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Abstract: Delignified rice husk waste (25.66% (wt) cellulose) was converted to levulinic acid using three
types of manganese catalysts, i.e., the Mn3O4/hierarchical ZSM-5 zeolite and Mn3O4 heterogenous
catalysts, as well as Mn(II) ion homogeneous counterpart. The hierarchical ZSM-5 zeolite was
prepared using the double template method and modified with Mn3O4 through wet-impregnation
method. The structure and physicochemical properties of the catalyst materials were determined
using several solid-state characterization techniques. The reaction was conducted in a 200 mL-three
neck-round bottom flask at 100 ◦C and 130 ◦C for a certain reaction time in the presence of 10% (v/v)
phosphoric acid and 2% (v/v) H2O2 aqueous solution, and the product was analyzed using HPLC.
In general, 5-hydroxymethyl furfural (5-HMF) as the intermediate product was produced after 2 h
and decreased after 4 h reaction time. To conclude, the Mn3O4/hierarchical ZSM-5 heterogenous
catalyst gave the highest yield (wt %) of levulinic acid (39.75% and 27.60%, respectively) as the main
product, after 8 h reaction time.

Keywords: levulinic acid; manganese catalysts; hierarchical ZSM-5; lignocellulose conversion

1. Introduction

Levulinic acid (4-oxopentanoic acid) is an important compound used as a platform chemical in
alternative energy production, such as the production of γ-valerolactone (GVL), 5-bromolevulinic acid,
valeric acid, 2-methyl-THF, and methyl pyrrolidone [1]. It is also used as a renewable source for the
production of polymers such as its derivative, GVL, which is used as a basis for precursor formation
of polymers [2]. Kon et al. reported reacting levulinic acid with valeric acid and valeric biofuels
via selective hydrogenation using a Pt/HMFI zeolite catalyst [3]. One of the important industrial
heterogeneous catalysts used as support is micropores zeolite (>2 nm pore diameter). It is well-known
that zeolite has thermal and chemical stability, as well as catalytic and adsorption activity [4]. However
the micropores has limited the application of zeolite in conversion or adsorption of larger substrates.
Therefore, some attempts have been reported to improve overcome this limitation including preparing
hierarchical zeolite [5]. In contrast to conventional zeolites, hierarchical zeolites consist of both
micropores (where the active sites located) and mesopores facilitating diffusion of reactants and
products [6].

Preparation of hierarchical ZSM-5 and other zeolites structure using secondary template have been
reported, such as hierarchical mesoporous Beta and ZSM-5 [7], also mesoporous FAU type zeolite [8].
ZSM-5, one type of zeolites has long been used as catalyst in the fine-chemical and petrochemicals
industry for catalytic reactions involving cracking, isomerization, alkylation, acylation, purification for
water adsorbing systems [9], and having active sites with diverse strength become the main attractions
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related to their application [10]. Hierarchical ZSM-5 zeolites used for partial oxidation of methane
to methanol [11], catalytic hydrogenation of carbon dioxide [12], catalytic pyrolysis of biomass to
aromatic hydrocarbons [13].

In many industries, the production of levulinic acid is relatively low because of the high cost
of its synthetic raw materials. Hence, the importance of biomass raw materials, which are cheap
and easy to make, cannot be overemphasized [14]. Indonesia is the third largest rice producer in the
world, after China and India. However, the country has yet to attain optimal utilization of rice husk.
To overcome the above limitations and make proper use of the abundant raw materials, rice husks can
be used as organic (biomass) substitutes for synthetic raw materials in the production of levulinic acid,
using the cellulose contained in biomass. It is necessary to optimize the delignification pre-treatment
to obtain optimum amount of cellulose from lignocellulosic biomass. There are several methods of
chemical delignification such as ozonolysis, oxidative delignification, acid and alkaline hydrolysis. The
alkali pretreatment using NaOH is the most common method applied, where the NaOH concentration
depends on the content of lignin in the plants. In example, diluted NaOH solution is effective to reduce
lignin content (wt %) from 24–55% to 20% (wt) in hardwood [15]. In our previous work, pretreatment
of mahogany wood with NaOH 10% (v/v) decreased the lignin content from 51.03 to 15.58% (wt) [16],
whereas when applied to rice husk, the lignin content was decreased from 35.64 to 18.42% (wt) [17].
NaOH showed to be the best delignification agent because the obtained cellulose is more amorphous,
compared to NaOCl giving more crystalline cellulose [16].

