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Abstract: The difficulty of early diagnosis and the development of drug resistance are two major
barriers to the successful treatment of cancer. Autophagy plays a crucial role in several cellular
functions, and its dysregulation is associated with both tumorigenesis and drug resistance. Unc-51-like
kinase 1 (ULK1) is a serine/threonine kinase that participates in the initiation of autophagy. Many
studies have indicated that compounds that directly or indirectly target ULK1 could be used for tumor
therapy. However, reports of the therapeutic effects of these compounds have come to conflicting
conclusions. In this work, we reviewed recent studies related to the effects of ULK1 on the regulation
of autophagy and the development of drug resistance in cancers, with the aim of clarifying the
mechanistic underpinnings of this therapeutic target.
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1. Introduction

Cancer is one of the leading causes of death in humans [1]. Although significant advances have
been made in cancer research, the successful treatment of cancer still faces severe challenges [2].
Chemotherapy is a common form of cancer treatment [3] which is used as monotherapy or in
combination with radiation therapy to treat cancers [4]. Chemotherapy drugs, whether they are
commonly used cytotoxic drugs or small molecule targeted drugs, can encounter therapeutic barriers
due to the development of drug resistance in tumor cells which is a common cause of tumor recurrence
and metastasis [5]. Drugs targeting the pathways related to cancer development can improve the
prognosis if used in the early treatment of some cancers. However, these targeted treatments can
cause drug resistance in tumor cells resulting in the failure of therapies [6-9]. Tumor resistance can
be divided into two categories, i.e., inherent and acquired. Inherent resistance, on the one hand, is
defined as tumor drug resistance that occurs even without any drug treatment and is typically caused
by genetic mutations. Acquired drug resistance, on the other hand, develops during cancer treatment
as an adaptation to selective pressure from the therapeutics. These processes are related to the high
expression of therapeutic targets and the activation of compensatory signaling pathways [10-12].

Autophagy is a system of self-degradation that is a prevalent element of drug resistance in
tumors [13]. It can be either beneficial or harmful to the occurrence of drug resistance in tumor cells,
either protecting tumor cells from the effects of chemotherapy drugs, or killing multidrug resistant
cells [13,14]. Patients with poor prognoses typically have higher measured levels of autophagy relative
to patients with good prognoses, suggesting that autophagy can lead to the development of MDR [15].
The effect of autophagy on tumor cells varies according to the tumor type and the stage of cancer
development [16]. In the precancerous stage, autophagy eliminates obsolete cellular constituents
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such as misfolded proteins or damaged organelles from cells [17]. The inhibition of autophagy at
this stage leads to the increase of intracellular reactive oxygen species, genomic dysfunction, and
the accumulation of P62 protein. These changes collectively result in an increase of ER pressure
and DNA damage, and thus promote the formation of tumors [18]. At this stage, autophagy is a
tumor-suppressing factor [19]. However, under conditions of starvation or oxidative stress, autophagy
can also provide nutrients and energy to established metastatic tumors. In this way, autophagy can
paradoxically act as a cancer-promoting factor [20]. Tumor cells can reuse proteins and damaged
organelles through autophagy, and therefore survive despite drug treatment. Indeed, here, inhibiting
autophagy can promote the death of tumor cells [21].

Unc-51-like kinase 1 (ULK1) is a cytoplasmic kinase that is important to the process of autophagy.
It is a homologue of ATG1 gene in mammals, with a total similarity of 29% [22,23]. It has been shown
that ULK1 can either promote or inhibit tumor growth through protein—protein interactions and
post-translational modification-mediated autophagy in nutrient-deficient environments [24]. Thus,
both the positive and negative regulation of ULK can situationally protect tumor cells from excessive
autophagy [25]. ULK1 forms a protein complex together with the autophagy proteins mATG13,
FIP200, and ATG101 to regulate the initiation of autophagy [26]. The induction of autophagy requires
the activation of this ULK complex, and the ULK complex is directly regulated by mammalian
target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) [27]. The observation of
ULK1-mediated inhibition of the early autophagosome indicates that ULK1 not only participates in the
initiation of autophagy, but also regulates the maturation of autophagosomes [28]. In this review, we
summarized the biological function of ULK1 in tumors with respect to its potential as a target for tumor
therapy and its impact on the occurrence of drug resistance by mediating autophagy in tumor cells.

