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Abstract: In contrast to zero-dimensional (0D), one-dimensional (1D), and even their bulk equivalents,
in two-dimensional (2D) layered materials, charge carriers are confined across thickness and are
empowered to move across the planes. The features of 2D structures, such as quantum confinement,
high absorption coefficient, high surface-to-volume ratio, and tunable bandgap, make them
an encouraging contestant in various fields such as electronics, energy storage, catalysis, etc. In this
review, we provide a gentle introduction to the 2D family, then a brief description of transition metal
dichalcogenides (TMDCs), mainly focusing on MoS2, followed by the crystal structure and synthesis
of MoS2, and finally wet chemistry methods. Later on, applications of MoS2 in dye-sensitized, organic,
and perovskite solar cells are discussed. MoS2 has impressive optoelectronic properties; due to the
fact of its tunable work function, it can be used as a transport layer, buffer layer, and as an absorber
layer in heterojunction solar cells. A power conversion efficiency (PCE) of 8.40% as an absorber
and 13.3% as carrier transfer layer have been reported for MoS2-based organic and perovskite solar
cells, respectively. Moreover, MoS2 is a potential replacement for the platinum counter electrode
in dye-sensitized solar cells with a PCE of 7.50%. This review also highlights the incorporation of
MoS2 in silicon-based heterostructures where graphene/MoS2/n-Si-based heterojunction solar cell
devices exhibit a PCE of 11.1%.
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1. Introduction

The house of 2D layered materials [1] has gained appreciable attention over the last few years,
starting with the first segregation of graphene from a bulk counterpart, i.e., graphite [2]. The disclosure
of every new material leads to enthusiasm and mystery because of the contrasting properties of
these 2D materials from their bulk counterparts. Moreover, the fascinating 2D library is increasing
in size every year and attributes a surplus of 150 exotic materials that can easily be cleaved into
sub-nanometer 2D monolayers [3–6]. These 2D materials [7] include transition metal dichalcogenides
(TMDCs), e.g., WSe2, MoS2, WS2, hexagonal boron nitride (h-BN), silicene (2D silicone), germanen
(2D germanium), borophene (2D boron), and MXenes (2D carbides/nitrides) [8–11]. In Figure 1,
a publication list of 2D materials charted by year depicts an intensified craze of probing TMDCs.
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Figure 1. The number of publications for 2D materials reporting from 2004 to 2014 [12]. 

Two-dimensional layered materials are highly crystalline and have an elevated ratio of their 
lateral size (1~10,000 µm) to the thickness value (< 1 nm) [13]. Two-dimensional materials have a 
layered structure with strong covalent intralayer bonding and relatively delicate interlayer van der 
Waals forces [3]. The layered structure of 2D materials permits efficient electronic properties and 
conductivity is prevalent along with the layers than between the layers, normally three or four folds 
of magnitude [13–15]. The disclosure of graphene and its distinctive properties in 2004 [16] 
introduced scientific insurgency where afterward a large number of more layered materials were 
exfoliated in 2D structures in a combination of elements highlighted in Figure 2a. 

Graphene protruded from the other 2D materials because of its quirky properties like exclusive 
electronic band structure, high transparency with 0 eV bandgap, and thermal conductivity (3000–
5000 Wm−1K−1) [17]. These unique properties enabled graphene to be a significant applicant in place 
of indium tin oxide (ITO)—that is transparent conductive oxide (TCO) thoughtfully applied in liquid 
crystal displays and LEDs, etc. Indium Tin Oxide (ITO) lost its performance due to the fact of 
flexibility shortfall and insufficient indium [18]. 

However graphene is a semimetal with zero bandgap, and in this scenario, one can say that other 
2D materials, particularly TMDCs, have what graphene does not: a bandgap range of 1.2 to 1.8 eV 
[19], which admirably corresponds to solar spectrum and analogs to ongoing industrial needs in 
photovoltaic, e.g., Si (1.1 eV), CdTe (1.5 eV) or GaAs (1.4 eV). The upcoming generations of 
nanoelectronics require a discourse of the enhancing desire of reducing the size of elements in the 
circuit but not the quality. Due to the usage of monoatomic thin layers of 2D materials and their fine 
quality, it is possible to control electrostatic conductivity more efficiently. Moreover, the charge 
carrier scattering is reduced in 2D materials as compared to their bulk counterpart, owing to the 
reduced number of dandling bonds [20]. Two-dimensional materials are functional in 
electrochemistry having a high surface-to-volume ratio [21]. 

The sinking compact diameter of layered 2D materials would result in reduced volume, trimmed 
mass, and eventually the low cost of several devices in many different fields. Layered 2D materials 
have numerous applications in various domains based on their optoelectric character like in solar 
cells, photonics, protective light-absorbing layers, spintronics, conductive displays, and valleytronics, 
etc. [22,23]. As, vigorous attention has been paid to graphene from last many years and many review 
articles are available in literature so here we directly jump to layered TMDCs in this review article, 
detailing MoS2 and its incorporation in solar cell devices. 
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Two-dimensional layered materials are highly crystalline and have an elevated ratio of their
lateral size (1~10,000 µm) to the thickness value (<1 nm) [13]. Two-dimensional materials have
a layered structure with strong covalent intralayer bonding and relatively delicate interlayer van der
Waals forces [3]. The layered structure of 2D materials permits efficient electronic properties and
conductivity is prevalent along with the layers than between the layers, normally three or four folds of
magnitude [13–15]. The disclosure of graphene and its distinctive properties in 2004 [16] introduced
scientific insurgency where afterward a large number of more layered materials were exfoliated in 2D
structures in a combination of elements highlighted in Figure 2a.

Graphene protruded from the other 2D materials because of its quirky properties like
exclusive electronic band structure, high transparency with 0 eV bandgap, and thermal conductivity
(3000–5000 Wm−1K−1) [17]. These unique properties enabled graphene to be a significant applicant
in place of indium tin oxide (ITO)—that is transparent conductive oxide (TCO) thoughtfully applied
in liquid crystal displays and LEDs, etc. Indium Tin Oxide (ITO) lost its performance due to the fact of
flexibility shortfall and insufficient indium [18].

However graphene is a semimetal with zero bandgap, and in this scenario, one can say that
other 2D materials, particularly TMDCs, have what graphene does not: a bandgap range of 1.2 to
1.8 eV [19], which admirably corresponds to solar spectrum and analogs to ongoing industrial needs
in photovoltaic, e.g., Si (1.1 eV), CdTe (1.5 eV) or GaAs (1.4 eV). The upcoming generations of
nanoelectronics require a discourse of the enhancing desire of reducing the size of elements in the
circuit but not the quality. Due to the usage of monoatomic thin layers of 2D materials and their fine
quality, it is possible to control electrostatic conductivity more efficiently. Moreover, the charge carrier
scattering is reduced in 2D materials as compared to their bulk counterpart, owing to the reduced
number of dandling bonds [20]. Two-dimensional materials are functional in electrochemistry having
a high surface-to-volume ratio [21].

The sinking compact diameter of layered 2D materials would result in reduced volume,
trimmed mass, and eventually the low cost of several devices in many different fields. Layered 2D
materials have numerous applications in various domains based on their optoelectric character
like in solar cells, photonics, protective light-absorbing layers, spintronics, conductive displays,
and valleytronics, etc. [22,23]. As, vigorous attention has been paid to graphene from last many years
and many review articles are available in literature so here we directly jump to layered TMDCs in this
review article, detailing MoS2 and its incorporation in solar cell devices.
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Figure 2. The house of the 2D family. (a) The spotlighted elements of the periodic table form’s most 
popular two-dimensional layered materials. (b,c) Classification of the 2D material’s family and the 
family of Transition Metal Dichalcogenides (TMDCs), respectively. (d) Layered structure of MoS2 
following the generic formula of MX2 in TMDCs. 

2. Transition Metal Dichalcogenides (TMDCs) 

Layered 2D transition metal dichalcogenides contain a prodigious number of crystals and are 
represented by the general formula of MX2 where M is a transition metal from groups IV B, V B, VI 
B, VII B (Ti, Zr, Hf, V, Nb, Ta, Mo, W, Tc, Re) and X is a chalcogen element from group VI A (S, Se, 
Te) [4,24,25]. Figure 2b shows the general classification of 2D family. Depending upon the layer 
number, elemental conjunction, and presence or absence of dopant, TMDs exhibit a bandgap ranging 
from 0 to 2 eV, unlike the pure graphene which is a semimetal with 0 eV bandgap [21,23,26]. 

Transition Metal Dichalcogenides (TMDCs) are metals, semimetals, semiconductors, insulators, 
and superconductors conditioning on the elemental composition and structural layout as shown in 
Figure 2c. Layered TMDCs are leading successors of graphene and they are transparent, flexible, and 
as thin as graphene [27]. Apart from sharing comparability of bandgap, on/off ratio, and charge 
carrier mobility to that of ever-present silicon, TMDCs can also be stacked on to the flexible substrate 
and can bear stress and strain consents of flexible supports [28,29]. Among TMDCs, in this presented 
review, the ruling material is MoS2 because of its popularity based on the captivating properties. 