Chen et al. [17] studied the degradation of pure cotton cellulose into 5-(hydroxymethyl)furfural
(5-HMF) and levulinic acid, using Mn/ZSM-5 agregate as catalyst through Fenton-like reaction. The
degradation process investigated the use of Mn/ZSM-5 as catalyst for the degradation of pure cotton
cellulose under phosphoric acid media and hydrogen peroxide, to yield 5-HMF as a main product
and levulinic acid as a by-product. In other work, HCl has been used as a homogeneous catalyst
while ZSM-5, β-zeolite, Y-zeolite were used as heterogeneous catalysts transform glucose into levulinic
acid and 5-HMF [18]. In our previous study, Krisnandi et al. [17] used hierarchical MnOx/ZSM-5 as
heterogeneous catalyst and Mn2+ ions as homogeneous catalyst in conversion of delignified rice husk
to levulinic acid. The conversion recorded a highest percentage yield (wt %) for levulinic acid (15.83%)
at 100 ◦C, reaction time of 8 h, and in phosphoric acid media containing H2O2. It showed the stability
of the heterogeneous catalysts after the reaction.

In order to obtain more information the role of manganese oxide and hierarchical ZSM-5 in
Mn3O4/hierarchical ZSM-5 catalysts, conversion with manganese oxide Mn3O4 (as heterogeneous
catalyst) was also carried out as addition to experiments reported in [17]. Furthermore, identification
of intermediate compound (HMF) and side product (formic acid) were also carried out. Therefore,
mechanism in conversion cellulose to levulininc acid can be confirmed. To the best of the author
knowledge, this is one among not many articles reporting the utilization of raw biomass as cellulose
sources which contributed to the development of value-added chemical such as levulinic acid.

2. Results

2.1. Catalyst Characterization

XRD analysis was conducted to confirm the structure of the as-synthesized ZSM-5 zeolite.
Its diffraction pattern (Figure 1) has typical peaks similar to those observed in the pattern of
standard ZSM-5, in which there are two sharp peaks between 2θ = 7–10◦ and three peaks between
2θ = 22–25◦ [19].

The powder XRD pattern of the Mn3O4/hierarchical ZSM-5 zeolite (Figure 1b) show additional
peaks which include, two sharp peaks between 2θ = 30–35◦, and three peaks between 2θ = 35–40◦ [20].
According to JCPDS: 24-0734, peaks belong to Mn3O4 crystals. These results indicate the successful
preparation of hierarchical Mn3O4/ZSM-5 samples. On the other hand, a sharp peak between
2θ = 15–20◦ is also observed at XRD pattern of as-prepared Mn3O4 (Figure 1c), according to JCPDS:
44-0141, the peak belongs to MnO2 [21].
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Figure 1. X-ray diffraction patterns of the (a) ZSM-5 and (b) Mn3O4/ZSM-5 (c) Mn3O4 (# Mn3O4 peaks
JCPDS: 24–0734).

FTIR analysis of ZSM-5 zeolites and manganese oxide-modified counterpart is summarized in
Figure 2. The infrared spectra of hierarchical Mn3O4/ZSM-5 zeolite (Figure 2b) was compared to that
of hierarchical ZSM-5 zeolite (Figure 2c) and Mn3O4 (Figure 2a). The figures show that all the peaks
observed in the hierarchical ZSM-5 zeolite were also observed in the Mn3O4/hierarchical ZSM-5 zeolite.
However, there is a difference in the intensity of the broad band located at 3500–3000 cm−1, which
is a typical absorption band assigned to the stretching vibration of water-hydrogen bonded silanol
group (ν-Si–OH) or internal silanol groups [22]. The intensity of the silanol band in Mn3O4/ZSM-5
decreased, suggesting that the Mn-oxide species were located on top of the silanol groups, thus they
interacted with the –OH, thereby leading to a decrease in the water content of the water-hydrogen
bonded –Si-OH group. In addition, Figure 2 shows the presence of Mn3O4 where the FTIR spectra
indicate two characteristic emission bands located around 613 and 509 cm−1, a typical absorption band
coupling between Mn−O stretching at the finger print area [23]. In addition, there were more than
two absorption band peaks around 615 and 513 cm−1, which can be attributed to the coupling modes
between the Mn–O stretching, while the band around 429 cm−1 can be assigned as a band-stretching
mode [24].
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Figure 2. Infrared spectra of catalyst samples: (a) Mn3O4; (b) hierarchical ZSM-5; (c) Mn3O4/

hierarchical ZSM-5.