2. Structure of ULK1 and Its Biological Functions in Tumors

The mammalian genome contains a total of five ATG1 homologues, ULK1, ULK2, ULK3, ULK4,
and STK36 [29]. Among them, only ULK1 and ULK2 exhibit extensive sequence similarity over
the entire protein length [30], whereas ULK3, ULK4, and STK36 only have sequence similarity to
the Atgl gene in the kinase structure domain [31]. The conserved domains of ULKI1 in different
model organisms have been confirmed (Table 1). Sequence analysis of ULK1 and ULK2 indicates that
their kinase domains have 75% sequence identity [32,33]. All of these proteins have an N-terminal
serine/threonine protein kinase domain (KD) and a C-terminal interacting domain (CTD). Between the
kinase domain and CTD, there is a serine/proline-rich region that is the site of many post-translational
modifications. However, the catalytic domain of ULK2 is a dimeric assembly that is different from the
typical monomer of ULK1 [34,35]. The KD domain is responsible for the catalysis of kinase activity [36]
and the interaction between ULK1 and LC3. The CTD domain contains two microtubules and a MIT
domain structure that is a scaffold to enable the interaction of ULK1 with ATG13 and FIP200 [37,38].
ULKT1 has a standard kinase fold that has several unique features, including a large loop between the
N- and C-terminal lobes [33,39].

Table 1. Identity of ULK1 in Homo sapiens as compared with its homologues in other model
organisms [28-34,40].

Homologues Model Open Reading N-T?rmmal Proline/Serine-Rich C-Terminal
Name Organisms Frame Kinase (PS)/Residue Domains/Residue
(ORF)/Amino Acids Domain/Residue
ULK1 Homo sapiens 1050 16-278 279-832 833-1050
ULK1 Mus. musculus 1051 26-278 279-828 829-1051
ULK2 Homo sapiens 1036 9-271 272-811 812-1036
ATG1 S. cerevisiae 897 24-325 326-740 741-897

UNC-51 C. elegans 856 9-275 276631 632-856
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Studies have shown that knockdown of ULK inhibits autophagosome formation. Mice with
defects in ULK1 and ULK2 die within 24 h after birth [41]. When ULK1 is expressed in mammalian
cells, ULK2 is not necessary for autophagy. However, when ULK1 expression is inhibited, ULK2 can
compensate for the function of ULK1 in regulating autophagy [42,43]. Recent evidence has revealed that
ULK1 deficiency in mice does not affect survival or fertility. The cells still exhibit autophagy but with a
delay in autophagic mitochondrial clearance in reticulocytes during erythrocyte development [44].
Knock out of ULK1 and ULK2 in mouse embryonic fibroblasts could destroy the autophagy induced
by amino acid or glucose deficiency [45]. However, in varying cell environments, the roles of different
ULK subtypes are diverse. It was found that siRNA-mediated silencing of ULK1 in HEK293 cells
can completely inhibit autophagy [46]. It has also been reported that ULK1 can degrade rapidly in
mouse embryonic stem cells when FIP200 is knocked out. In this case, the stability of ATG13 and
ATG101 was also affected [46]. It has been shown that ATG101 in mammals has no homology with
other ATG proteins and is a vital molecule participating in autophagy [32,47]. ATG101 regulates
the phosphorylation of Atgl3 by directly binding to Atgl3 [48] and forming a stable complex with
ULK1-Atg13-FIP200 [49].

The ULK complex in the phagophore membrane promotes the recruitment and activation of
VPS34 in phosphatidylinositol-3 (PI3)-kinase complex I and forms PI3P in the phagophore membrane,
a process crucial to the formation of the autophagosome [50,51]. In the state of amino acid deficiency,
ULK1/2 are activated and transported to the ER to promote autophagosome nucleation [52,53]. Under
conditions of severe hypoxia and ER stress, ATF4 (activating transcription factor 4) directly regulates
transcription and expression of ULK1 [54,55]. The binding of ATG8 and ULK1 plays a vital role in the
formation of the phagophore and autophagosome [56].