2.1. Crystalline Structure of MoS2 

In each layer of TMDCs (MX2) [30], the atomic layer of transition metal (M) is sandwiched 
between two atomic layers of chalcogens (X) as depicted in Figure 2d. In an MX2 monolayer, a 
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following the generic formula of MX2 in TMDCs.

2. Transition Metal Dichalcogenides (TMDCs)

Layered 2D transition metal dichalcogenides contain a prodigious number of crystals and are
represented by the general formula of MX2 where M is a transition metal from groups IV B, V B, VI
B, VII B (Ti, Zr, Hf, V, Nb, Ta, Mo, W, Tc, Re) and X is a chalcogen element from group VI A (S, Se,
Te) [4,24,25]. Figure 2b shows the general classification of 2D family. Depending upon the layer number,
elemental conjunction, and presence or absence of dopant, TMDs exhibit a bandgap ranging from 0 to
2 eV, unlike the pure graphene which is a semimetal with 0 eV bandgap [21,23,26].

Transition Metal Dichalcogenides (TMDCs) are metals, semimetals, semiconductors, insulators,
and superconductors conditioning on the elemental composition and structural layout as shown
in Figure 2c. Layered TMDCs are leading successors of graphene and they are transparent, flexible,
and as thin as graphene [27]. Apart from sharing comparability of bandgap, on/off ratio, and charge
carrier mobility to that of ever-present silicon, TMDCs can also be stacked on to the flexible substrate
and can bear stress and strain consents of flexible supports [28,29]. Among TMDCs, in this presented
review, the ruling material is MoS2 because of its popularity based on the captivating properties.

Crystalline Structure of MoS2

In each layer of TMDCs (MX2) [30], the atomic layer of transition metal (M) is sandwiched
between two atomic layers of chalcogens (X) as depicted in Figure 2d. In an MX2 monolayer, a covalent
bond is formed by coordination of d orbital of M and p orbital of X atoms. Every individual layer
is clenched by delicate Van der Waals forces. Considerably, all the approachable orbitals are tangled
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in intralayer bonding, in this scenario, only the high energy anti-bonding orbitals would be left behind
for inter-layer bonding, accompanied with the absence of dandling bonds [31]. Because of weak Van
der Waals forces between each layer, bulk TMDCs can be exfoliated into monolayers by chemical,
mechanical, or electrochemical exfoliation methods. On account of the quantum confinement effect and
surface properties, there are various properties observed in monolayer TMDCs which are not observed
in their bulk counterparts. Layer dependent properties change when the thickness is being changed.
The bandgap of TMDCs converts from indirect to direct: For example monolayer TMDCs, like MoS2

(1.8 eV), MoSe2 (1.5 eV), (2H)-MoTe2 (1.1 eV), WS2 (2.1 eV), and WSe2 (1.7 eV), display direct bandgap,
though their bulk counterparts show indirect bandgap accompanying smaller energies [26,32].

MoX2 can formulate three types of crystal structures based upon the atomic stacking geography,
trigonal prismatic (2H) phase, an octahedral (1T) phase, and rhombohedral (3R) phase [33,34]. In the
2H MoX2 phase, every Mo atom prismatically collaborates to six neighboring S atoms and in the
1T-MoX2 phase, the nearby six S atoms exhibit a distorted octahedron, circling one Mo atom. The 2H
phase is thermodynamically stable and the 1T phase is metastable. The more inspiring thing is the
interconversion of these two phases by intralayer atomic drift. According to these conditions by Li
and K intercalation, 2H-MoS2 can be transformed into the 1T-MoS2 phase [35]. Therefore, the IT-MoS2

phase is thermodynamically unstable, it converts back to the stable trigonal prismatic 2H-MoS2 phase
at room temperature. Both of these phases reveal contrasting electronic effects like the 1T-MoS2 phase
shows metallic [36] properties, whereas the 2H-MoS2 phase represents semiconducting behavior and
1T-MoS2 phase seems to be a more zestful catalyst for hydrogen evolution as compared to 2H-MoS2

semiconducting phase. The 1T-MoS2 phase shows metallic properties, whereas the 2H-MoS2 phase
represents semiconducting behavior which is important for optoelectronic devices [37].

Raman spectroscopy comfortably spots 1T and 2H phases. The A1g and E2g vibrational modes
of the 1T-MoS2 phase and 2H-MoS2 phase have shown at ~380 and ~410, respectively. The 1T-MoS2

phase displays several vibrational modes, because of their symmetric dissimilarities, classified as j1
(~160 cm−1), j2 (~230 cm−1), and j3 (~330 cm−1); no such vibrational modes were observed in case
of 2H-MoS2 phase [38,39]. It is not facile to acquire exact quantitative scrutiny of phase format
from Raman spectroscopy singly because of the feeble Raman response of these vibrational modes.
X-ray photoelectron spectroscopy (XPS) is an auxiliary technique to provide a significant quantitative
analysis of 1T and 2H-MoS2 phases. For pure 1T-MoS2, the Mo 3d zone exhibits peaks at ~228.1 eV and
at ~231.1 eV which are slightly at lower binding energies than those disclosed for the pure 2H-MoS2

phase (~229.5 and ~232.0 eV) [40]. Raman spectroscopy is also helpful for locating the number of layers
in TMDCs [41,42].

Numerous electronic properties of TMDCs emerge by stuffing the non-bonding d-bands, exhibiting
metallic behavior when the orbitals are partially inhabited, and they show semiconducting properties
when the orbitals are completely filled [43]. Chalcogen atoms have a slight impact on the electronic
structure as compared to that of metal atoms, still, it is noticed that the bandgap decreases due to the
broadening of d-bands by raising the atomic number of chalcogen atoms [44].

3. Synthesis of Two-Dimensional Materials

Two-dimensional materials are elucidated as a set of untied layered nanosheets, disclosing
an elevated ratio of lateral size (from tens of nanometers to tens of microns) to thickness (from a few
angstroms to a few nanometers) [11]. Graphene, exhibiting a single carbon layer of the honeycomb-like
lattice structure, is the most popular and papery 2D material [45]. Depending upon the anatomy and
crystallographic configurations, 2D materials are synthesized in the past decennary [46,47]. There is
no uncertainty that two-dimensional materials have captivated researchers and engineers in various
fields due to the fact of their gigantic number of species, considerably their distinctive properties and
their auspicious applications in several fields like optoelectronics, energy conversion, energy storage,
and electronics, etc.
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There are a number of methods for synthesis of 2D materials, as listed in Figure 3a, including:
Hummer’s method [48], micromechanical cleavage [1,49,50], liquid exfoliation [51] assisted by ion
intercalation [52–55] and mechanical force [47,56–59], oxidation assisted liquid exfoliation [17,49,60],
chemical vapor deposition [61–65], wet chemical synthesis method [66–69], electrochemical
exfoliation [70–74], ball milling [51,75], etching-assisted exfoliation etc. [76–78]. All these methods can
be grouped in two major classes of top-down and bottom-up approaches.
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In contrast to the bottom-up approach, top-down synthetic methods exhibit appreciable
superiorities. Top-down synthesis methods give scalable production of exfoliated two-dimensional
materials in an inexpensive and uncomplicated manner due to the low priced and highly available
layered precursor material. The top-down approach includes synthetic methods such as liquid
exfoliation through ion intercalation and mechanical force, liquid exfoliation through oxidation,
and etching-assisted exfoliation, etc. Top-down approach is only limited to the 2D materials, of which
the parental bulk counterpart is a layered material; however, the bottom-up approach is somehow
more versatile in principle. Besides, downsides of top-down approach are also there such as
defects production, more time consumption, and utilization of high-risk chemicals. Chemical vapor
deposition (CVD) and epitaxial growth include the chemical reaction of precursors at specified
experimental conditions.

The bottom-up synthesis method is nearly applicable to the exfoliation of all types of ultrathin
2D materials. Both, CVD and epitaxial growth processes take place at high temperature and vacuum.
Moreover, an extra transfer step is required to shift the products from the metal surface to the selected
substrate. During the transfer process, the risk of impurities enhances and it costs much higher.

Until now, a tremendous bloodline of 2D materials has been recorded such as transition
metal dichalcogenides (TMDCs), graphene, graphitic carbon nitride (g-C3N4), black phosphorene,
graphene oxide (GO), reduced GO (rGO), hexagonal boron nitride (h-BN), oxides, MXene, etc.
Superb qualities have been shown by TMDCs (e.g., Ta2NiS5, WS2, Bi2Te3, NbSe2, VSe2, Sb2Se3, WSe2,
MoS2, and Ta2NiSe5) other than graphene. Alongside graphene, MoS2, has come to the light as a future
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candidate for optoelectronic applications, exhibiting excellent performance due to the face of its direct
bandgap, quantum confinement, and higher mobility. Now, researchers are more interested in other
2D materials to enhance properties, like MoS2 and h-BN, beyond graphene to compensate for the
drawbacks of graphene. Because of zero bandgap, graphene has lost its application in optoelectronic
devices and field-effect transistors. In this article, we will discuss the most common synthesis methods
of MoS2, WS2, and graphene.

