 1:2. Upon
increasing the mole ratio of water, the CO2 solubility of [TEMA][Cl]-GLY-H2O 1:2:0.11 significantly
enhanced with respect to [TEMA][Cl]-GLY 1:2 and [TEMA][Cl]-GLY-H2O 1:2:0.05. This result agrees
with the DES-based hybrid solvent of [BTMA][Cl]-GLY-H2O 1:2:0.011 and 1:2:0.05. (3) The third factor
is the type of hydrogen bond acceptor (HBA)—for example, the CO2 solubility of [TEMA][Cl]-GLY-H2O
1:2:0.05 (1.98 MPa, 0.66 mol/kg) > [BTMA][Cl]-GLY-H2O 1:2:0.05 (2.02 MPa, 0.29 mol/kg).

Harifi-Mood et al. investigated the Henry’s constants for [Ch][Cl]-EG aqueous solution at
temperatures of 303.15–323.15 K [54]. As shown in Table 5, the results indicate that the Henry’s
constant of CO2 increases with increasing water amount in the absorbent, corresponding to a decrease
of CO2 solubility. This result agrees with the measured Henry’s constants of [Ch][Cl]-EG, [Ch][Cl]-GLY,
and [Ch][Cl]-MA aqueous solution from 303.15 to 313.15 K by Lin et al. [55].

3.1.2. DES–Organic

The CO2 solubilities in DESs–organic hybrid solvents are given in Table 4. The result indicates
that the addition of 0.03 mol of acetic acid in [MTPP][Br]-LEV 1:3 significantly enhanced the CO2

solubility and decreased the viscosity compared with [MTPP][Br]-LEV 1:3 [9].
A superbase can participate in the reaction of DES and CO2, thus increasing the CO2 solubility.

Bhawna et al. studied the CO2 solubility by three hybrid superbases of TBD, DBN, and DBU with
DESs of [Ch][Cl]-Urea 1:2 and [Ch][Cl]-EG 1:2, respectively [25]. The result indicates that all of these
three superbases can enhance the CO2 solubility, and among them, TBD has the highest capacity,
followed by DBU and DBN. The further addition of glycerol in these hybrid solvents decreased the
CO2 solubility. For the effect of these three superbases on different male ratio of DESs, it is found that
[Ch][Cl]-MEA 1:2 + DBN (5.11 mol/kg) > [Ch][Cl]-MEA + TBD 1:4 (3.91 mol/kg) > [Ch][Cl]-MEA
1:2 + DBU (3.54 mol/kg). Additionally, the same phenomenon was observed that the addition of
glycerol in these [Ch][Cl]-MEA-based hybrid solvents can decrease the CO2 solubility.

An imidazole (Im)-derived DESs of [BMIM][Cl]-Im was synthesized for CO2 capture by hybrid
with DBN [56]. These hybrid solvents show remarkable CO2 capture capacity up to 1.00 mol/mol,
following the order of DBN-[BMIM][Cl]-Im 1:1:2 > DBN-[BMIM][Cl]-Im 1:1:1 > DBN-[BMIM][Cl]-Im
1:2:1. The theoretical calculation indicates that DBN plays a key role in the absorption process by
forming a strong hydrogen bond with the derived [BMIM+-COO−].

In conclusion, the obtained best DES–H2O hybrid solvent is [TEMA][Cl]-GLY-H2O 1:2:0.11
(0.66 mol/kg, 298 K, 1.74 MPa), while it is [Ch][Cl]-MEA 1:2 + DBN 1:1 (5.11 mol/kg, 298 K, 0.1 MPa)
for DES–organic hybrid solvent. These values are lower than the best IL–H2O and IL–organic hybrid
solvents, respectively.
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Table 4. CO2 solubilities and viscosities of deep eutectic solvent (DES)-based hybrid solvents.