The mammalian target of rapamycin protein plays a fundamental role in sensing extracellular
nutrition, regulating the rate of protein synthesis and dictating cell growth [57]. Under normal
nutritional conditions, mTOR directly binds to ULK1 via the RAPTOR subunit to form a complex
which inhibits the occurrence of autophagy by the phosphorylation of ULK1 (at serine 638 and 758) and
ATGI13 (at Ser258) [58]. When nutrients are sparse, mTOR activity is inhibited, the dephosphorylation
of Atgl3 is promoted, and the mTOR and ULK1 complex is separated. After separating from mTOR,
ULK1 is activated and forms a complex with Atg13 and FIP200/Atg17, and thus promotes autophagy
(Figure 1) [59-61]. In addition, in the absence of energy, AMPK is activated, and mTOR-induced
autophagy is negatively regulated by the phosphorylation of ULK1 at s555 [62,63]. This complex
process is summarized in Figure 1.
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Figure 1. Structure and biological function of ULK1. The domain of ULK1 contains three units
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including a kinase domain (KD), proline/serine-rich (PS) region, and C-terminal domain (CTD). AMPK
and mTORC1 are upstream kinases that regulate ULK1. ATF4 is an activating transcription factor that
directly regulates transcription of ULK1.

2.1. The Canonical Role of ULK1

The canonical functions of ULK are related to autophagy [64]. Autophagy is a highly evolutionarily
conserved lysosomal degradation pathway in which intracellular misfolded proteins and damaged
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organelles are degraded [65]. Studies have suggested that maintenance of the correct level of autophagic
activity is crucial to maintaining muscle integrity, with either reduced or excessive levels leading to
specific myopathies. The ubiquitin ligase TRIM32 stimulates ULK1 activity via unanchored K63-linked
polyubiquitin to regulate muscle autophagy in response to atrophic stimuli [66-68]. Autophagy includes
the following four stages: autophagy initiation, autophagosome formation, autophagosome-lysosome
fusion, and the degradation of autophagic substrates [69]. It has been shown that tumor of the central
nervous system with the BRAFV600E mutation are autophagy-dependent, and late stage inhibition
of autophagy improves the response to targeted BRAF inhibitors (BRAFi) in sensitive and resistant
cells [70]. Autophagy is a rapid response to a variety of stress conditions that is carried out via the
concerted action of evolutionarily conserved proteins, most of which are known as autophagy-related
(ATG) proteins that function at different steps [71,72] (Table 2). Under normal physiological conditions,
autophagy helps maintain cell homeostasis mainly through the control of proteins and organelles,
which is called basic autophagy [73]. However, under stressful conditions, such as hypoxia or
deficiencies of ATP or amino acids, intracellular autophagy is induced [49,74,75]. Upon sensing
changes in cellular energy, the ULK complex acts as a scaffold to initiate the phagophore assembly
site (PAS) and the recruitment of downstream ATG proteins that play an important role upstream of
pathways of autophagy [76,77].

It has been reported that the ULK complex can be recruited to two kinds of distinct membranes,
the ER membrane and ATG9-positive autophagosome precursors [78]. After interaction between
ULK complex, the PIS-enriched ER subdomain and ATG9A vesicles, the process of autophagy is
initiated [27,79]. The mammalian target of rapamycin complex (mMTORC1) and the adenylate-activated
protein kinase (AMPK) directly participate in the regulation of ULK1 activity [49]. In both a mouse
model and in primary hepatocytes, loss of AMPK or ULK1 resulted in aberrant accumulation of
mitochondria and the autophagy adaptor p62. However, a study of ULK1-deficient cells found that the
addition of a plasmid encoding a mutant ULK1 that could not be phosphorylated by AMPK revealed
that phosphorylation is required for mitochondrial homeostasis and cell survival during starvation [79].
Under nutrient-rich conditions, autophagy is inhibited because AMPK is inhibited and the activity of
ULK1 is inhibited by mTORC1 via the phosphorylation of ULK1 at Ser757 and Ser258 of ATG13 [80].
Under conditions when nutrient supply is limited, however, MTORC1 separates from the ULK complex
and induces autophagy by ULK1 autophosphorylation and transphosphorylation of ATG13 and
RB1CC1 [47]. Meanwhile, ULK1 causes phosphorylation of ATG9 at Tyr8 and Ser14 to promote the
redistribution of ATG9 from the plasma membrane and Golgi region to the sites of autophagosome
assembly [81]. ULK1 binds to ATG8 by partially recruiting its LIR motif to autophagosomes. Mutation
of the LIR motif of ULK1 can cause the accumulation of early autophagic structures [82,83].

