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Abstract: It is well accepted that the ability of cancer cells to circumvent the cell death program that
untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the
cell death program in cancer cells have therefore been investigated for decades. Overexpression of
members of the Inhibitor of APoptosis (IAP) protein family is one possible mechanism hindering
the death of cancer cells. To promote cell death, drugs that mimic natural IAP antagonists, such as
second mitochondria-derived activator of caspases (Smac/DIABLO) were developed. Smac-Mimetics
(SMs) have entered clinical trials for hematological and solid cancers, unfortunately with variable and
limited results so far. This review explores the use of SMs for the treatment of cancer, their potential
to synergize with up-coming treatments and, finally, discusses the challenges and optimism facing
this strategy.
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1. The Relevance of Programmed Cell Death in Cancer

One of the hallmarks of cancer is failure to undergo genetically programmed cell death
in response to signals that would normally promote a suicide response in untransformed cells.
Numerous programmed cell death mechanisms have been described and include apoptosis, necroptosis,
autophagic cell death, eryptosis, NETosis, ferroptosis, paraptosis and pyroptosis [1]. The mostimportant
of these in cancer development are apoptosis and necroptosis. While autophagy very likely helps
cancer cells survive low nutrient and other stressful conditions, and there are several well-known
instances of autophagic cell death during development, the importance of autophagic cell death
in tumor development is still unclear [1,2]. Failure to undergo cell death allows cancer cells to
mutate, evolve and proliferate. Therefore, reactivating their ability to commit suicide is an appealing
anti-cancer treatment strategy and has been explored in a variety of chemotherapeutic drug approaches.
Apoptosis is one type of programmed cell death which occurs under normal physiological conditions
and is described as being either intrinsic (mitochondria dependent) or extrinsic (death receptor
dependent) [3]. Apoptosis is characterized morphologically by cell shrinkage, membrane blebbing,
aggregation of chromatin and formation of apoptotic bodies. The enzymes that cause these phenotypes
are cysteine proteases that cleave after an aspartate residue and are therefore known as caspases [4].
In contrast, necrosis, an unregulated form of cell death, leads to loss of cell homeostasis and membrane
integrity, resulting in cell rupture [5,6]. Another form of programmed cell death termed necroptosis,
which shares features with necrosis such as cell rupture and release of cellular contents, has recently
also been explored as an anti-cancer therapeutic strategy [7,8]. Necroptosis is implemented during
cellular stress when caspases are inhibited, for example genetically or pharmacologically. The proteins
that carry out the necroptotic program are the Receptor-Interacting serine/threonine-Protein Kinases
(RIPK) 1 and 3 and the pseudokinase Mixed Lineage Kinase domain-Like protein (MLKL) [9].
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2. Inhibitor of Apoptosis Proteins

The human family of Inhibitor of APoptosis (IAP) proteins regulates cell survival in response
to a number of stimuli. The IAP family, defined by the presence of one or more Baculoviral IAP
Repeat (BIR) domains, consists of eight members: X-chromosome-linked IAP (XIAP), cellular IAP 1
and 2 (cIAP1 and cIAP2), Melanoma-IAP (ML-IAP), Neuronal-IAP (NAIP), survivin, BIR-containing
ubiquitin-conjugating enzyme (Bruce/Apollon) and IAP-Like Protein 2 (ILP-2). Only three of these,
cIAP1, cIAP2 and XIAP, have major anti-apoptotic roles and this review therefore focuses on them
(Figure 1) [10-12]. These three proteins contain three BIR domains, a Really Interesting New Gene
(RING)-finger domain, that has Ubiquitin (Ub) ligase (E3) activity, and a UB-Associated (UBA) domain,
which enables their interaction with ubiquitylated proteins [13,14]. XIAP is able to bind and inhibit
caspases 3, 7 and 9, whilst cIAP1 and 2 inhibit apoptosis induced by members of the Tumor Necrosis
Factor (TNF) Super Family (TNFSF), at least in part by regulating RIPK1, a cytoplasmic protein recruited
to TNFSF receptors. XIAP is also essential for Nucleotide-binding Oligomerization Domain-containing
protein (NOD) signaling and ubiquitylates the NOD binding protein RIPK2, presumably in a similar
manner to the way cIAPs ubiquitylate RIPK1 [15-20]. However, NOD and RIPK2 do not appear to
induce cell death and therefore, XIAP function in this pathway is unlikely to be directly anti-apoptotic.
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Figure 1. Schematic representation of the structures of the eight-mammalian Inhibitor of
APoptosis (IAP) proteins. BIR, Baculovirus IAP repeat domain; UBA, Ubiquitin binding domain;
CARD, Caspase recruitment domain; RING, E3-Ligase domain; UBC, E2-Ligase domain; a.a.’s, amino
acids; kDa, kilodalton. The position and size of domains are not represented to scale.
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3. TNF Signaling Pathway

TNF is a potent and pleiotropic cytokine responsible for a diverse range of biological functions
including inflammation, proliferation and cell death. In most cases, the binding of TNF to its receptor,
TNFR1, leads to the recruitment of the TNF Receptor-Associated Death Domain (TRADD) and
RIPK1 via their respective death domains. TRADD and RIPK1 can apparently bind TNFR1 at the
same time, but the relative contribution of each to the signaling complex may depend upon the
cell type [21-23]. TRADD can recruit the TNF Receptor-Associated Factor 2 (TRAF2) and cIAP1/2
are bound to TRAF2 via a BIR1 interaction with the coiled coil of a TRAF2 trimer [24,25]. As E3
ubiquitin ligases, cIAP1/2 conjugate components of this complex with ubiquitin. The ubiquitin
platform recruits Linear UBiquitin chain Assembly Complex (LUBAC), IkB Kinases (IKKs) and
Transforming growth factor beta-Activated Kinase 1 (TAK1), resulting in activation of canonical
Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB) and Mitogen-Activated Protein
Kinases (MAPKSs). This leads to transcriptional upregulation and mRNA stabilization of genes that
encode mediators of inflammation and proteins involved in cell survival and proliferation [20,26,27].
Although the details are not fully understood, ubiquitylation and phosphorylation of components
within this plasma membrane associated, “complex 1”7, limit the formation of the death-inducing
complex 2 (Figure 2) [28-32].