AAS measurement for the Mn-oxide ZSM-5 indicates that the weight percent loading of Mn into
the ZSM-5 structure was 1.91% (wt %), which is close to the expected value of 2.0%. It can also be
seen that the insertion of Mn3O4 into the extra zeolite framework did not cause significant change
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to its XRD pattern. This indicates that the structure and crystallinity of the ZSM-5 zeolite were not
destroyed during the Mn impregnation process.

Scanning electron microscopy (SEM) characterization provided morphology information of the
hierarchical ZSM-5 zeolite. Figure 3 clearly shows that the as-synthesized ZSM-5 zeolite had hexagonal
structure and a coffin-like shape [25]. ZSM-5 zeolite synthesized using TPAOH template to form
MFI framework has coffin-like morphology and has hexagonal crystal geometry [7]. However, the
mesoporosity of the surface is not clearly visible, as reported by Wang et al. [7]. Therefore, it is necessary
to perform surface area analysis to identify the ZSM-5 as a porous material.
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Figure 3. Images of scanning electron microscopy (SEM) characterization of Hierarchical ZSM-5 Zeolite,
magnification 20,000 ×.

Transmission Electron Microscope (TEM) measurement (Figure 4) of the hierarchical ZSM-5 zeolite
and its modification with Mn3O4 indicates that the crystal morphology of the catalyst is not damaged
after modification. There are some bright oval shapes with diameter sizes of 2.5–12 nm (Figure 4a) that
justify the presence of mesoporosity within the structure of hierarchical ZSM-5. This corresponds with
the SEM images and SAA data. In the image of Mn3O4-modified ZSM-5 shown in Figure 4b, dark
deposits were observed on the surface of hierarchical ZSM-5, which could be attributed to the presence
of Mn3O4 cluster aggregation with diameter size of 6.8–20 nm.
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The analysis of the surface area and pore size were carried out using Brunauer–Emmett–Teller
(BET) and Barrett–Joyner–Halenda (BJH) desorption methods, respectively. The results showed that
the surface area of the as-synthesized hierarchical ZSM-5 zeolite was 348.6 m2/g. This property is
important, because the greater the surface area, the easier it is to disperse metal oxides as active sites
on the support surface [26]. Furthermore, Figure 5 shows the characteristic isotherm curves (type IV),
which indicates a mesoporous structure. PDDA-Cl (polidialydimethyl ammonium chloride) aims to
build this hierarchical ZSM-5 material so that the microporous and mesoporous material is formed in
one structure. This results is different from the typical curve for microporous ZSM-5 isotherms which
usually shows that specific surface area is developed from micropores [27], but it is consistent with
the curve reported by Xu et al. [26] for hierarchical zeolites containing micro- and mesopores in one
structure. In addition, the average diameter of the pores formed were 1.8842 nm and 2.7419 nm, which
are within the range for microporous (d < 2 nm) and mesoporous (2 nm < d < 50 nm), respectively.
The results for the surface area analysis are summarized in Table 1.

Table 1. Surface area and pore size hierarchical ZSM-5 with Mn3O4/ZSM-5.

Samples S BET a

(m2/g)
S Micro b

(m2/g)
S Meso c

(m2/g)
Total Pore
Volume d

(cm3/g)

Micropore
Volume e

(cm3/g)

Mesoporous
Volume f

(cm3/g)

Average Pore
Diameter g (nm)

Micro- Meso-

ZSM-5 348.6 199.1 149.5 0.2671 0.0969 0.17025 1.8842 2.7419
Mn3O4/ZSM-5 296.1 143.5 152.6 0.2467 0.0704 0.17626 1.8881 2.3979

a. BET method, b. T-plot analysis, c. a-b, d. the total pore volume at P / Po = 0.99, e. T-plot micropore volume, f. total
volume—micropore volume, g. BJH method of desorption
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2.2. Cellulose Conversion Process Reaction of Delignified Rice Husk Waste to Levulinic Acid