Once the active ULK complex is recruited to the initiation site, autophagy proceeds to the next stage,
i.e., the formation of autophagosomes. It has been shown that the Beclin1-VPS34-Atg14L complex is
critical to the formation of autophagosomes [84]. Activated ULK1 phosphorylates Beclinl at Ser15 and
ATG14 at Ser29. Beclin1 positively regulates Vps34 to increase the activity of the Beclin1-Vps34-Atgl4L
complex [85]. Matured autophagosomes are degraded by autolysosomes in a manner dependent on
small GTPase RAB7, CCZ1-MON1, HOPS complex, syntaxin-17, and other SNARE proteins [86,87].
In mammalian cells, ULK1 binds to ATGS at the interacting motif/LC3-interacting region and, then,
is transferred to the lysosome for degradation [88-90]. The degradation of ULK1 not only involves
lysosomes and proteasomes but also the transcription of inhibitory proteins. The inhibition of protein
synthesis leads to a rapid decrease in ULK1 and limits ULK1-dependent autophagic degradation [91,92].
All of these functions are summarized in Table 2.
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Table 2. Induction factors, important autophagy-related proteins, and their relevance to different stages
of autophagy in mammalian cells [73,87,89,91-94].

Core Proteins of the

Induction Factors Autophagy Stages Complex Complex
AMPK mTOR, RAPTOR,
Intrinsic cellular stress: Induction of autophagy mTORC1 complex mLST8, PRASA0, DEPTOR,

Reactive oxygen species (ROS), CASTORI, SLC38A3,

damaged organelles, protein GATOR1
aggregates, infected Nucleation and ULK1, ULK2, ATG13,
pathogens, AMP/ATP, expansion of ULK1-FIP200-ATG13complex ATG101, FIP200

endoplasmic reticulum stress phagophore, Beclin-1-VPS15-VPS34-ATG14 ATGY9, VPS34, VPS15,
and hypoxia, etc. Formation of 1 complex BECN1, ATG14L, AMBRA,

autophagosomes ATG5, ATG12, ATG16
Fusion of WIPI1/2, LC3, ATG3, ATG4,

autophagosome-lysosome Lipidation complex ATG7, ATG12, ATG16L,
Extrinsic cellular stress: fusion GABARAP

Nutrients (amino acids,

glucose, and oxygen), growth syntaxin-17, SNARE,

. VAMPS,
factors and drugs, etc. tDe}%rac.:latlci? t(;f t SNAP29, RAB7, EPGS,
autophagic substrates HOPS,
PLEKHM1

2.2. The Noncanonical Role of ULK1

In recent years, multiple reports have shown that ULK1 not only plays a canonical role in the
occurrence and progress of autophagy, but also mediates or participates in many other important
physiological activities [93]. For example, ULK1 plays a role in protein transportation, the promotion
of apoptosis, and the regulation of the innate immune response [94]. Kemp et al. reported that UV
radiation and chemical carcinogens enhance STING-dependent IRF3 activation, which exacerbates the
symptoms of autoimmunity. Of note, ULK1 negatively regulates STING [95]. The natural immune
response that is induced by ultraviolet light can be enhanced by downregulating the expression of
ULK1 in keratinocytes [95,96]. The lack of ULK1 tends to result in impaired RBC macrocytosis and
mitochondrial clearance [88], which leads to a shortened life of RBCs [97]. It has been reported that
ULK1 has an important function in the activation of the spindle assembly checkpoint (SAC), which
ensures the fidelity of chromosome segregation during mitosis. Of note, deletion of ULK1 increases
chromosome instability and cytotoxicity following treatment with paclitaxel, resulting in significant
impairment of cancer cell growth [98].