Natural antagonists of IAPs, such as second mitochondria-derived activator of caspases
(Smac/DIABLO), or HtrA2, bind to the BIR domains of IAPs via their IAP-Binding Motifs (IBMs).
Smac and HtrA2 prevent XIAP from binding and inhibiting caspases 3, 7 and 9 [33-37]. IAP antagonists
rarely induce XIAP degradation. However, in many cases, they promote cIAP auto-ubiquitylation
and proteasomal degradation [17,20]. They do this by unleashing the RING domain of cIAPs from
BIR3 inhibition allowing it to dimerize [38,39]. This activation of the E3 ligase function of cIAPs by an
IAP antagonist may also result in ubiquitylation of the antagonist but the physiological significance
of this is not clear [35,40-42]. IAP antagonist induced degradation of cIAPs prevents clAP-mediated
ubiquitylation of components in the TNF signaling pathway and thus converts TNFR1 signaling from
pro-survival to pro-apoptotic. In particular, loss of cIAPs allows the formation of a FADD-caspase-8
containing complex 2, leading to caspase-8 activation by oligomerizing in a chain like manner [43-45].

In the absence of caspase-8 activity, for example through pharmacological antagonism or genetic
deletion, and in the presence of IAP inhibitors (such as Smac-Mimetic drugs), a second cell death
mediating complex forms, termed complex 2b. RIPK1 binds with RIPK3 via their Respective Homotypic
Interaction Motif (RHIM) domains, leading to auto-phosphorylation and subsequent recruitment of
MLKL. RIPK3 phosphorylation and oligomerization of MLKL, leads to its activation and translocation
from the cytosol to the plasma membrane, where it disrupts membrane integrity, leading to necroptotic
cell death (Figure 2) [26,46—49].
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Figure 2. Simplified schematic of TNFR1 Signaling. Formation of complex 1 can lead to activation
of canonical NF-kB and MAPK pro-survival signaling. Antagonism (or loss) of cIAP proteins
induced by Smac-Mimetics leads to formation of complex 2a, containing TRADD, RIPK1, FADD and
caspase-8. Caspase-8 activation and cleavage, and activation of caspase-3, results in apoptosis.
Alternatively, if caspases are inhibited, complex 2b can form via a RHIM motif dependent recruitment of
RIPK3. RIPK3 auto-phosphorylates and phosphorylates the pseudokinase MLKL. Phosphorylation of MLKL
leads to a conformational change, membrane translocation, oligomerization, membrane permeabilization
and necroptotic cell death.

4. Development of Smac-Mimetics

Overexpression of IAPs has been associated with multiple cancers, including hematological and
solid cancers, and is indicative of poor prognosis [27,50,51]. Clinically, it was observed that patients
expressing higher levels of Smac had a more favorable prognosis, with higher remission rates and
longer overall survival [27]. Proof of principle for targeting IAPs was provided by the demonstration
that exogenously expressing Smac in resistant neuroblastoma cells sensitized them to TNF-Related
Apoptosis-Inducing Ligand (TRAIL) induced apoptosis [52]. Subsequent studies using antisense
oligonucleotides against XIAP or synthetic Smac peptides, showed that these also sensitized cancer cells
to chemotherapy [53,54]. Together, with other studies, this prompted the pharmaceutical development
of small molecule, peptide-like mimetics of Smac, termed Smac-Mimetics (SMs). SMs mimic the
minimal N-terminal tetrapeptide (NH;-AVPI), that constitutes a significant part of the IBM, which binds
to the BIR domains of cIAP1/2 and XIAP [35,55,56]. Many of these mimetic compounds have shown
anti-cancer effects in vitro and in vivo, validating the development of clinical SMs [27,57-60].

Endogenous Smac homodimerizes through an extensive hydrophobic interface and is bivalent [61].
Potent and selective bivalent SMs, as well as monovalent compounds, have been developed for the
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clinic. Monovalent SMs have one AVPI-like binding motif whilst bivalent SMs have two. To date,
five monovalent compounds, GDC-0152, CUDC-427 (GDC-0917), Debio 1143 (AT-406), LCL161 and
BI 891065, and three bivalent compounds, birinapant (TL32711), APG-1387, HGS1029 (AEG40826),
have entered clinical trials for the treatment of cancer (Figure 3).
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Figure 3. Structures of Smac-Mimetic compounds that have progressed to clinical trials. Note, the structures
of HGS1029 (AEG40826) and BI 891065 are not publicly available.

5. Smac-Mimetics as Single Agents in Pre-Clinical and Clinical Studies

Triple knock-out ciapl ™ ciap27/~xiap™~ and double knock-out ciapl™ /ciap2™~ animals are
embryonic lethal. In contrast, double knock-out ciap2~~/xiap™~ are viable [62]. There are two
conflicting reports with regard to ciapl™~/xiap™~ with one strain being embryonic lethal [62] and
another viable [63]. At the least, these data suggest that inhibiting all three anti-apoptotic IAPs may be
undesirable from a safety perspective. Certainly SMs that inhibit all three with low nanomolar K; tend
to have a more inflammatory profile and be more toxic to cells than ones with a more restricted profile
(Table 1) [50,64—66].

Table 1. K; (nM) values for clinically relevant Smac-Mimetic compounds.

Smac-Mimetic cIAP1 cIAP2 XIAP ML-IAP Reference
Birinapant ~1 36 50 +23 ~1 Condon et al., 2014
LCL161 - - - — Derakhshan et al., 2016
Debio 1143 1.9 5.1 66.4 - Cai et al., 2011
GDC-0152 17 43 28 14 Flygare et al., 2013

CUDC-427 <60 <60 <60 <60 Wong et al., 2013




Cells 2020, 9, 406 6 of 24

5.1. Birinapant

Birinapant (previously known as TL32711, Tetralogic Pharmaceuticals) is one of the most clinically
progressed SMs [50]. Birinapant’s higher affinity for the BIR3 of cIAP1 (K; ~1 nM) than for that
of cIAP2 (36 nM) and XIAP (50 + 23 nM) is likely to contribute to its good safety profile [50,62].
Birinapant’s anti-cancer activity as a single agent has been extensively investigated in vitro and in vivo.
Benetatos et al., undertook a large-scale screen in vitro of 111 different malignancies and observed 18
(16%) were sensitive to birinapant single-agent treatment [67]. Interestingly, single-agent birinapant
treatment in vivo in 50 patient-derived xenotransplant models of ovarian, colorectal and melanoma
cancer, resulted in inhibition of tumor growth in roughly one third [67]. Similarly, although the human
melanoma cell lines 451 Lu and 1025 Lu were both resistant to birinapant in vitro, in xenotransplantation
models of these cells, treatment with birinapant single agent led to significant slowing of tumor growth
for both cell lines [68]. It is possible that this unexpected improvement of efficacy in vivo compared
with in vitro, is due to elevated levels of TNF in the microenvironment of melanoma lesions due to
chronic inflammation [69]. While TNF has pro-survival effects on melanoma cells, enhancing invasion
and migration potential [70], SMs can convert this advantage to a liability. These results highlight that
SMs may synergize with an inflammatory environment, whether induced or otherwise, to cause cancer
cell death [71-73].