2.2.1. Pre-Treatment of Rice Husk Waste

The first stage in the pre-treatment process for rice husk is dewaxing to remove extractive
substances contained in the biomass such as wax, fat, fatty acids, terpenes, and steroids [28] that may
interfere with the conversion process. The second stage is the delignification process to improve the
internal surface of lignocellulose, reduce the degree of polymerization and crystallinity, and damage
the structure of lignin [29]. Table 2 shows that before pre-treatment, the lignin and α-cellulose content
were 33.53% and 42.37% weight, respectively. After pre-treatment, the lignin content decreased almost
49% to 17.24% weight in Table 2. The α-cellulose and hemicellulose content was also decreased. This
may be due to cellulose and hemicellulose removal during the delignification process, especially the
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part directly connected to lignin in the lignocellulosic bond [30]. The delignified rice husk is then used
as a substrate in the catalytic test.

Table 2. Results for the chemical analysis of rice husk before and after treatment.

No. Chemical Compounds
Yield (wt %)

Before After

Treatment

1 Lignin 33.53 17.24
2 α-Cellulose 42.37 25.66
3 Hemicellulose 10.70 5.75

2.2.2. Catalytic Test

The conversion of delignified cellulose to levulinic acid was conducted on three different types of
Mn catalysts, i.e., Mn3O4/hierarchical ZSM-5 and solid Mn3O4 (heterogeneous catalysts), and Mn2+

solution (homogeneous catalyst). The Mn3O4 represent the Fenton-like species because it consists of
Mn2+ and Mn3+ in the same structure [31,32], which in the presence of H2O2 could undergo reaction
as in Equations (1) and (2). Furthermore, the role of hierarchical ZSM-5 as support catalyst was also
studied by observing the reaction profile when Mn3O4/ZSM-5 is used as a catalyst. The reaction using
hierarchical ZSM-5 as catalyst has been discussed in significant detail in our other work [17]. Finally,
reaction with a homogeneous solution of Mn2+ catalyst was used as comparison, and the reaction
without catalyst as control. All the reactions were carried out in phosphoric acid (H3PO4) 40% (v/v)
media with reflux, since cellulose is soluble in phosphoric acid (which is able to damage the intra- and
inter-molecular hydrogen bonds in cellulose) but difficult to dissolve in water [33]. The Fenton-like
species was used for the next step, with phosphoric acid as media and the Fenton-like reaction of
manganese also giving H+ to the increased acidic media. The cellulose can be degraded using a
Fenton-like reagent such as H2O2 together with a catalyst, and by a phosphoric acid solution [33].

Mn2+ + H2O2→Mn3+ + OH− + HO• (1)

Mn3+ + H2O2→Mn2+ + HO2•+ H+ (2)

The next step was breaking the β-(1,4)-glycosidic bonds, after the hydrogen bond termination by
the solvent. The termination step occurred through Fenton-like reaction. Hydrogen peroxide was used
in the presence of Mn(III) to produce a radical hydroxyl, HO• (Equation (1)). Therefore, hydrogen
peroxide (H2O2) acted as an initiating reagent. The Mn3+ produced then reacts continuously with
the H2O2, which in the presence of excess H2O2 produces Mn2+ and hydroperoxide radical, HO2•

(Equation (2)). However, radical hydroperoxides are not as effective as hydroxyl radicals [31,34]. Thus,
the quantity of H2O2 used should not be too high to achieve optimum results [35]. The key mechanistic
feature of the Fenton-like reaction is the generation of OH• radicals [34].

Figure 6 shows the percentage yield (wt %) of the reactions of delignified rice-husk over a 10
h-reaction time at 100 ◦C for three catalysts and without catalyst as control. The trends for yield (wt %)
of produced levulinic acid were similar for all three catalysts, it was produced only after 2 h and kept
increasing up to 8 h before decreasing after 10 h. In the reaction without catalysts, levulinic acid was
only observed after the reaction has progressed for 4 h. This suggests that there is an initiation time for
the reduction of β-1-4-glucosidic bonds in the cellulose to smaller fraction such as glucose, followed by
oxidation of the hydroxyl radicals in both manganese and acidic media to produce levulinic acid.