3.1. Synthetic Strategies for Graphene: Graphene as a Beginner

Here, we discuss the synthesis of the very first 2D materials which further extend to other 2Ds.
Graphene is almost 1× 106 times more slimmer than a human hair and approximately two-hundred-fold
more powerful than steel. Additionally, graphene [79] is a better conductor than copper. There are
numerous methods for the synthesis of 2D materials [7,46,80–83]; most commonly, one of them is the
micromechanical cleavage method [1,50,51]. Energy is required to exfoliate the layered material into
nanosheets [50,84]. In this prevailing cleavage method, Scotch tape is used for exfoliating the layered
bulk crystals into nanosheets. [85] The intention to apply the mechanical force through Scotch tape is
to weaken the out of plane Van der Waals forces without shattering the in-plane strong covalent bonds
within each layer, consequently taking off a single or few layers of 2D materials. In the conventional
method, the bulk 2D material (e.g., graphite) is attached to the sticky part of the Scotch tape and
then take it off into single or few layers by adhering it to another sticky surface [1,51]. This process
is replicated again and again in order to obtain the suitable thickness of flakes. Then, in the transfer
method, split flakes on the Scotch tape are attached to the suitable substrate and peeled off from Scotch
tape, leaving behind a single or few layer nanosheets on the substrate [50].

First, Novoselov, Geim, and co-workers [1], in 2004, mechanically exfoliated graphite into graphene
nanosheets [86,87] and received a Noble Prize in 2010 [88]. Later on, this technique was also being
used for the exfoliation of other 2D materials particularly the TMDCs, e.g., TiS2, MoTe2, TaSe2, MoSe2,
WS2, TaS2, WSe2, ReS2 [50,88], h-BN [1,89], and metal phosphorous trichalcogenides, etc. There are
numerous benefits of micromechanical cleavage method worth nothing, such as its harmlessness,
because there is no use of chemicals; ideal crystal grade; and clean and defect-free surfaces with large
lateral sizes [90]. Despite all these advantages, some flaws hamper its practical applications. First, mass
production is not possible. Second, the yield is low compared to solution-based synthesis techniques.
Thirdly, there is no control over the size, thickness, and morphology of nanosheets. Because the entire
process is carried out manually, this is why there is deprivation of precision and repeatability [91].

3.1.1. Liquid Exfoliation of Graphene

For the exfoliation of graphite into graphite oxide, there is an additional extensively used method,
which is called liquid exfoliation, assisted by oxidation [60]. Benjamin Collins Brodie [92], a British
chemist, is known to be the first researcher who disclosed the fascinating properties of graphite oxide
in 1859 [92]. From then on, because of the captivating properties of graphene oxide (e.g., super strong,
highly conductive, thinness, and its wide applicability in various fields), GO appeared as one of the
famous 2D materials and welcomed by the researchers. According to Brodie’s method, a mixture of
graphite and potassium chlorate (KClO3), with the ratio of 1:3, was reacted with fuming HNO3 for
3 to 4 days at 60 ◦C. Staundenmaier [93] in 1898, upgraded Brodie’s work by replacing fuming HNO3

with H2SO4 and used manifold KClO3 [93]. But this method caused hazards because of the usage of
KClO3, which is the source of the persistent explosion, and also it is a time taking reaction that takes
4 days [94]. Then, Hofmann in 1937, almost after 40 years, used non-fuming HNO3 for the synthesis of
graphene instead of fuming HNO3 and revealed one more novel method that is more applicable and
uncomplicated because of no requirements of repetition of oxidation process by four times [95,96].

In 1958, the chemist Hummer and his coworkers [48] developed a method for the synthesis of
graphene oxide, this method is still used extensively [48], called Hummer’s method. In Hummer’s
method, KClO3, being replaced by KMnO4 to prevent continuous explosion and NaNO3 replaced
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fuming HNO3 to prevent the production of fog acid. The fundamental principle behind this method
is the utilization of an extremely powerful oxidizing agent to make sure the oxidation of graphite
into graphite oxide. Frequently applied oxidizing agents are KMnO4 and concentrated H2SO4 [17]
due to the vigorous oxidizing power of ions such as SO4

−2 and MnO4
−2. Nitric acid is an exemplary

intercalation representative, which expands the interlayer spaces and, thus, assists the intercalation of
oxidative agents into the host galleries.

Some additional oxidative agents also cause the exfoliation of graphite, following the same
mechanism of exfoliation, afar from ordinary ones [97]. On the surface of each graphene layer,
functional groups containing oxygen species are developed due to the oxidation of graphite, which can
cause the outstanding expansion of interlayer spacing of the bulk crystal and consequently remarkably
debilitate the Van der Waals forces between the adjoining layers [49–61]. With the successive sonication
remedy, single-layer graphene nanosheets are produced by the exfoliation of expanded graphite oxide.
This method is useful for the production of graphene oxide nanosheets [49,61,62]; however, it cannot be
applied further for exfoliation of other 2D materials. Hummers’ method is good in the way to give the
mass production of GO nanosheets in solution with a major disadvantage of using a powerful oxidizing
agent. This method is not as safe as the sonication assisted liquid exfoliation method. Hummer’s method
fabricates more oxygen quantity than Brodie’s method [98]. But still, there are some flaws in hummer’s
method [99] i.e., the production of toxic gases like NO2 and N2O4 [95]. Marcano et al. [100] distinguished
hummer’s method, modified hummer’s method [101,102], and improved hummer’s method for the
synthesis of graphene nanosheets based on the degree of oxidation of end product [100,103–106].

Epoxy, carboxyl, and hydroxyl, oxygen-containing functional groups are being introduced on the
surface of graphene oxide due to the oxidation [107]. The oxygen-containing functional groups can be
partially eradicated from the surface by reduction of the oxygen-containing specie, graphene oxide,
into reduced graphene oxide (rGO) nanosheets. There are numerous approaches for the reduction of
GO nanosheets (e.g., reduction through chemical reaction by using reducing agents), photochemical
reduction, reduction by electrochemical means, thermal annealing, and others [61,74,104,108–113].
GO as well as the rGO, show different electronic, physical and chemical properties in contrast to their
bulk counterpart (pristine graphene). The most striking distinction is the superb electrical conductivity
of graphene, while GO nanosheets are electrically insulator [114]. Even though, GO nanosheets
reduced back to the rGO nanosheets, but the electrical conductivity was not comparable to the
graphene obtained from CVD method or through mechanical exfoliation method. Furthermore, GO has
functional groups on its surface, it is hydrophilic and admirably dispersible in water [115], whereas on
the other side, graphene is hydrophobic [116]. Due to these distinguishing characteristics, GO and rGO
are called derivatives of graphene, rather than just saying them, graphene. The electrical conductivity
can be manipulated, to electrical conductor from insulator, by precisely adjusting the number of
oxygen-containing functional groups on the surface of GO [107].

3.1.2. Electrochemical Exfoliation of Graphene

By moving forward from Scotch tape cleavage and liquid exfoliation method, electrochemical
exfoliation is another method for exfoliation of graphite into its 2D morphology. The utilization
of the suggested by Brodie, Staudenmaier, and Hummers is well known for mass production and
low cost. However, these methods involve strong oxidants and acids which results in the emission
of toxic gases and can also deteriorate the sp2 bonding in graphene. Moreover, these methods are
time-consuming including the production of defects as well. Most recently, considerable attention
has been paid to the electrochemical exfoliation method for the synthesis of graphene nanosheets.
Electrochemical exfoliation is simple, greener, fast, scalable, and low-cost synthesis method and gives
a product (graphene) with lesser defects and higher crystallinity. This method also allows the tuning of
the degree of oxidation in the product. Table 1 briefly describes the efforts of different research groups
for the synthesis of graphene nanosheets by the method of electrochemical exfoliation of graphite.
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Table 1. Strategies to synthesize graphene using a series of electrochemical exfoliation methods.

Synthesis Strategy Title of Paper Specifications Year of Publication Author + Reference

Electrochemical exfoliation
One-step ionic-liquid-assisted electrochemical synthesis of

ionic-liquid-functionalized graphene sheets directly
from graphite

1-octyl-3-methyl-imidazolium hexafluoro-phosphate (8mim + PF6) (ionic liquid IL)
along with water used as an electrolyte. Two graphite rods were used as electrodes.

Obtained graphene nanosheets (GNs) did not disperse in water but polar
aprotic solvents.