A recent analysis of 279 Head and Neck Squamous Cell Carcinoma (HNSCC) tumors by The
Cancer Genome Atlas (TCGA) identified roughly thirty percent of HNSCC patients have genomic
amplifications of Fas-Associated Death Domain (FADD), with a subset of these patients also having
amplifications in BIRC2/cIAP1 or BIRC3/cIAP2 [74,75]. Birinapant was effective as a single agent both
in vitro and in vivo in HNSCC cells overexpressing FADD, with differential expression levels of cIAP1.
Interestingly, following overexpression of FADD in the FADD-deficient cell line UM-SCC-38, birinapant
treatments were effective at inducing cell death, implicating FADD as an important component in
SM mediated killing [74,76]. In Inflammatory Breast Cancer (IBC), overexpression of XIAP has been
correlated with acquired therapeutic resistance to apoptotic stimulus such as TRAIL [77]. Single-agent
treatment with birinapant in TRAIL resistant IBC cell lines was pro-apoptotic, leading to cell death [78].
The authors proposed that this sensitivity was due to birinapant’s activity towards XIAP, as a related
bivalent SM that binds XIAP less potently (K4 0.45 and >1 uM respectively) was not as effective at
inducing cell death [78]. However, caveats to this conclusion are that cIAP2 binding was not examined
and the different physico-chemical properties of the two compounds was not discussed [78].

The first in-human clinical trial with birinapant was in patients with advanced solid tumors or
lymphoma (NCT00993239). Birinapant was administered intravenously, with a dose-escalation from
0.18 to 63 mg/mz, once a week, every three out of four weeks. The Maximum Tolerated Dose (MTD) was
determined as 47 mg/m?, with the maximum dose 63 mg/m? having Adverse Effects (AEs) including
headache, nausea and vomiting. Intriguingly, 2 out of 3 patients receiving 63 mg/m? presented with
Bell’s palsy, a facial nerve paralysis [79]. Although birinapant accumulated in tumor tissue and had
on target effects as an IAP inhibitor, no Complete (CR) or Partial Responses (PR) were observed in
the 26 patients who were eligible for evaluation. Stable disease was observed in 7 patients (27%)
and 2 patients with colorectal cancer demonstrated radiographic evidence of tumor shrinkage [79].
A second Phase I/II clinical trial with birinapant was conducted in patients with relapsed Acute Myeloid
Leukemia (AML) or MyeloDysplastic Syndrome (MDS). Birinapant was administered at varying doses
(17, 22 or 26 mg/m?) and frequency (weekly, twice weekly or three times weekly) [80]. One case of
Bell’s palsy was observed at 22 mg/m? dosed twice a week, and the three times a week dosing schedule
was abandoned due to feasibility concerns. Best responses included a reduction in bone marrow
blasts from 60% to 10% [80]. A Phase II single-agent trial of birinapant in 11 patients with relapsed
platinum-resistant or -refractory epithelial ovarian cancer was conducted using the pre-established
MTD of 47 mg/m2, administered once a week, three out of four weeks (NCT01681368) [79,81]. Similar to
previous studies, birinapant demonstrated potent on target inhibition of IAPs, but no clinical benefit
was observed, and therefore the study was terminated [81]. Together, these first in-human studies with
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birinapant indicate that as a single agent, birinapant has some anti-cancer activity but is unlikely to be
universally effective in treating cancer. Despite the incidences of Bell’s palsy (which is reversible upon
birinapant reduction or withdrawal), the good tolerability profile of birinapant suggests that it has the
potential to be combined with chemotherapy and TNF enhancing therapy.

5.2. LCL1e61

LCL161 (Novartis) is a structural analogue of the SM compound LBW242 and has also progressed
into the clinic [82,83]. It is an orally available monovalent compound that inhibits multiple IAPs
including XIAP, cIAP1 and cIAP2 [82-84]. K; values for individual IAPs do not appear to have
been published for this compound. However, like birinapant, it promotes degradation of cIAP1 and
appears to have greater activity against cIAP1 and cIAP2 than XIAP [85]. Initial studies with LCL161
showed its efficacy as a single agent towards mutant FLT3- and BCR-ABL-positive leukemia cells [82].
In human HepatoCellular Carcinoma (HCC) cell lines Hep3B and PLC5, LCL161 had single-agent
activity (ICsp 10.23 and 19.19 uM respectively) and induced cell death [86]. Further studies have
also identified LCL161 single-agent activity in Multiple Myeloma (MM) in vitro and in vivo [72,87].
Although there was a mixed anti-tumor response in LCL161 treated MM cell lines, degradation of
cIAP1 and inhibition of XIAP was observed in all cells tested [87]. In the study by Chesi et al., MM cells
were resistant in vitro to LCL161 except at doses that were not clinically achievable [72]. Other studies
have also reported differential responses of tumors to LCL161 treatment. In particular the Pediatric
Preclinical Testing Program (PPTP) screened 23 cell lines in vitro and 46 xenograft models in vivo
and reported a variable and limited response to LCL161 within these childhood cancer cell lines [88].
The relationship between TNF expression and treatment sensitivity of PPTP cell lines was investigated
by the authors [89]. Although two of the most sensitive tumors (anaplastic large cell lymphoma
Karpas-299 cell line and medulloblastoma BT-39 xenograft) showed elevated TNF expression, multiple
B-precursor Acute Lymphoblastic Leukemia (ALL) xenografts, which also presented with moderate
levels of TNEF, were resistant to LCL161 treatment [88]. In a later study, Faye and colleagues identified
the dependence of RhabdoMyoSarcoma (RMS) tumors on cIAP1 and observed that LCL161 treatment
of mice with established Kym-1 RMS xenograft tumors led to tumor cell death and prolonged survival
(mean survival days were 46 vs. 77.69 + SEM) [90]. Strikingly, if LCL161 treatment was initiated prior
to tumor growth, mice did not develop tumors by 120 days, effectively preventing the establishment of
disease [90]. However, it should be noted that Kym-1 cells are exquisitely sensitive to SM treatment [20],
for example compound A (a preclinical precursor of birinapant) has an ICsy of ~50 pmol (unpublished).

