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Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore,
organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms,
manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a
hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce
cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating
within mitochondria and a comprehensive insight into the interplay between cellular senescence and
mitochondrial dysfunction.
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1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious
insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent
cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still
remaining metabolically active. Historically, the first condition described leading to senescence was
exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a
critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type
of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other
telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced
senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed
proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be
induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli
is more acute and is known as stress induced premature senescence (SIPS) [4–8]. Mechanistically,
several molecular pathways have been implicated that often depend on the nature of the initiating event
and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that
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can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably,
the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the
action of p16INK4A to maintain this condition [13].
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chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are 
known for their increased secreting activity [5]. Particularly, they carry out a complex pro-
inflammatory response known as senescence-associated secretory phenotype (SASP), which is 
mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of 
pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface 
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Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal
physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize
cellular integrity and activate a variety of response modules, through complex and highly sophisticated
biochemical networks. Depending on the intensity and duration of the stressor, cellular response
mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery
and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes
reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified,
including resistance to apoptosis, morphological and structural features, epigenetic alterations,
chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are
known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory
response known as senescence-associated secretory phenotype (SASP), which is mediated by the
transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory
factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules,
and extracellular matrix degrading proteins, that influence the surrounding microenvironment.
Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various
developmental programs or pathophysiological conditions [4–6,9,15,16]. Closely related with SASP,
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senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities
in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other
physiological processes such as redox signaling, mitochondria enter the scene as potential key players
during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative
phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early
stages of cellular senescence, using diverse cellular senescence models [20–25]. Senescent cells
are characterized by increased production of reactive oxygen species (ROS), mainly attributed to
dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate
cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway
(DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to
ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS
function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic
changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine
dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics
(namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated
during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine
triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28].
Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS
production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional
mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis
promotes the establishment and maintenance of cellular senescence through various mechanisms
including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron
transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated
protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and
dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1

and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle
arrest [11,31–34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere
shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing
and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance
of mitochondria negatively impacts the development of many senescence-associated features, including
the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction
was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed
mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular
senescence and these multifaceted organelles. This interplay seems to be best described as a vicious
circle, involving a number of feedback loops between the players, rather than a linear cause and
effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence
extends far beyond their contribution in ROS production and oxidative stress. In view of recent
outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought
to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating
mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of
normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.
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2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes:
nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base
pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of
replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and
13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two
to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently
identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can
represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle.
Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”,
strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand
replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light,
such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic
code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (∼0.5 kb), termed “7S DNA”,
forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA
responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ
(pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization
and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50–52]. Importantly,
many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA
varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54].
Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in
length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a
pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated
with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation,
strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA
packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the
high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance
of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which
are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor
gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of
cellular energy metabolism regulation, as well as sirtuins (SIRT) [60–62]. Mitochondrial sirtuins—SIRT3,
SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases.
Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell.
Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that
mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer
comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3′-5′

exonuclease activity and a 5′-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to
the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit,
p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA
termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair
of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to
be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved
in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as
TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM,
thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol,
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a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA
maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and
oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA
in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified
within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair
pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed,
stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a)
the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within
mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through
mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways
operating within these multifaceted organelles has been expanding during the last decades, from the
inceptive belief of no available repair mechanisms, through the subsequent identification of a limited
repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous
“arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain
lesions and short-patch base excision repair (BER) [71–73], mitochondria also exert long-patch BER
activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as
homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining
(MMEJ) activities for the repair of double-strand lesions [67,74–80]. Additionally, a novel mismatch
repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within
mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms,
regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be
further studied in order to characterize key players and regulators involved, both in vitro and in vivo.
Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways
which have not yet been identified within mitochondria, it appears that a broad range of DNA repair
mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome.
To date, the only hint regarding the NER pathway in the mitochondria is the localization of the
transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria
upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA
pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS
production, and are required for mitophagy (clearance of damaged mitochondria) through interaction
of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to
mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the
mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry,
microscopical, computational and integrative machine learning methods, revealed that mitochondria
contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85–87]. From a functional
perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified
in those involved in energy metabolism (≈15%), protein synthesis, transport, folding and turnover
functions (≈23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions,
including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid
and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for
more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across
one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that
compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the
mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear
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genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state
from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor
proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase
of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94].
Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways
also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial
destination have been so far recognized: the presequence pathway to the matrix and inner membrane,
the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the
intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed
by a group of molecular chaperones (also known as “heat shock proteins”) which function in
collaboration with a group of proteolytic enzymes (proteases) [94–96]. In fact, mitochondria possess
their own group of chaperones and proteases stationed in the four compartments of the organelle
(i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97–99].
These compartment-specific chaperones perform multiple functions important for mitochondria
biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial
protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102].
Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a
role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins
against denaturation and are actively involved in disaggregation and refolding/remodeling of protein
aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial
chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105].
The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family
member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of
preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process,
whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78
(a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for
the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108].
In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original
mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat
shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix
is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a
critical regulator of a variety of physiological functions, including cell proliferation, differentiation,
and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative
phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg
Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor
cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore,
TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition
pore opening [114–116].

The mitochondrial protein quality control surveillance mechanism is further supported by a
complex network of mitochondrial proteases, which monitor all four mitochondrial compartments
against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a
plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases,
namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease
(PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular
Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial
membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial
oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human
mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into
three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117].
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Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial
proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic
mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second
group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed
“pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis,
they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases
are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related
to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117].
Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic
function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and
processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins
essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have
been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and
dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or
dysregulated function of mitochondrial proteases in the control of ageing and longevity [119–124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key
component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis.
Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane
or protein import into the organelle [125–127]. Despite the fact that no specific mitoproteases have
been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been
found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin
ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial
E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein
30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129–134].
Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial
morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for
cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control
of this specific mitochondrial compartment is [135–137]. Consistent with its contribution in controlling
the outer membrane protein quality is the role of UPS in the regulation of the proteome of other
mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP,
component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease
G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138–140].