2008 B.N. Liu et al. [117]

Electrochemical exfoliation
One-pot synthesis of fluorescent carbon nano-ribbons,

nano-particles, and graphene by the ex-foliation of graphite
in ionic liquids

Synthesis of graphene sheets in a single vessel using graphite rod and platinum wire
as electrodes and 1-methyl-3-butylimidazolium tetrafluoro-borate (or

1-methyl-3-butylimidazolium chloride) as an electrolyte in combination with water
in varying ratios.

2009 Lu et al. [118]

Electrochemical exfoliation An electro-chemical route to graphene oxide
Expanded graphite used as anode and Pt wire as a counter electrode along with KCl
as an electrolyte. 1.9, 2.8, and 3.9 nm were the thicknesses of mono, bi, and tri-layers

of graphene, respectively.
2011 You et al. [119]

Electrochemical exfoliation High-quality thin graphene films from fast
electrochemical exfoliation

Highly oriented pyrolytic graphite (HOPG) used as a graphene source, grounded Pt
wire used as a counter electrode, and H2SO4 used as the electrolyte. The lateral size

of the exfoliated graphene sheet was 30 µm. The transparent conducting film,
containing these exfoliated graphene sheets, was good in conductivity but the yield

was low.

2011 Su et al. [120]

Electrochemical exfoliation Synthesis of high-quality graphene through electro-chemical
exfoliation of graphite in alkaline electrolyte

Graphite rod and platinum wire were used as electrodes along with alkaline
electrolyte (KOH) in the electrochemical setup. Graphene is obtained with fewer

defects, good quality, 1–4 layers, and with lateral size up to ~80 µm.
2013 Tripathi et al. [121]

Electrochemical exfoliation
Electrochemically exfoliated graphene as

solution-processable, highly conductive electrodes for
organic electronics

H2SO4, graphite flakes, and platinum wire were used as electrolyte, anode, and
cathode respectively. The thickness of graphene flakes was ~1.5 nm for bilayer and

size of exfoliated graphene sheets was up to 5–10 µm.
2013 Parvez et al. [122]

Electrochemical exfoliation Few-layer graphene obtained by electrochemical exfoliation
of graphite cathode

A system of dimethyl sulfoxide (DMSO), NaCl, water, and thionin acetate was used
as an electrolyte for exfoliation of graphite cathode. Acquired graphene sheets

contained less degree of oxidation as well as defect sites.
2013 Zhou et al. [123]

Electrochemical exfoliation
Synthesis of graphene oxide nano-sheets by electrochemical

exfoliation of graphite in cetyl-trimethylammonium
bromide and its application for oxygen reduction

Cetyltrimethylammonium bromide (CTAB) used as electrolyte where-as graphite
rod and Pt wire was used as electrodes. GO/CTAB suspension is tremendously

stable in ambient conditions. The single-layer thickness of the obtained graphene is
2.5–4.5 nm.

2014 Kakaei and Hasanpour [124]

Electrochemical exfoliation Role of peroxide ions in formation of graphene nanosheets
by electrochemical exfoliation of graphite

A network of NaOH/H2O2/H2O was used to exfoliate graphite. High-quality
graphene sheets with 3–6 layers are formed exhibiting a thickness of ~1–2 nm with a

95% yield.
2014 Rao et al. [125]

Electrochemical exfoliation Exfoliation of graphite into graphene in aqueous solutions
of inorganic salts

Inorganic salts such as (NH4)2SO4, K2SO4, and Na2SO4 used as electrolytes for the
synthesis of graphene sheets. Graphene sheets showed vast lateral size, low

oxidation level, and elevated yield of 85%.
2014 Parvez et al. [53]

Electrochemical exfoliation Graphene synthesis via electrochemical exfoliation of
graphite nanoplatelets in aqueous sulfuric acid

Utilized pressed-graphene nanoparticles (GNP) used as anode and Pt wire as a
cathode with 0.1M sulphuric acid as an electrolyte. Flakes size is more manageable 2016 Lin Li et al. [82]

Electrochemical exfoliation
Preparation of graphene sheets by electrochemical
exfoliation of graphite in confined space and their

application in transparent conductive films

In EECS (electrochemical exfoliation in confined space) nickel foam is used as a
counter electrode while the working electrode is graphite rod covered with paraffin,
with bottom opening, in an alkaline electrolyte (10 mol/L NaOH). Paraffin helps to
control the extravagant exfoliation of graphene. Graphene rooted conductive sheets

can replace indium tin oxide.

2017 Hui Wang et al. [126]
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Table 1. Cont.

Synthesis Strategy Title of Paper Specifications Year of Publication Author + Reference

Electrochemical exfoliation Electrochemical exfoliation synthesis of graphene
Graphite rod and Pt wire placed vertically in the electrochemical cell along with
protonic acid as an electrolyte. In the vertical configuration, exfoliation is much

better organized and graphene synthesized with better quality as well as quantity.
2017 J. Liu and Theses [127]

Electrochemical exfoliation Electrochemical exfoliation of graphite into graphene for
flexible supercapacitor application

Graphite rod and Pt used as electrodes, 0.1M potassium sulfate used as the
electrolyte. The size of graphene nanosheets is in between of 433 nm to 5.07 µm. 2018 Singh and Tripathi. [128]

Electrochemical Exfoliation
A facile synthesis of graphene oxide (GO) and reduced
graphene oxide (rGO) by electro-chemical exfoliation of

battery electrode

GO being synthesized by using ionic specie as an electrolyte, graphite rods as
electrodes, and regulated DC power supply. GO being reduced to rGO using

ascorbic acid, i.e., environment-tally benign reducing agent.
2019 Vartak et al. [129]

Electrochemical exfoliation
Controlled synthesis of graphene via electrochemical route

and its use as efficient metal-free catalyst for
oxygen reduction

(NH4)2SO4 used as electrolyte whereas Pt and graphite substrate served as the two
electrodes in electrochemical setup. High standard graphene with governable layer

number was fabricated using cost-effective precursors.
2019 Komba et al. [130]

Electrochemical exfoliation
A single-step strategy to fabricate graphene fibers via

electrochemical exfoliation for micro-super
capacitor applications

The simplistic, economical top-down synthesis method is used to fabricate porous,
fiber-like graphene. Graphene fibers showed high specific capacitance, high

electrochemical performance because of porous structure and fine
electronic conductivity.

2019 He et al. [131]
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3.2. Synthetic Strategies for TMDCs

In 2004, after the successful exfoliation of graphene from graphite, by Novoselov and his
coworkers [1], a series of experiments were performed on TMDCs, more specifically on MoS2 [132].
Nevertheless, TMDCs traveled the journey of seven years to step out of the umbra of famous graphene
to certify their identification. To formulate their various 2D forms, a variety of exfoliation methods
has been originated to split the piled-up layers in bulk TMDCs [133–135]. The basic drive behind
the exfoliation of liquids is to provide a suitable amount of energy to the liquids to conquer the van
der Waals interactions between the layers. Synthesis methods including micromechanical cleavage,
liquid exfoliation, intercalation, etc., are classified under top-down synthesis methods. Top-down and
bottom-up approaches have been discussed in Section 3.

The strong in-plane bonding and relatively delicate interlayer bonding enables the layered 2D
materials to be separated into isolated, atomically slim nanosheets, where nano adverts to the extent of
thickness [57]. Micromechanical cleavage [49,50], discussed in Section 3.1, is the foremost successful
method to spare 2D layered materials into the individual layers from their bulk counterparts [88,136].
No doubt, the micromechanical cleavage method [49] gives fine quality mono and few layers with the
least defects, but this method is restricted due to low yield and deficient thickness control. To overcome
this problem, one popular method is the liquid phase exfoliation through the solvent, sonication,
and with/without ion intercalation strategy.

3.2.1. Liquid Phase Exfoliation of TMDCs

Liquid phase exfoliation is the most extensively applied synthesis method to fabricate the
nanosheets of TMDCs [137–139]. The basic mechanism behind liquid exfoliation involves three steps.
Firstly, the dissolution of the respective bulk TMDCs in the suitable solvent. Secondly, the exfoliation
of the bulk counterpart into nanosheets by sonication. However, surfactants are added as a stabilizing
agent [140,141]. Third and the least one, separation of individual sheets and centrifugation. Figure 3b is
the simple schematic demonstration of liquid phase exfoliation through sonication and ion intercalation
and exfoliation through the electrochemical method to obtain the nanosheets at the end as a major
product. A wide domain of other 2D materials can also be synthesized such as graphene [142–145],
boron nitride [146,147] and phosphorene [148,149] by this method. Depending on the energy source
implemented for exfoliation and dispersion of nanosheets, the liquid phase exfoliation method has
been divided into two categories, i.e., liquid exfoliation through sonication [150] and liquid exfoliation
through sheer force.