ULK1 is also reported to be important for neuronal development through mediating vesicular
transport in axons [97,99]. In the absence of exogenous pressure, ULK/Atg1 regulates the transportation
of specific macromolecules in the endoplasmic reticulum (ER)-Golgi apparatus to maintain cell
homeostasis in Caenorhabditis elegans and mammalian cells [50,100,101]. In conditioned knockout
mice, ULK1/2 results in neuronal degeneration, but there is no accumulation of P62, ubiquitinated
protein, or abnormal membranous structures in nerve cells [102]. In mice, knockout of ULK1 improves
the cognitive ability after traumatic brain injury (TBI) treatment and slows the histological changes in
the hippocampus. Indeed, loss of ULK1 reduces hippocampus inflammation and apoptosis in TBI
mice [103]. The mouse ULK1/2 proteins are localized to vesicular structures in the growth cones of
mouse spinal sensory neurons. The Ulk1/2 proteins are necessary for efficient endocytosis of nerve
growth factor (NGF) and can suppress excessive filopodia extension and axon branching in sensory
neurons during NGF-induced axon outgrowth. Knockdown of ULK1 or ULK2 by RNAI results in
impaired endocytosis of excessive axon arborization and severely stunted axon elongation [104-106].

According to the recent research reports, in the absence of energy metabolism, ULK1 can
phosphorylate Rab9 at Ser179 to protect the heart from myocardial ischemia [107]. High-grade serous
ovarian cancers (HGSOCs) grow in suspension and potentially escape from anoikis. However,
knockdown of ULK1 significantly inhibits suspension growth of HGSOC cells, and analysis



Cancers 2020, 12, 352 6 of 23

of the metabolic profile confirmed an important role of fatty acid metabolism in survival in
suspension [108-111]. ULK1 regulates lipid metabolism to prevent heart dysfunction caused by
obesity [112]. The differentiation of human bone marrow and the pro-osteogenic effect of galectin 3 are
affected by the knockout of ULK1 [94]. ULK1 and EGER levels in patients with normoalbuminuria are
significantly higher than in microalbuminuria and macroalbuminuria [113]. ULK1 plays an important
role in protecting hosts from infection by pathogens; inhibition of ULK1 expression prevents the death
of host cells infected by Staphylococcus aureus [114].

3. ULK1 Mediates Signaling Pathways in Cancer Treatment

Autophagy is usually understood as a mechanism to protect normal cells from adverse
conditions [115]. However, it is also known to inhibit the growth of tumors. Some studies have
suggested that the role of autophagy can vary across stages of tumor development [116,117]. For
example, in the early stage of tumor development, autophagy limits the proliferation of tumor cells by
direct killing. However, after tumors have already formed, the response to stress can actually increase
the survival, invasion, and metastasis of tumor cells [118]. In addition, autophagy has been found
to influence the occurrence of tumors in cell- or tissue-specific ways. Therefore, autophagy plays a
dual role in the development of tumors [72,119]. Compared with other cell functions, autophagy is
relatively selectively druggable. During autophagy, only a few of enzymes are currently targeted by
drugs, although we know of more than 36 autophagy-related proteins [120]. ULK1 plays a core role in
the activation of the autophagy pathway. Therefore, it could be a feasible drug target. As a promoter of
autophagy, ULK1 also plays different roles according to the types and stages of tumors. For example,
it has been shown that low expression of ULK1 in operable breast cancer tissues is a marker of poor
prognosis [121].

3.1. Inhibition of ULK1-Mediated Autophagy for Cancer Treatment

Autophagy provides building blocks and energy to tumor cells in response to metabolic stress and
chemotherapeutic drug damage, thereby promoting the survival and development of tumor cells [122].
A growing number of studies have shown that the inhibition of autophagy an effective method for
tumor therapy [123,124]. Many proteins are involved in this complex process. Thus, targeting these
proteins can be one method to inhibit autophagy [125]. A strategy based around the inhibition of
kinases has been successfully used in clinical application, making ULK1 an attractive candidate for
inhibiting autophagy [126].