To study the effect of temperature on the yield (wt %), reactions were also conducted at 130 ◦C;
the results are shown in Figure 7. The result follows a similar trend to those obtained at 100 ◦C, but the
yield (wt %) of levulinic acid is higher for the same reaction time. A significant increase in yield (wt %)
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was observed in the reaction using Mn3O4/hierarchical ZSM-5 as catalyst, while the increase of yield
(wt %) from other catalysts was less obvious.

Figures 6 and 7 show that the highest yield (wt %) of levulinic acid for each reaction was reached
after 8 h reaction time. When using Mn3O4/hierarchical ZSM-5 as catalyst, the yield (wt %) obtained at
100 ◦C and 130 ◦C was 27.60% and 39.75%, respectively. The reaction using Mn2+ gave yield of 17.69%
(100 ◦C) and 19.34% (130 ◦C). When Mn3O4 catalyst, the highest yield (wt %) of levulinic acid was
similar, reaching 14.02% (100 ◦C) and 15.93% (130 ◦C), respectively. After 10 h reaction, the yield (wt %)
of levulinic acid, for all catalysts, decreased. It indicates that the levulinic acid could decompose or
undergo futher reaction. Based on this information, it is suggested that the reaction is selective to
cellulose. This result recommends that cellulose degradation reactions requires higher temperatures
(130 ◦C) to lower the activation energy [33]. The high reaction temperature give resulted in larger
amount of products in the liquid hydrolysates, due to accelerated sugar structure decomposition and
increased the severity of the treatment [36]. Longer reaction times and higher temperatures improve
the yield of products by increasing the rate of degradation, which shows the relationship between the
concentration and the reaction time. However, we do not go higher than 130 ◦C because we want it to
be more selective to cellulose and keep the energy consumption as low as possible. In this reaction the
remaining lignin mixed with other solid percipitate (char), as also reported in [17]. The fate of lignin
was not discussed further, since usually lignin conversion, with or without the presence of catalyst,
takes place at temperature above 150 ◦C with high preassure [37].
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In the reaction using Mn2+, Mn3O4, and hierarchical Mn3O4/ZSM-5 as catalysts, Mn species
affected the formation of hydroxyl radicals that being generated during Fenton-like reaction. For the
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reaction without a catalyst, there is no species to streamline the formation of hydroxyl radicals, hence,
leading to a thermal decomposition of cellulose.

2.2.3. Side Product Analysis

Cellulose conversion, in acidic condition, to levulinic acid follows a complex reaction pathways [35],
which involves the production of glucose, fructose, and 5-HMF as intermediates and formic acid as the
by-product. In this work, only formation the of 5-HMF and formic acid were studied.

2.2.4. 5-HMF Intermediate

Figures 6 and 7 shows that the 5-HMF was not formed until 2 h of reaction, reached optimum 4 h,
then decreased when the reaction carried out longer than 4 h. The decrease in 5-HMF yield indicates
it has been converted futher into levulinic acid and formic acid. This trend is observed for all the
manganese catalysts used in this study. In line with levulinic production, the reaction gives higher
5-HMF yield (wt %) at 130 ◦C than the reaction at 100 ◦C.
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2.2.5. Formic Acid

The results in Figures 6 and 7 show that formic acid is formed as a by-product because of two
pathways from HMF intermediate compounds which produce levulinic acid as a main product and
formic acid as a by-product [38]. The yield of formic acid follows the same trend as that of levulinic
acid, which is the largest product obtained after 8 h of reaction. However, the yield of formic acid is
lower than that of levulinic acid, due to evaporation at temperature above 100 ◦C.
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3. Discussion