The first in-human clinical trial of LCL161 tested the safety and effectiveness of the SM in patients
with advanced solid tumors (NCT01098838). After treating 53 patients with a dose range of 10 to 3000 mg
of LCL161, the MTD was determined as 1800 mg, administered orally once a week. Higher doses led to
AEs of cytokine release syndrome, vomiting, nausea, fatigue and anorexia. No patients had an objective
response, with 19% having a best response of stable disease [91]. Degradation of cIAP1 and increased
circulating cytokine levels, including TNF, were observed in patients dosed with lower concentrations
than the MTD, indicating that the dosage of 1800 mg is sufficient to target IAPs irrespective of individual
patient pharmacokinetics. As observed in in vitro testing of cancer cell lines, the lack of efficacy of
LCL161 in this study correlated with lack of basal production and insensitivity of tumor cells to TNFE.
Therefore, future studies with LCL161 should focus on the screening of patients that express and are
sensitive to TNF [91].

5.3. Debio 1143

Debio 1143 (also known as AT-406) is a monovalent SM that was first described in 2011 and
developed by Ascenta Therapeutics. This compound has oral bioavailability and targets cIAP1 > cIAP2
> XIAP with K; values of 1.9, 5.1 and 66.4 nM respectively [92]. Initial studies evaluated its single-agent
capacity to inhibit cancer cell growth in vitro in more than 100 human cancer cell lines and observed
that 15% were sensitive. As a single agent, Debio 1143 inhibited tumor growth in MDA-MB-231 breast



Cells 2020, 9, 406 8 of 24

cancer xenograft models [92]. Further analysis of Debio 1143 showed it also had single-agent activity
in 60% of ovarian cancer cell lines tested in vitro. Intriguingly, 3 out of 5 carboplatin resistant ovarian
cell lines were sensitive to single-agent treatment. This finding highlights the ability of SMs to drive
cell death through molecular mechanisms independent of classical chemotherapy [93].

Analysis of a mouse xenograft model treated with Debio 1143 showed it was quickly absorbed
and distributed after oral administration, and in the lung, blood, kidney and liver it reached maximum
serum concentration within 15 min [94]. Debio 1143 progressed into first-in-human Phase I clinical
trials in patients with advanced metastatic solid cancer (30 patients) and lymphoma (1 patient)
(NCT01078649) [95]. Debio 1143 was administered orally at a dose range of 5 to 900 mg, daily from
days 1 to 5, then every 14 days and then later every 21 days. A MTD was not confirmed and AEs
experienced included fatigue, nausea and vomiting, with 4 patients withdrawing from the trial [95].
As with birinapant and LCL161, on target activity was seen, with rapid degradation of cIAP1 in
tumor tissue and no CRs or PRs were observed. Stable disease as best response was seen in 5 patients.
The authors of the study highlight the need for combination approaches and screening of sensitive
markers for the clinical progression of IAP inhibitors [95].

5.4. GDC Smac-Mimetics

Compounds by Genentech, GDC-0152 and CUDC-427 (also known as GDC-0917 and currently
being developed by Curis) were reported in 2012 and 2013 respectively. Both are pan-selective
IAP antagonists with K; values towards cIAP1, cIAP2, XIAP and ML-IAP less than 60 nM [96,97].
The advantage of CUDC-427 over GDC-0152 is its increased oral bioavailability [97].

Initial studies with single treatment of both compounds demonstrated safety towards healthy
mammary epithelial tissue and efficacy in inhibiting tumor growth in MDA-MB-231 breast cancer
xenograft models [96,97]. Tchoghandjian and colleagues showed that glioblastoma cell lines and
primary human samples all expressed IAP proteins, cIAP1/2, XIAP and ML-IAP, albeit at varying
levels [98]. Intriguingly, analysis of two cohorts, totaling 101 primary human glioblastoma samples,
indicated that high expression levels of ML-IAP were indicative of worse progression-free and overall
survival [98]. Therefore, the authors chose to test the ability of GDC-0152, a SM with high affinity
towards ML-IAP, to induce glioblastoma cell death in vitro and in vivo. In vitro treatment with
GDC-0152 decreased the expression levels of IAP proteins, including ML-IAP in three out of four
glioblastoma cell lines, driving apoptotic cell death. Invivo studies using the sensitive US7MG
glioblastoma cell line orthotopically xenografted into mice, showed that GDC-0152 postponed tumor
development and increased survival [98]. The fact that GDC-0152 and CUDC-427 potently target
ML-IAP indicates that they may offer benefit to patients suffering from cancer where ML-IAP is a
biomarker of poor prognosis.

The progression of GDC-0152 and CUDC-427 into human clinical trials followed positive preclinical
modelling and simulation exercises to predict in-human safety [97]. Although initial data showed
GDC-0152 was tolerated, translation of GDC-0152 into additional human clinical trials has been
delayed due to withdrawal of a Phase I trial for reasons unrelated to safety or anti-tumor activity
(NCTO00977067). Similar to GDC-0152, CUDC-427’s progression in human clinical trials has also been
arrested. CUDC-427 was tested in a Phase I trial in 42 patients with advanced solid malignancies
to determine its safety profile (NCT01226277) [99]. Patients were treated for two out of three weeks
with escalating doses of CUDC-427, starting from 5 mg and advancing to 600 mg. AEs included
fatigue, nausea, vomiting and rash, with treatment being discontinued in six patients due to dose
limiting toxicities. Although out of the 36 patients evaluable for response, 34 had no objective response,
two patients (Mucosa-Associated Lymphoid Tissue (MALT) lymphoma of the stomach and the other a
BRCAI1 (germline) and platinum-refractory ovarian cancer) showed evidence of a durable CR [99].
The profound response experienced by these two patients warrants further investigation into patient
indications to select sensitive candidates. Despite the initial promising results, progression of GDC SMs
has halted following a second Phase I trial with CUDC-427 that was discontinued (NCT01908413) [99].
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5.5. Other Smac-Mimetic Drugs

Numerous other SMs have been developed and undergone pre-clinical assessment. These include
APG-1387, HGS1029 (also known as AEG40826) and BI 891065 (also known as BI5).