DES-Based Hybrid Solvents Amount/
Ratio Temperature (K) Pressure

(MPa)
CO2 Solubility (mol

CO2/kg DES)
CO2 Solubility (mol

CO2/mol DES) Viscosity (mPa·s) Ref.

DES–H2O

[BHDE][Cl]-GLY-H2O 1:3:0.11 298.15 0.23–2.02 0.037–0.21 32.76–17.11 [9]
[BTMA][Cl]-GLY-H2O 1:2:0.05 298.15 0.21–2.02 0.044–0.29 70.76–26.81 [9]
[BTMA][Cl]-GLY-H2O 1:2:0.11 298.15 0.26–2.03 0.016–0.33 22.19–14.41 [9]
[TEMA][Cl]-GLY-H2O 1:2:0.05 298.15 0.23–1.98 0.009–0.66 90.98–23.56 [9]
[TEMA][Cl]-GLY-H2O 1:2:0.11 298.15 0.14–1.74 0.025–0.66 48.63–19.31 [9]

[L-Arg]-GLY 1:6-H2O 10, 20, 30, 40,
50, 60 wt % 303.15–353.15 0.1

434.2–26.3,
179.3–19.5,

45.2–7.2, 17.7–4.4,
8.0–3.6, 4.6–3.0

[57]

DES–organic

[Ch][Cl]-GLY-AC 1:1:1 298.15 0.26–2.01 0.052–0.43 138.51–28.81 [9]
[MTPP][Br]-LEV-AC 1:3:0.03 298.15 0.29–2.06 0.18–1.32 40.12–16.16 [9]

[Ch][Cl]-Urea 1:2 + TBD 1:10 333.15 0.1 0.42 0.68 [25]
[Ch][Cl]-Urea 1:2 + DBU 1:10 333.15 0.1 0.56 1.21 [25]
[Ch][Cl]-Urea 1:2 + DBN 1:10 333.15 0.1 0.76 1.11 [25]

[Ch][Cl]-Urea 1:2-GLY + TBD 5:40:10 333.15 0.1 0.4 0.66 [25]
[Ch][Cl]-Urea 1:2-GLY + DBU 5:40:10 333.15 0.1 0.45 0.81 [25]
[Ch][Cl]-Urea 1:2-GLY + DBN 5:40:10 333.15 0.1 0.27 0.40 [25]

[Ch][Cl]-EG 1:2 + DBU 1:10 333.15 0.1 0.7 1.16 [25]
[Ch][Cl]-EG 1:2 + DBN 1:10 333.15 0.1 0.77 1.06 [25]
[Ch][Cl]-EG 1:2 + TBD 1:10 333.15 0.1 0.63 0.95 [25]

[Ch][Cl]-EG 1:2-GLY + DBU 5:40:10 333.15 0.1 0.68 1.16 [25]
[Ch][Cl]-EG 1:2 + DBU 1:10 298.15 0.1 0.83 1.41 [25]
[Ch][Cl]-EG 1:2 + DBN 1:10 298.15 0.1 0.86 1.19 [25]
[Ch][Cl]-EG 1:2 + TBD 1:10 298.15 0.1 0.76 1.17 [25]

[Ch][Cl]-EG 1:2-GLY + DBU 5:40:10 298.15 0.1 0.64 1.12 [25]
[Ch][Cl]-EG 1:2-GLY + DBN 5:40:10 298.15 0.1 0.74 1.05 [25]
[Ch][Cl]-EG 1:2-GLY + TBD 5:40:10 298.15 0.1 0.73 1.17 [25]

[Ch][Cl]-MEA 1:2 + DBU 1:10 298.15 0.1 3.54 2.86 [25]
[Ch][Cl]-MEA 1:2 + DBN 1:10 298.15 0.1 5.11 6.70 [25]
[Ch][Cl]-MEA 1:4 + TBD 1:10 298.15 0.1 3.91 5.77 [25]

[Ch][Cl]-MEA 1:2-GLY + DBU 5:40:10 298.15 0.1 3.26 5.46 [25]
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Table 4. Cont.