The presence of Mn catalysts has accelerated the process of delignified biomass conversion to
levulinic acid. Comparing the activity of Mn2+ ion to solid Mn3O4, it was found that it is a better
catalyst than the solid Mn3O4, giving a slightly higher yield (wt %) of levulinic acid. This is expected
since in fenton like system, Mn2+ produced directly OH•, from H2O2, that will catalyze cellulose
conversion to yield (wt %) of levulinic acid. Meanwhile, solid Mn3O4 is insoluble in water, hence, the
amount of Mn2+ and Mn3+ produced will be less than that in the reaction using free Mn2+ catalyst.
On the other hand, Mn3O4 impregnated to hierarchical ZSM-5 gives the highest % yield of levulinic
acid among the three catalysts. It shows that, the ZSM-5, with high surface area, caused the Mn3O4

species distributed as small agregates inside the pores (as shown by TEM), thus it has more active sites
than in bulk Mn3O4, producing more OH• species. This indicates that the hierarchical ZSM-5 plays an
important role as a support catalyst. This result is consistent with our previous results [17] and results
obtained by Chen et.al [33]. Unfortunately, the zeolite catalyst used in our reaction did not survive the
acidic aqueous, as confirmed in our previous work [17]. This is a disadvantage using zeolite in severe
aqueous phase reaction [39,40]. On the other hand, there are some advantages that can be gained in
this reaction, such as small amount of catalyst used (10% of substrate weight), aqueous phase reaction,
feasible separation of liquid product from unwanted solid char and lignin, less concentrated H3PO4

(40% v/v) and low reaction temperature (100 to 130 ◦C). They correspond to green chemistry and UN
Sustainable Development Goals (SDGs) number 9 and 12 [41].

Analysis of the products is in agreement with the proposed mechanism for the production of
levulinic acid from cellulose is illustrated in Figure 8. The cellulose from delignified rice husk first will
be hydrolyzed to yield glucose, which is isomerized to form fructose. The fructose is then converted
first to 5-HMF (intermediate product) and finally to levulinic acid, with formic acid as by-product [42].
Finally, a temperature of 130 ◦C give higher yield (wt %) results, since it speeds up the dehydration
and rehydration processes from fructose to levulinic acid. The proposed mechanism is in agreement
with mechanism reported by Chen et al. using cotton cellulose [33] and Singh et al. using aromatic
crop [43].
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4. Materials and Methods

4.1. Materials and Chemicals

Rice husk was supplied from Dramaga area, Bogor, Indonesia with the geographical coordinates
-6.577672, 106.741376, harvested in dry season. The chemicals used in this experiment were all of
analytical grade: hydrogen peroxide (30.0%, purity), phosphoric acid (89.0%, purity), sulphuric acid
(96.0%, purity), sodium hydroxide (99.0%, purity), ethanol (95.0%, purity), and manganese (ii) nitrate
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tetrahydrate (99.0%, purity) were obtained from Merck (Darmstadt, Germany) while tetraorthosilicate
(TEOS, 98.0%), sodium aluminate (99.0%), tetrapropylammonium hydroxide (TPAOH, 1.0 M), and
polidialydimethyl ammonium chloride (PDDA, 35.0%) were obtained from Sigma Aldrich (St. Louis,
MO, USA). Distilled water was used in the preparation of each solution.

4.2. Preparation of Hierarchical ZSM-5 Zeolite, Hierarchical Mn3O4/ZSM-5 Zeolite, Mn3O4 and Mn(II) ion

The synthesis of hierarchical ZSM-5 zeolite was done following the procedure published in
Krisnandi et al. [44], using a double template method with NaAlO2 and TEOS as sources of Al and
Si, and TPAOH and PDDA-Cl (35% wt) as first and second template sources. The crystallization
process was carried out at 150 ◦C for 6 days. The product was filtered and calcined at 550 ◦C for 5 h
to remove the organic template, followed by characterization using X-ray diffraction (XRD), Fourier
transformed infra-red spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), and scanning electron
microscopy-energy dispersive X-ray spectroscopy (SEM-EDS).

Hierarchical Mn3O4/ZSM-5 zeolite was prepared using the incipient wetness impregnation method
with manganese nitrate solution for 24 h at 25 ◦C into a calcined hierarchical ZSM-5 zeolite. The
mixture was dried at 110 ◦C for 5 h followed by calcination at 550 ◦C. For comparison, Mn3O4 and
Mn(II) solutions were also prepared as catalysts. The Mn catalysts were then characterized accordingly
using XRD, FTIR, BET, and atomic absorption spectroscopy (AAS).