APG-1387 (Ascentage Pharma) has shown anti-cancer effects as a single agent in vitro and in vivo
in nasopharyngeal carcinoma cells and in ovarian cancer cells [100-102]. APG-1387 is currently
in dose-escalation Phase I/II clinical trials to determine safety, tolerability, pharmacokinetics and
anti-cancer activity in patients with advanced solid tumors or hematological malignancies (Table 2)
(NCT03386526, ACTRN12614000268640 and CTR20150161) [103,104].

HGS1029 (also known as AEG40826) was developed by Aegera Therapeutics Inc. and subsequently
licensed to Human Genome Sciences Inc. for commercial development. Preliminary in vitro studies
with HGS51029 have shown it has modest activity as a single agent in four out of eight pancreatic
cancer cell lines tested [105]. The safety and efficacy of HG51029 was assessed in a Phase I clinical
trial in 44 patients with advanced solid tumors (NCT00708006). The most common AEs were
nausea, anorexia, pyrexia, vomiting, diarrhea, fatigue and rash, with dose limiting toxicities being
observed in one out of nine patients at 1.4 mg/m? and in two out of six patients at 4.8 mg/m?.
Best responses were one colon cancer patient presenting with tumor regression and two patients,
with Non-Small-Cell Lung Carcinoma (NSCLC) and adrenocortical carcinoma, having stable disease
for more than 6 months [106,107]. Despite these promising results, progression of HG51029 has been
attenuated due to termination of a second Phase I clinical trial (NCT01013818).

BI 891065 (also known as BI5) was developed by Boehringer Ingelheim and has higher selectivity
towards cIAP1 and cIAP2 compared to XIAP. BI 891065 has shown modest single-agent efficacy
in MBT-2 bladder cancer and EMT6 breast cancer cell lines [108]. It is currently in human clinical
Phase I trials to determine safety, tolerability and efficacy (Table 2) (NCT03697304, NCT03166631
and NCT04138823).

Table 2. In progress clinical Smac-Mimetic trials.

Smac-Mimetic Adjuvant Therapy Cancer Phase  Clinical Trial Date
Birinapant Pembrolizumab Solid cancer v NCT02587962 Aug-17
Birinapant Radjiation HNSCC I NCT03803774 Jan-19

LCL161 None Mpyelofibrosis I NCT02098161 Dec-14
LCL161 Immunotherapy 2 Solid tumors P Ib NCT02890069 Oct-16
LCL161 Immunotherapy ¢ Multiple myeloma I NCT03111992 Dec-17
LCL161 Topotecan Solid tumors 4 v NCT02649673 Mar-16
Debio 1143 Nivolumab Solid cancer I/ NCT04122625 Apr-19
Debio 1143 Pembrolizumab Solid tumors ¢ I NCT03871959 Sep-19
Debio 1143 Avelumab NSCLC Ib NCT03270176 Oct-17
Debio 1143 Cisplatin/radiotherapy HNSCC /I NCT02022098 Oct-13
APG-1387 None Solid cancer/Hema /I NCT03386526 Nov-17
BI 891065 Immunotherapy Solid tumors & I NCT03166631 Sep-17
BI 891065 Immunotherapy Neoplasm metastasis I NCT03697304 Mar-19
BI 891065 Immunotherapy f Neoplasm I NCT04138823 Nov-19

2 PDR001 checkpoint inhibitor. b Colorectal cancer, non-small cell lung carcinoma (NSCLC), triple negative breast
cancer, renal cell carcinoma. € PDR001, anti-IL-17 monoclonal antibody CJM112. d Small cell lung cancer, ovarian
cancer. ¢ Adenocarcinoma of the pancreas, colon and rectum. f anti-PD-1 monoclonal antibody BI 754091. &
Neoplasms, neoplasm metastasis, NSCLC.

6. Mechanisms of Resistance to Smac-Mimetics and Strategies to Overcome Them

The Phase I/I human clinical trials of SMs indicated they are tolerated as single agents but have
low efficacy. Therefore, pre-clinical and clinical research has been conducted to identify biomarkers of
response and combination treatments that can increase the effectiveness of SM treatment.
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6.1. Importance of TNF

The ability of a tumor to produce and respond to TNF (or another TNFSF death ligand) is vital
for the anti-tumor effect of SMs, and tumors that lack either of these functions will most likely be
resistant to SM treatment [17,20,109,110]. For this reason, an obvious initial combination therapy was
the addition of exogenous TNF (or TRAIL) to overcome SM treatment resistance. The efficacy of
TNF and/or TRAIL in combination with birinapant is demonstrated by the sensitization of 41 out of
93 birinapant resistant malignancies in vitro [67]. In HNSCC cell lines with differential expression of
FADD and cIAP1, addition of TNF or TRAIL dramatically sensitized all tumors to birinapant-mediated
killing [76]. Similar results have also been observed in melanoma cell lines where 9 out of 16 birinapant
resistant tumors were dramatically sensitized to birinapant-mediated killing with the addition of
TNF [68].

Despite these results indicating addition of exogenous TNF in vitro is able to sensitize SM resistant
tumors to treatment, administrating TNF systemically to patients is not feasible due to extreme
toxicities observed at therapeutically relevant doses [111]. Isolated Limb Perfusion (ILP) is one
technique that has been used to administer TNF at therapeutically relevant doses in combination
with chemotherapies. However, the technical challenges and innate limitations of ILP means it
is only plausible for a minority of localized cancers and therefore alternative methods have been
developed to be used in combination with SMs [112]. For example, to overcome the barrier of
systemically safe, tumor specific TNF delivery, Yuan and colleagues developed a novel system
whereby systemic delivery of Adeno-Associated Virus bacterioPhage-TNF (AAVP-TNF) enables tumor
vasculature-targeted gene therapy [113]. This system allows delivery of TNF directly to the tumor
tissue, minimizing systemic toxicity [113-115]. Co-administration of AAVP-TNF and LCL161 to M21
human xenograft mice led to increased expression of TNF specifically in tumor tissue, and not in healthy
organs. Combination therapy was synergistic and significantly prolonged survival of mice [113].
Similarly, cytokine-engineered oncolytic viruses, such as the TNF-armed attenuated oncolytic Vesicular
Stomatitis Virus (VSVA51), combined with the SM LCL161, slowed tumor growth and improved
survival rates in mouse models of solid tumors [116]. These findings support the hypothesis that
increasing TNF expression in vivo potentiates SM treatment.