DES-Based Hybrid Solvents Amount/
Ratio Temperature (K) Pressure

(MPa)
CO2 Solubility (mol

CO2/kg DES)
CO2 Solubility (mol

CO2/mol DES) Viscosity (mPa·s) Ref.

[Ch][Cl]-MEA 1:2-GLY + DBN 5:40:10 298.15 0.1 1.67 2.28 [25]
[Ch][Cl]-MEA 1:2-GLY + TBD 5:40:10 298.15 0.1 3.63 5.56 [25]

[BMIM][Cl]-Im + DBN 1:1:1 298.15–328.15 0.1 0.81–1.02 [56]
[BMIM][Cl]-Im + DBN 1:1:2 298.15–328.15 0.1 0.88–0.97 [56]
[BMIM][Cl]-Im + DBN 1:2:1 298.15–328.15 0.1 0.91–1.07 [56]

The ratio of DES–organic for reference [9] is mole ratio, while in [25] is volume ratio.

Table 5. Henry’s constant of DES–H2O hybrid solvents.

DES-H2O T (K) Henry’s Constant Ref.

[Ch][Cl]-EG + H2O (10, 20, 30, 40, 50, 60, 70, 80, 90 mol%) 303.15–313.15 27–296 [54]
[Ch][Cl]-EG + H2O (20, 40, 60, 80 wt %) 303.15–313.15 3965.5–2805.5 [55]

[Ch][Cl]-GLY + H2O (20, 40, 60, 80 wt %) 303.15–313.15 3818.8–3185.2 [55]
[Ch][Cl]-MA + H2O (20, 40, 60, 80 wt %) 303.15–313.15 4021.6–2946.2 [55]

The Henry’s constant unit in reference of [54] is MPa, while it is kPa·m3
·kmol−1 for reference [55].
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3.2. Viscosity

The DESs consisting of glycerol as the hydrogen bond donor (HBD) exhibited high viscosity.
Meanwhile, their viscosities increased considerably with an increase in the amount of dissolved CO2.
As shown in Table 4, using water as a hybrid solvent in glycerol-based DESs can significantly decrease
the viscosity of the DES [9]. For example, the viscosity of [BTMA][Cl]-GLY 1:2 decreased from 1017.67 to
70.76 mPa·s when adding a 0.05 molar ratio of water in [BTMA][Cl]-GLY 1:2 (i.e., [BTMA][Cl]-GLY-H2O
1:2:0.05), but limiting the contribution of H2O to CO2 solubility. Meanwhile, increasing the water
content of 0.11 mol in [BTMA][Cl]-GLY 1:2 results in a considerably reduced viscosity, which agrees
with the results in the [TEMA][Cl]-GLY-H2O system. Additionally, the addition of 0.11 mol of water
to the DES of [BHDE][Cl]-GLY 1:3 decreased the viscosity from 32.76 to 17.11 mPa·s at 298.15 K and
0.23–2.02 MPa, and it increased the CO2 solubility from 0.037 to 0.21 mol/kg. The viscosity of the
[L-Arg]-GLY 1:6 as a function of water content from 0 to 60 wt % was measured, which indicates that
viscosity of the DES decreased sharply with the increase of water contents, giving an option to lower
the viscosity [57].

In a word, adding water and organic solvents in DES can significantly decrease the viscosity.