In the liquid phase, bulk TMDCs can be converted into nanosheets by sonication [151,152].
Following the dispersion of bulk powder in the required solvent (e.g., N-methyl-2-pyrrolidone, NMP)
for exfoliation, a probe sonicator, a bath sonicator or the combination of both of them, is used.
In ultrasonicated dispersions, because of cavitation bubbles’ collapse, microjets and shock waves
are produced [153–155], which causes the exfoliation of bulk crystal into nanosheets in the liquid
phase [156]. To get the systemized exfoliation of TMDs, the critical aspect is the comparable surface
energies of bulk TMDs crystal and the solvent being used. The dispersion, after sonication, treated with
centrifugation for about an hour at 500–1500 rpm [157]. Ultimately, the supernatant, containing mono
and few-layer nanosheets of MX2, collected from centrifuged dispersion. This obtained dispersion of
nanosheets is suitable for a number of techniques such as electrodeposition, spray coating, spin coating,
vacuum filtration, etc. [158,159].

From all around the world, there are a large number of research groups, including the Ajayan
group [86] and Coleman group [159], they applied liquid phase exfoliation in different liquid
media and synthesized almost all 2D materials [86,156,157]. In a guideline article, the method
of exfoliation, characterization, and processing of 2D materials has been discussed by Backes, Coleman,
and coworkers [160]. Additionally, they facilitated the research world with a tutorial video as well [161].
Liquid phase exfoliation through sonication has an energetic group with wealthy literature and in recent
years the discipline has been massively reviewed.
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Via a range of experiments, Coleman et al. [157] proposed the optimized solvents for MoS2 and
WS2. Different 2D materials have different surface energies, and consequently, different solvents are
required to form the stable dispersions of different materials [162,163]. Precisely, the surface energies of
MoS2, h-BN, and graphene are 46–65 mJ cm−2, 44–66 mJ cm−2, and 70 mJ cm−2 [157,164]. Many good
solvents like NMP and DMF (N,N-dimethylformamide) have high boiling points and the leftover
solvent can damage the 2D materials. That’s why, the solvents having low boiling points would be
preferred [165,166]. There is a vast collection of solvents in literature (e.g., 1-butyl-3-methylimidazolium
chloride ionic, tetrahydrofuran (THF), methanol, acetone, and ethanol, etc.), to make nanosheet’s
dispersions of MoS2 [167]. For exfoliation of transition metal dichalcogenides by sonication in water
or the solvents having low boiling points, a diversity of ionic surfactants [168], polymers [169–171],
and nonionic surfactants [172,173] have been practiced in literature.

Although, an appreciable amount of 2D materials can be achieved through sonication assisted
liquid exfoliation as compared to micromechanical cleavage method, still, this method cannot cover the
requirements for industrial exertion. To boost up the mass production of 2D materials, the exfoliation
of 2D materials was supported by shear force in liquid media [174,175]. A method raised by Paton
et al. [176], shear force assisted exfoliation in the liquid phase, applying shear force for exfoliation of
2D materials accompanied by intense shear rates. Coleman and his coworkers [176], implemented
a rotor-stator mixer with a high shear rate to promote the production rate of graphene thin flakes [176].
In the liquid, carrying the bulk 2D crystal, a mixer can kindle the intense shear rates under strong
rotation speed [50]. The shear forces under the influence of intense shear rates prompted the exfoliation
of bulk 2D materials in the liquid phase. The utilization of suitable solvents and polymers can prune
the energy tariff of the exfoliation method as well as provide the stability to nanosheets. This method
further implemented for the exfoliation of graphene, h-BN, and TMDs [177,178].

Exfoliation through ion intercalation in liquid media is an additional example of the top-down
synthesis method. The core objective of this method is to inject the cation ions (e.g., Cu2+, Na+, K+,
or Li+ ions), in the host material galleries, having a small ionic radius to form the ion-expanded
compound. Conventionally, reducing agents and electron donor species could be injected directly
in between the layers of bulk 2D materials [179]. Ion intercalation causes the expansion of the layers
in host 2D material and deliberate the van der Waals interlinkages between the adjoining layers in the
bulk material [122,180]. The ion injected compound can be comfortably exfoliated into mono or few
layers nanosheets under specific conditions, i.e., specific solvent, sonication time, etc. For the above
half-century almost, intercalation of alkali metal ions have been investigated [181]. The key benefit
of alkali metals is their smaller size, which helps to get into the host galleries. The addition of alkali
metal-expanded layered material into water causes the hydrogen bubble formation in the liquid,
which causes further expansion of layers and helps exfoliation of the bulk crystal. The most frequently
used alkali metal is Li, using organometallic compounds (e.g., n-butyllithium) for intercalation,
which possesses the smallest size and exhibits higher reactivity as compared to the other alkali metals.
A large number of layered materials can be exfoliated using Li+ intercalation, e.g., graphene, h-BN,
TMDCs, etc. [35].

Back to the 1980s, Morrison, and co-workers [182] exfoliated bulk MoS2 crystal into monolayered
MoS2 nanosheets, using n-butyllithium being intercalator, by Li intercalation method in liquid media.
Large compounds, like n-butyllithium (n-BuLi) including tert-butyllithium (t-BuLi) exhibit more
effective exfoliation as compared to smaller compounds such as methyllithium (MeLi) [183,184].
In the conventional process, 2D bulk materials, in the environment of Ar or N2, introduced into
the n-butyllithium solution for some days. High temperature or stirring is being frequently used
to enhance the efficiency of the intercalation process. By injecting lithium ions (Li+) between the
layers, exfoliation of LixMoS2 takes place, through hydrolysis, into monolayers. At the hydrolysis
stage, ultrasonication being applied to enhance the hydroxyl group diffusion and to improve the
exfoliation efficiency [185]. Eda et al. [186] used n-BuLi to exfoliate MoS2 with 50% semiconducting
2H-MoS2 phase and 50% metallic 1T MoS2 phase. Zheng et al. [54] used the ion intercalation process
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in combination with the hydrothermal method to synthesize the large area MoS2 nanosheets [54].
Other than n-butyllithium, some other compounds (LiBH4) also proved efficient intercalators for 2D
nanomaterials [187]. Pumera and coworkers [188] compared Li intercalation process efficiency and
transitions between 1T and 2H phases of MoSe2, MoS2, WSe2, and WS2. Moreover, with the help of
ultrasonication [189] and microwave-induced intercalation [190], the efficiency of the Li intercalation
process can be improved. Liquid exfoliation through the ion intercalation process has been applied to
synthesize various 2D nanomaterials like Cu2WS4, MoSe2, WS2, MoS2, ReS2, and TiS2 [54,191,192].

Limitations to the Li intercalation process are there as well. Usage of organometallic compounds,
which are reactive to air and moisture and are explosive, N2 or Ar glove box is required. Additionally,
long reaction time, insufficient monolayer yield, deprivation of semiconducting phase, the inadequacy
of controllability, and lateral sizes of exfoliated sheets are in the sub-micron region, are drawbacks of Li
intercalation process [184,193]. Consequently, some intercalators, other than lithium, being used by
scientists to improve the exfoliation efficiency of TMDCs [55,194–196].

3.2.2. Electrochemical Exfoliation of MoS2/WS2

To produce the solution-processable and large scale exfoliated MoS2 by chemical means [197–199],
enormous attempts have been committed. Among those attempts, the electrochemical exfoliation
method is one. The utilization of the electrochemical approach assists the exfoliation process for the
mass production of two-dimensional layered materials. Table 2 compiles the research efforts from
2010 to 2018 in the electrochemical exfoliation of MoS2 from bulk to its nanosheets. Zeng et al. [199]
used MoS2 bulk material as cathode and lithium foil as a counter electrode in the electrochemical
setup. Lithium ions get incorporated between the layers and cause exfoliation. In the course of
intercalation of lithium ions, every Li atom also inserts one electron with it in host layered material.
The intercalation of a large number of lithium ions causes massive injection of electrons in MoS2 layered
material (host material) which gives rise to the undesired transition of the 2H-semiconducting phase
into 1T-metallic phase. You et al. [200] exfoliated MoS2 by using H2SO4 as electrolyte and platinum as
a counter electrode. Later, the aforementioned group modified the exfoliation method by incorporating
SO4

−2 ions at neutral pH value and resulted in the generation of MoS2 nanosheets with large lateral
size and having a lower oxidation level as well [201]. There are various constraints and challenges,
in the electrochemical exfoliation method, which have to be taken into consideration while talking
about two-dimensional materials except for graphene. Major restriction is the need of conductive
material, so the method is restricted to only conductors and semiconductor materials. Moreover,
there are some other parameters of study like material should be strong enough to resist the chemical
changes due to anodic or cathodic oxidation and should have stability in ambient circumstances as
well. Only MoS2, Bi2Se3, graphene, black phosphorous, and Bi2Te3 have been successfully exfoliated
in aqueous electrolyte by electrochemical means because this method is in premature stage for 2D
materials other than graphene and a lot of work must be done in this area [202].
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Table 2. Electrochemical exfoliation methods for the synthesis of MoS2/WS2 nanosheets.