Another approach has been to enhance the levels of TNF expressed by the tumor, by targeting
parallel signaling pathways. A boutique screen of kinase inhibitors in macrophages showed,
surprisingly, that 11 distinct p38 MAPK inhibitors synergized with compound A, the preclinical
precursor of birinapant, to increase TNF production and macrophage killing [117]. One of these,
LY2228820 (Ralimetinib), was shown to increase induction of TNF by SM treatment leading to synergistic
potentiation of birinapant killing of AML cells both in vitro and in vivo [117]. Another approach has
been to induce TNF in tumors more conventionally using Toll-Like Receptor (TLR) ligands, such as
CpG and poly(I:C). Surprisingly, when combined with LCL161 in an in vivo model, peritoneal injection
of poly(I:C) was better at curing the mice than intra-tumoral injection. However, when combined
with CpG, the best responses were dual intra-tumoral and peritoneal injections [71]. These results
certainly suggest that SMs can combine with circulating TNF and not just TNF produced in the
tumor micro-environment.

6.2. Combination with Radiation

Having established the neccessicity of TNF for SM-mediated killing, and the potential for increased
TNF to overcome treatment resistance, novel combination therapies were explored that combined SMs
with TNF enhancing therapy. Hallahan and colleagues reported that treatment of human sarcoma cells
with ionizing radiation led to an increase in TNF mRNA and an increased production of TNF protein.
The increased production of TNF enhanced radiation-mediated killing through autocrine and paracrine
mechanisms [118]. Armed with this knowledge, the combination of SMs with radiation was explored to
overcome TNF-mediated SM resistance in cancer. Birinapant or radiation single-agent treatment only
modestly extended the survival of mice burdened with FADD overexpressing HNSCC UM-5CC-46
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xenograft tumors [74]. Strikingly, however, the combination of SM with radiation cured these mice
of HNSCC tumors with no signs of relapse, up to 130 days [74]. A potent increase in endogenous
TNF levels in the tumors was found, corroborating the hypothesis that the radiosensitization effect
of birinapant is due to an enhancement of TNF in the environment. Similar findings were observed
in Esophageal Squamous Carcinoma (ESCC) cells, where the radiosensitizing effect of LCL161 was
investigated. ESCC cells were differentially sensitive to SM single-agent treatment. However, addition
of radiation increased radiation-induced TNF, DNA fragmentation and apoptosis of these cells.
The pan-caspase inhibitor zZVAD-FMK attenuated apoptosis, therefore the sensitization mediated by
the addition of LCL161 was due to the activation of the TNFR1 extrinsic apoptotic pathway [119].
Further studies showed that Debio 1143 significantly enhanced radiosensitization in NSCLC and
HNSCC tumors in vitro and in vivo [120,121]. This sensitization was driven by an increase in autocrine
TNF production and cell death was mediated by caspases [120,121]. Due to these promising findings,
radiation therapy is being trialed in HNSCC tumors in combination with birinapant (NCT03803774)
and Debio 1143 (NCT02022098).

6.3. Combination with Chemotherapy

Upon exposure of cells to cytotoxic drugs and DNA-damaging agents, a measurable decrease
in endogenous Smac within the mitochondria and an accumulation within the cytosol can be
observed [122]. Therefore, SMs provide a means to augment the natural response to cytotoxic
compounds. Chemotherapy remains the front-line treatment for a range of cancers, rationalizing the
exploration of pairing SMs with chemotherapies for combination treatment. Paclitaxel is one of the
first-line chemotherapy treatments for NSCLC. However, due to its limited efficacy in some patients,
new combination treatments are being investigated [123]. An increase in expression of cIAP levels has
been shown to correlate with poor prognosis and lower overall survival in various types of cancer,
including NSCLC [124-127]. Therefore, combining the SM LCL161 with paclitaxel in NSCLC tumors
was investigated. Addition of LCL161 to paclitaxel therapy increased TNF expression, degradation of
cIAP1/2 and activation of caspase-8 dependent apoptotic signaling, sensitizing NSCLC cancer cells
to treatment in vitro [124]. Similar findings were observed in mice xenografted with NSCLC tumors
where LCL161 plus paclitaxel treatment had better anti-tumor activity than either treatment alone [124].

Treatment of HNSCC cell lines with birinapant plus docetaxel was more effective than either
treatment alone in vitro [76]. However, while birinapant plus docetaxel treatment of mice burdened
with HNSCC xenografts significantly reduced tumor volume, there was no extension in survival
compared to control treated mice [76]. Surprisingly, however, there was a significant extension in
survival with birinapant single-agent treatment, although it was less effective at reducing tumor
volume [76]. The authors suggested that a different dosing schedule might have increased survival in
the combination treated animals, but regardless, the results yet again emphasize that in vivo response to
birinapant can be better than predicted from in vitro studies. In HL-60, OVCAR-3 and HT-1376 cancer
cell lines, the effects of birinapant treatment could be enhanced by the addition of chemotherapy agents
SN-38 (active metabolite of irinotecan), gemcitabine or 5-azacytidine, but not pemetrexed, vemurafenib,
bendamustine or sorafenib [67]. Interestingly, in the HT-1376 bladder cancer cell line, the potentiation
of birinapant and gemcitabine treatment was not attenuated by co-treatment with an anti-TNF antibody,
thus indicating that the increase in cell death was via a TNF-independent-mechanism in this tumor [67].

Platinum-based chemotherapy, commonly carboplatin, is the front-line therapy for ovarian cancer
patients. However, patients can develop resistance to treatment [128,129]. In High-Grade Serous
ovarian Cancer (HGSC) primary samples, a small proportion of cells were platinum resistant and
possessed stem cell characteristics of tumor initiation, multi lineage differentiation, self-renewal and
had high expression of IAP proteins. Co-treatment of birinapant with carboplatin led to sensitization
of these cells and increased killing in a caspase-8 dependent mechanism in vitro and in xenograft
HGSC models [130]. As expected, Human Ovarian AdenoCarcinoma (HOAC) cells had a variable
response to carboplatin single-agent treatment, with three out of five being resistant. However, despite
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resistance to chemotherapy, co-treatment with Debio 1143 with carboplatin sensitized these cells to
cell death in vitro [131]. Treatment of carboplatin and Debio 1143 in vitro resistant SKOV-3 HOAC
xenograft burdened mice with carboplatin had no effect, whilst treatment with Debio 1143 single
agent induced a slow-down in tumor growth and complete regression in one out of seven mice.
This effect was potentiated with the addition of carboplatin leading to slow-down of tumor growth in
two mice and complete regression in five mice (out of seven) [131]. Furthermore, in vivo treatment of
OVCARRSip (cells selected in vivo from OVCARS3 parental cells to form ascites) carboplatin-resistant
ovarian xenograft models with Debio 1143 in combination with carboplatin was able to prolong
survival of mice better than single treatments [93]. The capacity of SMs to act as single agents or in
combination with carboplatin to kill carboplatin resistant ovarian cancer cell lines validates them as a
combination or alternative therapy to overcome resistance [93].