4. Comparison of CO2 Solubility and Viscosity

The obtained best candidates of IL–H2O, IL–organic, IL–amine, DES–H2O, and DES–organic
hybrid solvents were compared with each other and their pure ILs and DESs (Figure 4). As shown in
Figure 4, for either the IL-based or DES-based hybrid solvents, their CO2 solubilies are higher than their
pure IL/DES under the same condition. For example, the CO2 solubility of [DMAPAH][Formate] (2.5:1)
+ H2O (20 wt %) is 4.61 mol/kg at 298 K and 0.1 MPa, while it is 2.32 mol/kg for [DMAPAH][Formate]
(2.5:1). This result indicates that IL/DES-based hybrid solvents are remarkable ones for CO2 capture.
Additionally, the IL-based hybrid solvent shows better CO2 capture performance compared with the
DES-based hybrid solvent, as shown in Figure 4. Figure 5 gives the comparison of viscosities for these
IL/DES-based hybrid solvents and pure IL and DES at 333.15 K and 0.1 MPa. As shown in Figure 5, the
addition of hybrid solvents can significantly decrease the viscosity compared to pure ILs and DESs,
which are beneficial to accelerate mass transfer during capturing CO2.
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Viscosity is the key factor for impeding the mass transfer of gas in absorbent [58]. For example,
Gómez-Coma et al. investigated the viscosity and mass transfer performance of [EMIM][Ac] + H2O
for CO2 capture [59], finding that the viscosity of [EMIM][Ac] + H2O decreased from 150 to 20 mPa·s
with the increase of water content from 0–40 wt %. For the mass transfer coefficient, it is first increased
from 1.7 × 10−5 to 9.34 × 10−5 m·s−1 with the increasing of water from 0 to 30 wt % in [EMIM][Ac] and
then decreased to 6.81 × 10−5 m·s−1 when water content up to 40 wt %. Huang et al. evidenced that
the low viscosity of IL–MEA aqueous solution corresponds to a high mass transfer performance [60],
i.e., [EMIM][Br] (20 wt %) + MEA (5 wt %) + H2O (75 wt %) (11.57 × 106 mol·m−3

·s−1
·Pa−1,

1.23 mPa·s) > [BMIM][Br] (20 wt %) + MEA (5 wt %) + H2O (75 wt %) (11.04 × 106 mol·m−3
·s−1
·Pa−1,

1.3 mPa·s) > [EMIM][Br] (30 wt %) + MEA (5 wt %) + H2O (65 wt %) (9.86 × 106 mol·m−3
·s−1
·Pa−1,

1.42 mPa·s) > [BMIM][Br] (30 wt %) + MEA (5 wt %) + H2O (65 wt %) (9.67 × 106 mol·m−3
·s−1
·Pa−1,

1.6 mPa·s). A similar phenomenon can be found in DESs hybrid solvent. Ma et al. indicated that a
small amount of water in [BTMA][Cl]-GLY 1:2 not only decreases the viscosity but also improves the
CO2 solubility due to the increase of the mass transfer [61], while excess water in [BTMA][Cl]-GLY 1:2
results in a decrease of CO2 solubility, which is in agreement with Li et al. [12].

5. Conclusions

This review summarizes the research work on developing ILs/DESs-based hybrid solvents
(i.e., IL–H2O, IL–organic/organic aqueous solution, IL–amine, DES–H2O, and DES–organic) for CO2

capture, including CO2 solubility, Henry’s constant, and viscosity. The results illustrate that the addition
of hybrid solvents to ILs and DESs can decrease the viscosity and enhance the CO2 solubility. IL–amine
based hybrid solvents are super to IL–H2O and IL–organic/organic aqueous solution, and some
of the IL-based hybrid solvents show better performance than that of DES-based hybrid solvents.
Additionally, some of the IL/DES hybrid solvents have higher CO2 solubility compared to their pure
IL/DES, indicating that the addition of hybrid solvent to IL/DES is possible to develop greener and
more efficient absorbents for CO2 capture. To develop the efficient IL/DES hybrid solvents for CO2

capture, the following aspects are suggested for consideration to decrease the viscosity and increase the
CO2 solubility: (1) hybrid of functional ILs/DESs that have high CO2 solubilities with a certain amount
of water; (2) the addition of organic solvent which has a small molecular weight to the ILs/DESs; and (3)
applying amine solvent which has good CO2 capture capacity to ILs and DESs.
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