Synthesis Strategy Title of Paper Specifications Year of Publication Author + Reference

Electrochemical exfoliation
Single-layer semiconducting nanosheets:

high-yield preparation and
device fabrication

The multi-layered bulk material (MoS2, WS2, Graphene, etc.) was used as a
cathode in the electrochemical cell while lithium foil being used as an anode.

LiPF6 used as an electrolyte. Monolayer yield is 92% in this method for MoS2.
2011 Zeng et al. [199]

Electrochemical exfoliation
Large-area atomically thin mos2

nanosheets prepared using
electrochemical exfoliation

Na2SO4 being used as an electrolyte along with a pure single crystal of MoS2 as a
working electrode and Pt wire as a counter electrode. This synthesis method

ended up giving the yield of MoS2 monolayers up to 5–9% with 50 µm lateral size
of sheets, little oxidation and acceptable quality.

2014 Liu et al. [201]

Electrochemical exfoliation Electrochemical exfoliation of mos2
electrogeneration crystal for hydrogen

Pt foil and MoS2 crystal being used as electrodes in electrochemical setup
including K2SO4 as the electrolyte. The obtained lateral size of MoS2 nanosheets

was 100–200 nm with 15–20 layers.
2018 Ambrosi & Pumera [71]

Electrochemical exfoliation
Solution-processable 2d semiconductors

for high-performance
large-area electronics

In electrochemical setup, MoS2 crystal being intercalated by THAB
(tetraheptylammonium bromide). After intercalation, the enlarged MoS2 crystal

was sonicated in PVP/DMF (poly-vinylpyrrolidone solution in
dimethylformamide). PVP provided stability to the monolayers of MoS2 from

stacking back. Obtained nanosheets have had a thickness of 3.8 nm with a lateral
size of 0.5–2 µm.

2018 Lin et al. [203]

Electrochemical exfoliation
Advanced composite 2d energy materials

by simultaneous anodic and
cathodic exfoliation

Single MoS2 crystal sank in TBA+ in electrochemical setup. Firstly, the bulk crystal
was immersed in acetonitrile but later acetonitrile replaced by TBA+ for better
expansion. Cathodic exfoliation gave MoS2 monolayers with great crystallinity

and no defects were observed as well.

2018 Li et al. [204]
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The sinking compact diameter of layered 2D materials would result in reduced volume, trimmed
mass, and eventually the low cost of several devices in many different fields. Layered 2D materials
have numerous applications in various domains based on their optoelectric character like in solar
cells, photonics, protective light-absorbing layers, spintronics, conductive displays, and valleytronics,
etc. [22,23]. As, vigorous attention has been paid to graphene from last many years and many review
articles are available in literature so here we directly jump to layered TMDCs in this review article,
detailing MoS2 and its incorporation in solar cell devices.

4. Applications of MoS2 in Opto-Electric Devices

Among 2D materials, graphene, a semimetal with zero bandgap, was the first to be tremendously
used in various applications of science and technology [205]. However, due to the zero bandgap,
graphene has restricted its applications in optoelectronics and field-effect transistors. In a very short time,
following the disclosure of graphene, special attention was being paid to other 2D materials, e.g., h-BN,
phosphorene and TMDCs, etc. [11,206]. Transition metal dichalcogenides (TMDCs) have diversity
in terms of their properties like they exhibit excellent optical, mechanical, and electronic properties.
As we are interested in optoelectronic properties for photovoltaic applications, the main focus is on
optical and electronic properties [207]. In terms of optical properties, they give superb photoabsorption
in visible and near IR range (absorption co-efficient is 105–106 cm−1). Transition metal dichalcogenides
(TMDCs) have a tunable bandgap, vary while reducing the thickness, show transition from indirect to
direct bandgap, exhibit powerful light-matter interactions and due to the quantum confinement effect,
they show intense photoluminescence. The direct bandgap, high mobility (50 cm2/V s), and strong
interaction with light give monolayer TMDCs a big breakthrough in applications of photovoltaics [208].

4.1. MoS2 as Absorber Material in Solar Cells

Transition metal dichalcogenides (TMDCs), more specifically MoS2, with a 2H crystal system,
are largely acceptable in PV (photo voltaic) applications [209]. The bandgap of TMDCs varies from
1.0 to 2.0 eV, which is comparable with the solar spectrum, in correspondence with other famous solar
cell semiconductors like Si (1.1 eV), CdTe (1.5 eV) and GaAs (1.4 eV) [210]. It has been stated that in the
thickness of 1 nm, 2D TMDCs can show 5–10% absorption of incident light per unit volume and can
attain higher absorption efficiency of sunlight, compared to the frequently used materials like Si and
GaAs as light absorbers. The amount of light absorbed by the monolayer of TMDCs is comparable
to the amount of light being absorbed by 50 nm thick Si layer and gives higher photocurrent values
(2.0–4.5 mA/cm2) [211].

4.2. MoS2 as a Counter Electrode in Dye-Sensitized Solar Cells

In dye-sensitized solar cells, the counter electrode plays an important role by transferring electrons
through an external circuit to tri-iodide ions for the reduction process. The photoelectrochemical
process in DSSCs (Dye-Sensitized Solar Cells) strongly influenced by the electrocatalytic effect of
the counter electrode [212]. MoS2 is a replacement in DSSCs as a counter electrode as compared
to traditionally used high-priced Pt electrode [213–215]. MoS2 used in three contrasting structural
architectures, i.e., MoS2 nanoparticles, few-layered MoS2, multi-layered MoS2 as a counter electrode
by Lei et al. [216]. The devices containing these MoS2 morphologies exhibit the photon conversion
efficiency of 2.92% for ML-MoS2, 5.41% for MoS2-NPs, 1.74% for FL-MoS2.

MoS2 implanted with graphene flakes also used as a counter electrode by Lin et al. [217] and
power conversion efficiency (PCE) achieved was 6.07%. MoS2 gives a fast reduction process of tri
iodide ion and Graphene flakes, being highly conductive, give speedy charge transfer. Liu et al. [218]
used nanocomposite of MoS2/rGO as a counter electrode and reported PCE 6.04%.
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4.3. MoS2 as a Diverse Role Material in Organic Solar Cells

Organic solar cells have numerous remarkable properties in particular lightweight, flexibility,
facile synthesis and solution processability, etc. In typical organic solar cell layout, a blend of photoactive
material with electron donor and electron acceptor material is present. Mostly used hole transport
layer is a blend of PEDOT: PSS (Poly (3,4-ethylenedioxythiophene): poly(styrene sulfonate) in organic
solar cells. Graphene, TMDCs, and carbon nanotubes were investigated as a hole extraction layer
in place of PEDOT: PSS blend [219].

MoS2 can be used as a hole transport layer (HTL), electron transport layer (ETL), the buffer layer,
and as an interfacial layer in organic solar cells [220].

Gu et al. [221] reported MoS2 as a HTL instead of PEDOT:PSS in (poly({4,8-bis[(2-
ethylhexyl)oxy]benzo-[1,2-b:4,5-b]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)-carbonyl] thieno
[3,4-b]thiophenediyl}) PTB7: PC71BM based solar cell and also in (3-alkylthiophenes) P3HT: PC71BM
([6,6]-Phenyl C71 butyric acid methyl ester) based organic solar cells which exhibited PCE of 8.11%
and 4.02%, respectively. In PTB7: PC71BM-based solar cells, PCE changes from 6.97% to 8.11% by
changing the number of layers of MoS2, showing the dependence of PCE on different number of layers
of MoS2. In PTB7: PC71BM-based monolayer MoS2 solar cell, VOC of 0.69 V, fill factor of 64%, JSC of
15.78 mA/cm2 and PCE of 6.97% obtained.

MoS2 is also used as an anode buffer layer by Li et al. [222] in organic solar cells to prevent the current
leakage between bare ITO and PC61BM and showed the PCE of 3.9%. PCE of 2.14% achieved in organic
solar cells consisting of bare ITO without a buffer layer. A nanocomposite of PEDOT: PSS/MoS2 can also
be used as a hole extraction layer in P3HT: PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) based
organic solar cells giving PCE value of 3.74% [223]. Yang et al. [224] used MoS2 as a hole withdrawing
layer in the organic solar cell. In respective organic solar cell PTB7: PC71BM used as an active layer,
PFN poly[(9,9-bis(3′-(N,N-dimethylamino)-propyl)-2,7-fluorene)-alt-2,7-(9,9−dioctylfluorene)] as the
electron transport layer and oxygen-containing MoS2 was used as hole withdrawal layer produced by
UV–ozone treatment. As compared to PEDOT: PSS, both, MoS2 nanosheets and oxygen containing
MoS2 nanosheets exhibited surpassing optical transparency in the region of 400–900 nm with PCE
of 4.99%.