XRD measurements of the samples were performed at the Physics Laboratory of BATAN
PUSPIPTEK, Serpong, Indonesia. The crystal structures of the samples were measured at room
temperature using XRD PANalytical Instrument with copper at λ Kα1 1.54096 Å. The X-ray source was
a conventional sealed 2500-Watt X-ray tube operated at 45 kV and 40 mA in a 2θ range between 5◦ and
50◦. The FT-IR sample measurements were performed using a Shimadzu IR Prestige 21. A mixture of
dried solid sample and KBr was pelletized to form a transparent film for the measurement of the FT-IR
at wavenumber range from 450 to 4000 cm−1. SEM-EDS for analysis of the chemical composition at
the Chemistry Laboratory, BATAN PUSPIPTEK, Serpong, Indonesia. The surface area and pore size
were analysed using a Quantachrome Quadrawin v3.21 and ASAP 2400. Samples were measured by
N2 adsorption at 196 ◦C. The adsorption-desorption measurements for the samples were degassed
at 300 ◦C for 13 h while the surface area was measured using the BET equation. The micropore and
mesopore size distributions were determined using Barrett–Joyner–Halenda (BJH) methods. AAS
was performed using a AA 6300. Destruction by digestion with nitric and perchloric acids and by
low-temperature ashing with dissolution of the ash in a hydrofluoric acid mixture with solid sample.
TEM measurement on ZSM-5 before and after Mn3O4 impregnation was carried out using Tecnai F20,
FEI Company, KAIST.

4.3. Pre-Treatment of Biomass

Rice husk waste was subjected to dewaxing and delignification pre-treatment. Dewaxing was
carried out by extracting the mash of the rice husk waste using n-hexane: ethanol (2:1, v/v) with
soxhlet extraction for 6 h at 60 ◦C. Delignification was then carried out by immersing the residue from
dewaxing process into 10% NaOH solution (1:25, m/v) at 55 ◦C for 90 min under vigorous stirring
(200 rpm) The lignin and cellulose content were determined before and after the pre-treatment using
the procedure outlined in our previous study [17].

4.4. Catalytic Test: Conversion of Delignified Rice Husk

The conversion of delignified rice husk (substrate) was carried out following Chen et al. [33]
with modification. In general, it was conducted in Pyrex three neck-round bottom flask at 100 ◦C and
130 ◦C. Approximately 1 g of substrate was dispersed into 20 mL of phosphoric acid (40%, v/v) and
0.5 mL of hydrogen peroxide (30%, v/v). Hierarchical Mn3O4/ZSM-5 zeolite, Mn3O4, and Mn(II) ions
were added in different amount as catalysts, adjusted to 10% of substrate weight. The mixture was
heated at 100 or 130 ◦C, and sampled after 0, 2, 4, 6, 8, and 10 h reaction, quenched in ice-water bucket.



Catalysts 2020, 10, 327 11 of 13

The liquid product was then separated from the precipitate and quantitatively measured using high
performance liquid chromatography (HPLC), performed at the Department of Biology, UI using HPLC
Ultimate 3000 on a silica gel column (RezexTM ROA-Organic Acid H+ (8%)) equipped with a pump,
autosampler, Rs column compartment, diode array detector UV at 210 nm for formic acid [45]; 220 nm
for levulinic acid [17]; 284 nm for 5-HMF [33]. The eluent (H2SO4 0.0025 M) and distilled water were
pumped at a flow rate of 1 mL/min.

4.5. Product Analysis

The yield (wt%) of products was calculated using the following Equation:

% yield of product =
total concentration

(mg
L

)
× solution volume (L)

cellulose mass (mg)
× 100% (3)

5. Conclusions

The main role of hierarchical Mn3O4/ZSM-5 zeolite catalyst in this delignified rice husk conversion
was its hierarchical porous ZSM-5 zeolite as porous material which accelerated the degradation of
cellulose into levulinic acid. Mn oxide species also assisted in the Fenton-like reaction to form hydroxyl
groups. The Mn3O4/ hierarchical ZSM-5 zeolite proved the best catalyst for the reaction, offering the
highest percentage yield (wt %) of levulinic acid at 130 ◦C (39.75%) and 100 ◦C (27.60%) after 8 h as well
as good selectivity toward levulinic acid than 5-HMF. It was also shown that the reaction temperature
affects the yield (wt %) of levulinic acid.
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