The preclinical data discussed above indicated SMs are more efficacious when combined with
TNF inducing chemotherapies than alone. For this reason, birinapant was combined with several
chemotherapies including, carboplatin/paclitaxel, irinotecan, docetaxel, gemcitabine or liposomal
doxorubicin for the treatment of patients with solid tumors. Co-treatment of birinapant with these
diverse chemotherapies in 124 patients with refractory/relapsed solid tumors did not limit the dose of
chemotherapy administered. Despite seven patients experiencing reversible Bell’s palsy symptom:s,
overall birinapant was well tolerated in combination with chemotherapy as a treatment. Clinical benefit
was observed in numerous patients, with 11 patients having a PR and 61 having stable disease. Of the
chemotherapies tested, irinotecan enhanced birinapant’s activity the most, even in patients that had
previously failed irinotecan therapy (NCT01188499) [132]. Therefore, a Phase II extension study
was conducted combining birinapant with irinotecan in irinotecan-relapsed or refractory metastatic
ColoRectal Cancer (CRC) patients [133]. Birinapant was administered at a fixed dose or in an Ascending
Dose Schedule (ADS) in combination with irinotecan at a fixed dose. The combination was well
tolerated, and the ADS appeared to prevent symptoms of Bell’s palsy. Two patients achieved a PR,
while 27 had stable disease. Together, this study supports the idea that combining birinapant with the
TNF inducing chemotherapy irinotecan may be a feasible therapeutic strategy for irinotecan resistant
tumors (NCT01188499) [133].

As discussed above, the chemotherapy paclitaxel has been shown to potentiate LCL161 mediated
killing in solid tumors, including Triple Negative Breast Cancer (TNBC) [124,134-136]. Phase II clinical
trials were initiated [137], following Phase I trials that indicated that LCL161 plus paclitaxel therapy is
well tolerated [134]. Interestingly, for this study the TNF-based Gene expression Signature (GS) was
determined for each patient and used as a predictor of sensitivity to SM-mediated cell death [137].
Bardia and colleagues conducted a global trial incorporating molecular pre-screening to investigate
the neoadjuvant treatment of LCL161 and paclitaxel in TNBC patients assigned as GS-positive (more
likely to respond to SM treatment) vs. GS-negative (less likely to respond) [137]. Of 207 patients,
30.4% had a GS-positive score and combination treatment was more effective than paclitaxel alone
treatment. However, in the GS-negative group comprising 69.6% of the patient population, there was
an antagonistic effect in combination treatment compared to control arms. This study highlights the
importance of molecular screening to determine eligibility of patients and the analysis of possible
increased toxicities (NCT01617668) [137].

6.4. Combination with Bcl-2 Inhibitors

B-cell lymphoma 2 (Bcl-2) prevents Bax/Bak mediated disruption of the mitochondrial
outer-membrane, preventing cell death and efflux of cytochrome ¢ from the mitochondrial
inter-membrane space [138-140]. Efflux of endogenous Smac from within the mitochondria is
also regulated by Bcl-2 and cells overexpressing Bcl-2 inhibit the release of Smac from the mitochondria
following apoptotic stimulus [37,122]. Combining SMs with other specific inducers of cell death,
such as Bcl-2 inhibitors, might increase efficacy and reduce toxicity. Preliminary studies where the
authors knocked down Bcl-2 which led to resistant Huh7 cells becoming sensitized to LCL161 treatment
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in vitro, were nevertheless discouraging because the level of cell death achieved was minimal, less than
20% [86]. More impressive results were obtained combining the putative Bcl-2 inhibitor SC-2001
(a derivative of obatoclax) with LCL161 to treat Huh-7 xenograft tumors in vivo [86]. MM cells have
been shown to have high expression of anti-apoptotic Bcl-2 family members [141,142] and IAP family
members [143,144], suggesting that the co-inhibition of these two families of proteins may be beneficial
for the treatment of MM. Co-treatment with obatoclax and LCL161 led to a synergistic killing of MM
cell lines [145]. However, this synergistic killing may not be due specifically to obatoclax inhibiting
Bcl-2 because a number of well controlled studies have shown that obatoclax kills cells in a Bax-Bak
independent manner and does not act as a BH3 mimetic [146,147]. A more recent study combining
the specific Bcl-2 inhibitor ABT-199 with SMs birinapant or Debio 1143 showed an increase in human
colon adenocarcinoma cell death compared to single-agent treatments [148]. Together, these preclinical
studies indicate the potential for targeting the intrinsic and extrinsic apoptosis pathways in SM
combination therapy.

6.5. Combination with Immunotherapy

Immunotherapy harnesses the immune system to kill tumors. Kearney et al. 2017 showed that
the SM birinapant sensitized tumor cells to TNF dependent killing by Cytotoxic Lymphocytes (CLs),
both CD8+ T cells and Natural Killer (NK) cells. Upon antigen recognition or NK-activating receptor
activation, CLs naturally respond by inducing TNE. Surprisingly, given the data showing the ability of
SMs to increase TNF levels, birinapant did not increase T-cell production of TNF [149]. On the other
hand, tumor-derived Programmed Death-Ligand 1 (PD-L1) engagement of its receptor, Programmed
cell Death protein 1 (PD-1), expressed on CLs, decreased CL production of TNF. Furthermore, while
birinapant did not increase TNF secretion by CLs, it did sensitize the tumor cells to TNF induced
death. Together, these results suggested that the combination of the Inmune Checkpoint Inhibitor
(ICI), anti-PD1, and birinapant would be a very effective way to increase CL killing. And indeed, this is
what the authors observed [149]. Similarly, Beug and colleagues in an extensive and very detailed
study, showed that combining the ICls, anti-PD1 or anti-Cytotoxic T-Lymphocyte-Associated protein
4 (anti-CTLA-4), with the SM LCL161 greatly increased survival in intra-cranial mouse glioblastoma
models and produced durable cures [150]. These results are particularly significant on several levels.
Firstly, they show that the combination therapy works well in vivo without any reported toxicity.
Secondly, the SM was delivered orally, yet the blood brain barrier, a significant barrier for many
drugs, was not an impediment, and thus the combination works in one of the most challenging in vivo
environments. Thirdly, the authors showed that more than one SM and ICI cocktail was effective,
boosting confidence in the general utility of the approach. Lastly, the durable response was associated
with immunological memory suggesting the potential of the therapy to deliver long-term cures. As in
single-agent studies, TNF was an important part of the cytotoxic response and also required CD8+
T-cells [150]. Encouragingly, an independent study with the SM BI 891065 in combination with an
anti-PD1 antibody also eradicated breast cancer tumors in immunocompetent mice [108].