Of great importance, during impaired mitochondrial function and/or instability of the
mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress
response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism
is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial
molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased
generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival
pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces
outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial
dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective
mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged
mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a
healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning
as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically
elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication,
and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged
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material to daughter organelles [145–148]. A tightly controlled balance between fission and fusion
events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of
fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are
closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases
termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152].
MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM)
and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM),
whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space
tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate
fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within
the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing
release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division)
machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial
fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to
these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute
in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the
selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is
the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced
putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while
the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous
import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable
levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of
damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them
for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the
dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and
drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the
mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired
mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the
well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157],
its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme
analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions,
insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown
in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased
SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage
in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived
transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and
TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were
found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de
novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS
production and the impaired membrane potential [160]. On the other hand, overexpression of the
transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial
encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number,
and accelerated the rate of cellular senescence [161].
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In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis,
including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels
were documented two days after the induction of oncogenic Ras, the expression of these genes
was even higher when the cells had established a full senescent state. Of note, newly formed
mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and
increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in
mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to
mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial
mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased
ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase
reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression
or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and
mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the
mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA
depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular
senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory
arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5,
but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced
senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice
did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can
have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the
balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides
its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same
time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction
of premature senescence-like phenotype [38,166–168], therefore further underscoring the possible role
of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy
metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism
is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased
mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with
enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was
found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin
(mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also
demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β
deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s
integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant
threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to
have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria
extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging
factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can
induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism,
stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria
can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as
mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA
transcription and stabilization). These molecules exit the mitochondrial compartment, enter the
cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like
receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a
significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized
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by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway
which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great
importance, cytochrome c, which under normal conditions is restricted within the mitochondrial
intermembrane space where it functions as an electron carrier in the electron transport chain and
as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed,
cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli,
the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the
inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c
functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately,
current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy
and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists,
suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis
holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced
p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice
with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn
repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164].
This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS
and respiration with decreased ATP generation capacity, and down-regulated expression of ROS
detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic
subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially
rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally,
it has been proposed that telomerase protects mitochondria against oxidative stress through a
telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus
upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner,
exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel
mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels,
enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA
damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance,
increased endogenous formation of ROS after continuous cultivation of endothelial cells was
accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from
the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants
delayed the onset of replicative senescence by counteracting the increased ROS production and
preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde
response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these
finding are in discrepancy with earlier reports according to which ectopically expressed TERT in
human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176–178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster
biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of
growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a
metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected
to drive further decline in mitochondrial function via genotoxic activation of p53 and associated
repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural
functions in many cellular proteins, thus being involved in a wide variety of cellular processes such
as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene
expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras,
knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in
ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its
effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic
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mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem
cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell
population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift
during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards
fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular
senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial
dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied
with enhanced cristae structure and increased mitochondrial content, have been described during
stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent
cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines,
respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in
the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly
at the periphery of mitochondria or shaping circular formations, while in other mitochondria they
were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae
responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].
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Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed
mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 µm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with
abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.
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As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated
with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested
by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn >

Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was
sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression
of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype.
Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial
fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated
changes were significantly suppressed, and the cell proliferation rate was restored, even though
mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that
causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se,
that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs)
cultivated in vitro till they reached replicative senescence was associated with a reduced expression
of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial
architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and
Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection
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either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of
Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of
mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial
epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins,
OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence
in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall
shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon
of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an
energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes
cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more
resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191–196].
Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much
higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings
support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher
production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in
senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic
activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy
capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged
mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke
extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with
impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci
formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that
Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence
in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels.
Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown,
suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated
mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy
that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is
considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing
to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears
also to be related to changes in general autophagy, even though things are less clear. By removing
damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting
an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of
senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203].
It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is
crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial
damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced
mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation
of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention.
On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging
and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular
senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative
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and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which
highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial
dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the
current view supports the notion that aging is, among other causes, the result of generalized impaired
mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence
has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts
as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent
cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and
jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner
over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy
lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened
up, where strategies can be designed to reduce the burden of senescent cells in an organism and
thus contribute to the treatment of pathological conditions and age-related abnormal conditions.
Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial
dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic
senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory,
anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against
age-related disorders in different animal models, has gained attention as a potential senolytic agent [209].
It has been demonstrated that resveratrol improves mitochondrial function and protects against
metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the
role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen
(MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult
induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that
senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the
SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit
impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase
in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle
arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that
mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory
and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in
specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms
whereby mitochondria that have abolished normal function are implicated in SASP regulation include:
(a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet
dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a
positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which
in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low
NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA
repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as
inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate
immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory
effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the
SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated
protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent
persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress
senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of
senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since
new findings are coming into light underscoring possible undesirable side effects. For example, a
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category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins
has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due
to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased
DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical
relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative
was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor
cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes
of cell death and cell physiology has been well known, their involvement in cellular senescence has
only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms
governing the bidirectional connection between perturbations in mitochondrial homeostasis and
cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new
technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus
facilitating our understanding of these multifaceted organelles and elucidating the interplay between
mitochondria and cellular senescence [216,217].
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