Hole transport material demands profound work function and there must be the material of
low work function for electron extraction in organic solar cells, due to this reason, graphene and its
derivatives can be used as both electron and hole extraction layers in the organic solar cell because of
their tunability of work function. Yun et al. [225] used MoS2 as an electron extraction layer and hole
withdrawal layer as well. P-type doped MoS2 used as a hole withdrawal layer and the n-type doped
layer was used as an electron extraction layer. Photon conversion efficiency increased from 2.8% to
3.4% in organic solar cells containing p-type doped MoS2 as a hole extraction layer.

MoS2 used as an interfacial layer and silver nanowires along with MoS2 were used as a transparent
electrode by Hu et al. [226] AgNW-MoS2 as a transparent electrode shows 93.1% transparency at 550 nm
and gives lower values of sheet resistance (9.8 Ω/sq). MoS2 in the AgNW-MoS2 composite electrode
helps to improve the environmental reliability and provides better resistance against oxidation and
moisture as compared to the AgNW electrode alone. PBDTTT-C-T: PC70BM based organic solar cell
gives PCE of 8.72% by using the anode of p-MoS2 nanosheets/Ag for hole extraction and cathode of
AgNWs-MoS2 nanosheets/n-MoS2 nanosheets for electron extraction. General cell configuration, in this
case, is glass/AgNW-MoS2/n-MoS2/PBDTTT-C-T: PC70BM/p-MoS2/Ag being sketched in Figure 4a.
MoS2 in combination with MoO3 and MoS2 with Au nanoparticles were also used as hole extraction
layers in organic solar cells by Qin et al. [227] and Yang et al. [228] respectively. Chuang et al. [229]
used nanosheets of MoS2 along with Au nanoparticles as an electron extraction layer and obtained
PCE of 4.91%.



Crystals 2020, 10, 902 16 of 31

Crystals 2020, 10, x 15 of 30 

 

methyl ester) based organic solar cells giving PCE value of 3.74% [223]. Yang et al. [224] used MoS2 
as a hole withdrawing layer in the organic solar cell. In respective organic solar cell PTB7: PC71BM 
used as an active layer, PFN poly[(9,9-bis(3′-(N,N-dimethylamino)-propyl)-2,7-fluorene)-alt-2,7-
(9,9−dioctylfluorene)] as the electron transport layer and oxygen-containing MoS2 was used as hole 
withdrawal layer produced by UV–ozone treatment. As compared to PEDOT: PSS, both, MoS2 
nanosheets and oxygen containing MoS2 nanosheets exhibited surpassing optical transparency in the 
region of 400–900 nm with PCE of 4.99%. 

Hole transport material demands profound work function and there must be the material of low 
work function for electron extraction in organic solar cells, due to this reason, graphene and its 
derivatives can be used as both electron and hole extraction layers in the organic solar cell because of 
their tunability of work function. Yun et al. [225] used MoS2 as an electron extraction layer and hole 
withdrawal layer as well. P-type doped MoS2 used as a hole withdrawal layer and the n-type doped 
layer was used as an electron extraction layer. Photon conversion efficiency increased from 2.8% to 
3.4% in organic solar cells containing p-type doped MoS2 as a hole extraction layer. 

MoS2 used as an interfacial layer and silver nanowires along with MoS2 were used as a 
transparent electrode by Hu et al. [226] AgNW-MoS2 as a transparent electrode shows 93.1% 
transparency at 550 nm and gives lower values of sheet resistance (9.8 Ω/sq). MoS2 in the AgNW-
MoS2 composite electrode helps to improve the environmental reliability and provides better 
resistance against oxidation and moisture as compared to the AgNW electrode alone. PBDTTT-C-T: 
PC70BM based organic solar cell gives PCE of 8.72% by using the anode of p-MoS2 nanosheets/Ag 
for hole extraction and cathode of AgNWs-MoS2 nanosheets/n-MoS2 nanosheets for electron 
extraction. General cell configuration, in this case, is glass/AgNW-MoS2/n-MoS2/PBDTTT-C-T: 
PC70BM/p-MoS2/Ag being sketched in Figure 4a. MoS2 in combination with MoO3 and MoS2 with Au 
nanoparticles were also used as hole extraction layers in organic solar cells by Qin et al. [227] and 
Yang et al. [228] respectively. Chuang et al. [229] used nanosheets of MoS2 along with Au 
nanoparticles as an electron extraction layer and obtained PCE of 4.91%. 

 
Figure 4. (a) An easy sketching of glass/AgNW-MoS2/n-MoS2/PBDTTT-C-T:PC70BM/p-MoS2/Ag 
based organic solar cell [226]. (b) ITO/PEDOT:PSS/GO/perovskite/PCBM/MoS2/Ag based perovskite 
solar cell [230]. (c) MoS2/p-Si based heterojunction solar cells [231]. 

4.4. MoS2 Efficient Role in Perovskite Solar Cells 

The generic formula of perovskite solar cells is ABX3. Most commonly in organometallic halide 
perovskites solar cells, A is CH3NH3+ and B is Pb. Whereas X is an anion which is a halogen (Cl, Br, I) 

Figure 4. (a) An easy sketching of glass/AgNW-MoS2/n-MoS2/PBDTTT-C-T:PC70BM/p-MoS2/Ag based
organic solar cell [226]. (b) ITO/PEDOT:PSS/GO/perovskite/PCBM/MoS2/Ag based perovskite solar
cell [230]. (c) MoS2/p-Si based heterojunction solar cells [231].

4.4. MoS2 Efficient Role in Perovskite Solar Cells

The generic formula of perovskite solar cells is ABX3. Most commonly in organometallic halide
perovskites solar cells, A is CH3NH3

+ and B is Pb. Whereas X is an anion which is a halogen (Cl,
Br, I) [232]. For separation and collection of generated charges, electron and hole extraction layers
are inserted between the active layer and electrodes. Spiro-OMeTAD (2,2′,7,7′-tetrakis(N,N-di-p-
methoxyphenyl-amine)9,9′-spirobifluoren) mostly used as hole transport material in perovskite solar
cells because HOMO of Spiro-OMeTAD and valence band maxima of CH3NH3PBI3 has energy
levels at 5.03 eV and 5.04 eV respectively. Spiro-OMeTAD productively conduct holes from the
active layer (CH3NH3PBI3) to the anode, but it is not cost-effective. That is why a number of other
materials were used in its place in perovskite solar cells such as poly(3-hexylthiophene) P3HT [232,233],
graphene oxide (GO) [234], poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) [235],
reduced graphene oxide (rGO) [236,237], copper(I) iodide (CuI) [238] and MoS2 [239], etc.

Kim et al. [240] deliberated the hole transfer characteristic of MoS2. The work function of MoS2

(4.95 eV) is in the same league as PEDOT: PSS (5.25 eV), consequently, MoS2 can also be used as a hole
transfer layer in perovskite solar cells. Kim et al. [240] reported a PCE of 9.53% for MoS2-based devices.
Capasso et al. [241] used MoS2 as HEL in perovskite solar cell that gives PCE of 3.95% as compared to the
PCE of 3.1% obtained using spiro-OMeTAD (3.1%). MoS2 monolayer incorporated in perovskite solar
cells to give protection and hole transportation. Furthermore, few layers of MoS2 (3 nm thick) nanosheets
can be used to protect the short circuit between the two electrodes and to conduct the holes from the
active layer (perovskite) to spiro-OMeTAD. Power conversion efficiency (PCE) of perovskite solar cell
increases to 16.47%, by mixing MoS2 with PEDOT: PSS and used as a hole transfer layer, as compared
to PCE of (14.69%) obtained by using PEDOT: PSS solely. Capasso et al. [242] revealed that in the
configuration of glass/FTO/compact-TiO2/mesoporous-TiO2/CH3NH3PBI3/MoS2/Spiro-OMeTAD/Au
solar cell, PCE of 13.3% can be obtained with higher stability.

Wang et al. [230] used MoS2 and GO in perovskite solar cell and cell configuration was ITO/PEDOT:
PSS/GO/perovskite/PCBM/MoS2/Ag as shown in Figure 4b. Using MAPbI3 as an active layer,
PCE achieved was 19.14%, increased from 14.15% with VOC of 1.135 V, increased from 0.962 V.
Dasgupta et al. [239] used p-type doped MoS2 in perovskite solar cells containing MAPbI3 and reported
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6.01% PCE. Huang et al. [243] used MoS2 as hole transport material in perovskites and achieved
PCE of 15.4% and by using WS2 as HTL, PCE of 20% achieved. The higher photon conversion
efficiency of TMDCs is due to the well-aligned valence band of specific TMDC and perovskite material,
lower value of series resistance, and higher shunt resistance. Kakavelakis et al. [244] incorporated
MoS2 as an interlayer between active layers (perovskite material) and hole transport layer (PTAA) and
enhance the efficiency of perovskite solar cells by 6% as compared to the perovskite solar cells without
MoS2. Kohnehpoushi et al. [245] also used MoS2 as a hole withdrawal layer in MAPbI3 containing
perovskite solar cells and reported PCE of 20.53%.