Clinical trials in solid tumors with diverse SMs and immunotherapy are currently in
progress; birinapant and Pembrolizumab (NCT02587962), LCL161 and PDR001 (NCT03111992 and
NCT02890069), Debio 1143 and Nivolumab, Pembrolizumab or Avelumab (NCT04122625, NCT03871959
and NCT03270176), and BI 891065 and BI 754091 (NCT03697304, NCT03166631 and NCT04138823)
(Table 2).

An alternative option to amplifying the immune response, is to reduce the threshold of a tumor
cell to respond to immunotherapy. Using a CRISPR/Cas9 screen, Kearney et al. 2018, showed that
the suppression of TNF, Interferon (IFNvy) and antigen presentation were key mechanisms by which
tumors can evade the attack of CLs [151]. This matched well with previous clinical data showing that
IFNYy plays an important role in the efficacy of ICIs [152], but for the first time suggested TNF signaling
was also an important component. They found that TNF was a potent NK cell effector molecule and
that TNF-mediated apoptosis is important in a NK cell attack [151]. Subsequently, Vredevoogd and
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colleagues combined these earlier observations to show that increasing sensitivity of tumor cells to
TNF killing by removal of TRAF2 enhanced the therapeutic effect of ICI drugs. And, as expected,
given the important role TRAF2 plays in recruiting cIAPs and the synergistic effects of combining
birinapant with ICIs in vitro shown by Kearney and colleagues, inhibition of cIAP1/2 by birinapant led
to an even stronger response when combined with ICI drugs (anti-PD-1 therapy) [153]. Work showing
that SMs can also synergize with Chimeric Antigen Receptor (CAR) T-cell therapy is discussed in an
accompanying review in this series [73,154].

6.6. Inducing Necroptosis

SMs can sensitize cells to both apoptotic and necroptotic cell death pathways mediated by TNFR1.
As previously discussed, the majority of current cancer chemotherapies utilize the intrinisic apoptotic
pathway to induce cell death. As many cancers have evolved resistance to cell death via apoptosis,
the ability of SMs to regulate the TNF cell death pathways through promoting both apoptosis and
necroptosis provides a promosing novel therapeutic avenue towards resistant malignancies [155,156].
Proof of principle for this concept has been shown as an effective way to kill AML cells both in vitro [157]
and also safely in vivo [7]. Specifically Brumatti and colleagues induced necroptosis by combining
birinapant with the U.S Food and Drug Administration (FDA) approved caspase inhibitor IDN-6556
(Emricasan) [7]. However, SM-mediated necroptotic cell death does not always require pharmaceutical
inhibition of caspases. Birinapant has been observed to mediate cell death through dual action of
apoptotic and necroptotic mechanisms in ALL [158]. Similarily, addition of Debio 1143 with the
chemotherapy carboplatin led to ovarian cancer cell apoptotic or necroptotic cell death, depending on
the cell line [131]. Reactive Oxygen Species (ROS) are volatile molecules and high levels can induce
programmed cell death in their own right [1,159]. They have also been shown to influence cellular
responses to TNF by regulating the NF-«B and apoptotic pathways [160]. In some cases, the presence
of ROS has been shown to enhance both SM-mediated apoptotic and necroptotic cell death [8,77,161].
Taken together, these studies suggest that birinapant may possess a dual activity (apoptotic and
non-apoptotic) in cancer cells, and that the ability to promote non-apoptotic cell death makes it an
attractive drug for the treatment of apoptotic resistant cancers.

6.7. Mechanical Resistance

Recent studies have shown that SMs, including the clinically relevant birinapant, are substrates
for the MultiDrug Resistance 1 (MDR1; gene name ABCB1) pump, also known as P-glycoprotein
(P-gp) [162,163] (Morrish et al., unpublished). These transporters have been well characterized and
their substrates are many. However, these recent studies identifying SMs as substrates have the
potential to further inform future clinical trials in using patient MDR1 profiles for targeted therapy.

7. Future Directions and Conclusions

In this review, we have highlighted the progression of SMs from bench to bed-side.
Eight compounds have been tested in humans, and all were well tolerated, had a reasonable safety
profile, were shown to hit their target and displayed some anti-tumor activity. SMs are inherently
non-toxic towards healthy tissue and the reason for this is not entirely understood. It has been proposed
that because SMs are targeted drugs and specifically affect IAP signaling pathways, they have less
toxicity than chemotherapies which alter many pathways [164-167]. Another explanation might
be that abnormal expression of IAPs and/or TNF by the tumor or stromal cells in its environment
leads to addiction to NF-kB and/or TNFR1 signaling pathways. Following the preliminary success
of the SM compounds in vitro and in vivo, and their apparent low toxicity towards healthy tissue,
they progressed into in-human clinical trials as single agents. However, a common draw back for
all compounds is their limited clinical activity as single agents. Extensive investigation has been
conducted over the last decade to enhance the efficacy of SMs as anti-cancer therapy. The strengths
and weaknesses of SM therapy are complex and intertwined. TNF is an essential component for
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SM-mediated cell death. Tumors that do not produce and respond to TNF are inherently resistant
to SM treatment, limiting therapy, but unfortunately it is not feasible to directly co-administer TNF
to patients. Therefore, various combinations have been investigated to safely enhance the levels of
TNF experienced by the tumor by targeting other signaling pathways, or using chemo-, radiation or
immunotherapy. Alternative strategies to increase SM potential are through additional targeting of
the intrinsic apoptosis pathway, activating the alternative cell death pathways such as necroptosis or
preventing mechanical efflux of SM drugs. A common thread running through all these treatment
options is that they will not work effectively in all patients, and thus the identification and validation of
biomarkers of response are required to ensure that patients receive the most effective SM combination
therapy. While there remains much work to be done, we believe the very specific action of SM drugs,
with little evidence of off-target activity, the good safety profile (probably linked to specificity) and
the potential to synergize with other equally exciting up-coming treatments, such as immunotherapy,
augurs well for the clinical future of SMs.
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