Ahmed et al. [246] used a composite of MoS2 with TiO2 as an electron extraction layer in perovskite
solar cells. MoS2/TiO2 composite enhanced the absorption range of solar cells from 350 to 800 nm.
Power conversion efficiency (PCE) obtained was increased from 3.74% to 4.43% as compared to pure
TiO2 based perovskite solar cells.

4.5. MoS2 in Silicon-Based Heterojunction Solar Cells

2D materials exhibit distinctive optoelectronic features that are appropriate for manufacturing
2D-materials based solar cells. Among TMDCs, MoS2 shows fascinating optoelectronic attributes and
its band gap influenced by the number of layers [247–249]. Abundant research has been accompanied
related to optoelectronic characteristics, conversion of solar energy, light emission, and heterostructures
of TMDCs [250–252].

Shanmugam et al. [231] manufactured Schottky-barrier solar cells. Nanomembranes of MoS2

were used as a photoactive layer and PCE of 0.7% was achieved for MoS2 with 110 nm thickness using
ITO/MoS2/Au based solar cell. For 220 nm thick MoS2 based solar cells, PCE of 1.8% was achieved.
A similar group reported PCE of 1.3% using ITO/TiO2/MoS2/P3HT/Au based bulk heterojunction
solar cells. Tsai et al. [231] utilized monolayer of n-MoS2 with the p-silicon substrate to fabricate
heterojunction based solar cells. Al/MoS2/p-Si/Cr-Ag based heterojunction solar cell gave JSC of
22.36 mA/cm2, PCE of 5.23%, fill factor (FF) of 57.26% and VOC of 0.41 V in contrast to JSC of
21.66 mA/cm2,FF of 56.02% and VOC of 0.38 V for Al/p-Si based solar cells. Figure 4c is the simplified
sketching of Al/MoS2/p-Si/Cr-Ag based heterojunction solar cell [231]. Hao et al. [253] fabricated p–n
junction based MoS2/Si solar cells. MoS2 transferred to the p-type silicon substrate by magnetron
sputtering and gave VOC of 0.14 V, PCE of 1.3%, FF of 42.4%, and Jsc of 3.2 mA/cm2. To overcome
the transfer process of the as-synthesized MoS2 layer on the substrate, Hasani et al. [254] synthesized
MoS2 directly on substrate in n-MoS2/p-Si-based heterostructure device.

Jiao et al. [255] studied the effect of MoS2 in graphene/silicon-based solar cells. MoS2 performed
the function of the interfacial layer in this scenario and gave PCE of 4.4%. Jiao et al. [255] also
studied the effect of annealing temperature on the MoS2 prototype which affects the PCE of the device.
The same group reported PCE of 6.6% achieved by silicon substrate surface passivation. Hao et al. [256]
deposited MoS2 on p-type silicon substrate buffered with SiO2. They studied photovoltaic features of
Pd/MoS2/(3−5 nm) SiO2/Si/based heterojunction solar cell with SiO2 buffer layer and without SiO2

buffer layer. MoS2/Si based heterojunction solar cell gave PCE of 1.4% and after incorporation of SiO2

buffer, layer PCE increased by three-fold (4.5%). Buffer layer reduces the chances of recombination of
electrons and holes. PCE of 15.8% was achieved by using MoS2 in graphene/silicon solar cells [252].
Graphene/MoS2/Si based heterojunction solar cell gave a better performance like Jsc of 26.6 mA/cm2,
FF of 62% and VOC of 0.50 V as compared to the device without MoS2 with open-circuit voltage (VOC)
of 0.45 V, fill factor (FF) of 54% and short-circuit current density (Jsc) of 25.6 mA/cm2.

Tsuboi et al. [257] used MoS2 between graphene and silicon substrate as an electron blocking
and passivation layer in graphene/MoS2/n-Si-based heterojunction solar cells. Higher PCE of 1.35%
was achieved with MoS2 as compared to PCE of 0.07% without the incorporation of MoS2 in the
device. PCE increased to 8.0% by using tri-layer graphene in the solar cell. Power conversion efficiency
(PCE) increased by increasing the number of layers of graphene. MoS2 with a thickness of 9 nm
in tri-layer graphene/MoS2/n-Si-based heterojunction solar cells gave PCE of 11.1%. Van der Waals
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based MoS2/WSe2 heterostructures being fabricated by Furchi et al. [258] on SiO2/silicon substrate.
Graphene/MoS2 and WS2/MoS2 heterostructures have gained research interest as they carry a powerful
role in electronic appliances [259–263]. Al2O3 used as passivation layer in MoS2/silicon-based
heterojunction solar cell [264]. Power conversion efficiency (PCE) of 5.6% can be obtained by
passivating MoS2 surface by Al2O3 as compared to PCE of 2.21% achieved by MoS2/silicon-based
device without Al2O3 passivation layer.

MoS2/silicon heterojunction solar cell was fabricated by the direct buildup of MoS2 on the substrate
by the sol-gel method [265]. ITO/MoS2/p-Si/Ag-based solar cell showed enhanced photovoltaic
performance. By in situ growth of MoS2, defects at the interface were reduced, higher VOC accredited
to the emergence of heterojunction at Mos2/silicon interface and due to reduction in defects at interface,
recombination losses also decreased, consequently Jsc increased. Mueller and coworkers [258] fabricated
WSe2/MoS2 based heterostructure and achieved a power conversion efficiency of 0.2%. In bulk
heterojunction solar cells, the major restriction is limited absorption range (≈100–200 nm) of polymers
as compared to silicon. To get better absorption and performance of solar cells, tandem solar cells
evolved. Several single-junction based solar cells piled up vertically in tandem solar cell design [266].
This stacking reduces the thermalization effect because each part of the vertical stack absorbs a specific
part of sunlight. Saraswat et al. [267] manufactured most effective TMDCs/silicon-based tandem
solar cells.

5. Summary and Outlook

Here, in this review, we have summed up the subclasses of 2Ds with their respective crystalline
structures, synthetic strategies, optoelectric properties, and applications of TMDCs particularly MoS2

in solar cell devices. Functioning of MoS2, specifically in DSSCs, Organic solar cells, perovskite solar
cells, and in silicon heterojunction solar cells has been briefly analyzed in this review. 2D materials,
especially TMDCs having fascinating properties, come up with great research interest to cater the
innovative opportunities among research groups to investigate the concepts and phenomena in energy,
electronics, and optoelectronics. Taking into consideration, authentic fabrication methods have
developed for 2D materials including micromechanical cleavage strategy, which offers high-quality
nanosheets, but this method is known with lab-scale production and cannot cope with industrial needs.
Along with micromechanical cleavage, liquid-based exfoliation, electrochemical exfoliation, and CVD
also give reliable results for different applications. Graphene-affiliated research has been reached
in maturity after an in-depth investigation of many years. Now, layered TMDCs provoking new
thrill in research because of their captivating properties such as cost-effective, tunable work function,
catalytic effect, high absorption coefficient, strong light-matter interaction, and thickness-dependent
bandgap. Due to the atomically thin layered structure, enhanced optical and electric properties,
TMDCs have a wide range of applications in photovoltaic devices. MoS2, in DSSCs, can be used as
a counter electrode replacing conventional expensive and less stable platinum counter electrode and
gives enhanced power conversion efficiency of 7.50% as compared to the platinum electrode. To fulfill
increasing energy demands, third-generation solar cells, organic and perovskite, play a vital role.
Due to the tunability of work function, MoS2 can be used as both an electron extractor and a hole
extractor layer in organic and perovskite solar cells. MoS2 can be used as a buffer layer, interfacial layer,
electron transport layer, and as a hole transport layer in organic solar cells. Power conversion efficiency
(PCE) of 8.43% achieved by using MoS2 in organic solar cells. MoS2 in perovskite solar cells exhibited
a power conversion efficiency of 9.53%, higher than the device containing PEDOT: PSS as the hole
transport layer. In another scenario of perovskites, TiO2/CH3NH3PbI3/MoS2/Spiro-OMeTAD/Au, PCE
of 13.3% was achieved. Perovskite solar cells incorporating MoS2 gave PCE of 20.4%. In the present
literature survey, heterojunction solar cells are also analyzed. 2D (two-dimensional) /2D van der Waals
heterostructures enhance watt per gram usage of photo-active material. Graphene/MoS2, WS2/MoS2,

and MoS2/Si based heterojunction solar cells with varying values of power conversion efficiencies
have also been summarized there. A large number of research groups are working on the emerging
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field of TMDCs, but still, in many ways, this field is in premature stage with various transition metal
dichalcogenides which are not investigated and fabricated yet and which could be the source of the
novel as well as enchanting discoveries. More research should pay attention to incorporating TMDCs
in various types of solar cells to enhance the PCE.
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