The crystal structure of ULK1 has been determined [127]. Petherick et al. reported two compounds,
MRT67307 and MRT68921, that were effective in inhibiting ULK1 (ICsq values of 45.0 and 2.9 nM,
respectively) and ULK?2 activity ICsq (IC5¢ values of 38.0 and 1.1 nM, respectively) in an in vitro kinase
assay and that also prevented autophagy in mouse embryonic fibroblasts (MEFs) cells [128]. In studies
of a drug-resistant ULK1 mutant cell line, it was found that the compound inhibits the autophagy of
tumor cells by specifically inhibiting the activity of ULK1 [128]. To increase the selectivity for ULK1, a
novel inhibitor scaffold of ULK1 was explored, leading to the finding of several compounds that are
potent inhibitors of ULK1 and ULK2 with good selectivity [127]. SBI-0206965 is a FAK inhibitor that
has been demonstrated to be a highly selective inhibitor of ULK1 and ULK2 that acts by suppressing
ULK1-mediated phosphorylation of Vps34 in tumor cells [129,130]. In clinical therapy, SBI-0206965
synergizes with mTOR inhibitors to kill cancer cells [131].

Martin et al. found two small-molecule compounds, ULK-100 and ULK-101, that inhibit the
autophagy of tumor cells through efficiently and selectively inhibiting ULK1, thus making tumor cells
more sensitive to nutrient deficiency. In in vitro tests, the ECsy of ULK-100 and ULK-101 were 83
nM and 390 nM, respectively. ULK-101 blocks LC3-II accumulation, and thus inhibits autophagy by
stopping the formation of the early autophagy body. The inhibition of ULK-101 causes KARK-mutant
tumor cells to be more sensitive as compared with wild cell in conditions of nutrient deficiency.
However, the authors stated that further validation is still required in vivo and that the targeted
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therapeutic mechanisms of ULK1 are not suitable for all genetic or environmental contexts [132].
Liu J. et al. found that NVP-BEZ235, a dual PI3K/mTOR inhibitor, could induce autophagy through
AMPK/ULK]1 pathway in colon cancer cells. Autophagy was blocked by knocking down AMPK
or ULK1 inhibiting cell proliferation and further promoting NVP-BEZ235 induced apoptosis [133].
Arsenic trioxide (ATO) and thalidomide (THAL) are used in the treatment of many types of hematologic
malignancies. ATO prevents the proliferation of cells and induces apoptosis in some cancer cells.
Moreover, THAL has immunomodulatory and antiangiogenic effects in malignant cells. Combined
treatment with ATO and THAL inhibits proliferation and invasion of AML cells by downregulating
ULK1 and BECLIN1 and upregulating PTEN and IL-6, and this effect was stronger than the effects of
either ATO or THAL alone [134]. The ICy; for each inhibitor of ULK1 and ULK2 is listed in Table 3.

Table 3. Small-molecule compounds targeting ULK1/ULK2-mediated autophagy in cancer.

In Vitro Kinase Assay (nM)  CellularEC50/IC50

Function Compound (nM) Cell Type Reference
ULK1ICsy  ULK2ICs n
Compound 1 53 13 - -
Compound?2 67 200 - -
C [127]
ompound 3 120 360 - -
BX-795 87 310 - -
Compound 6 8 - - - [33]
MRT67307 45 38 -
ULK1/ULK2 MEFs [128]
inhibitor  MRT68921 2.9 11 -
SBI0206965 38 212 EC50 = 2400
ULK100 1.6 2.6 EC50 =83 U208 cells [135]
ULK101 8.3 30 EC50 =390
NVP-BEZ235 - - - Colon cancer [133]
cells
ATO -THAL - - - U938, KG-1 [134]
cells
ULK1/ULK2 LYN-1604 18.94 - IC50 = 1.66 uM MDA-MB-231 [136]
activator AEC - - 150 pg/mL HT-29 cells [137]

3.2. Activation of ULK1-Mediated Autophagy for Cancer Treatment

During the past decades, extensive research efforts have greatly improved our knowledge about
autophagy. This process is now known to be widely implicated in pathophysiological processes
including cancer, metabolic, and neuro degenerative disorders, making it an attractive target for
drug discovery [138]. Recent publications have suggested that ULK1 is underexpressed in some
tumor tissues, such as breast cancer [139]. This indicates that the activation of ULK1 to inhibit tumor
growth has potential to be used as an effective treatment method for some tumors. Through in
silico high-territorial screening and chemical synthesis, Ouyang et al. obtained a small molecule
activator of ULK1, LYN1604, which regulated ULK1 and interacted with protein ATF3, RAD21, and
CASP3/caspase3 to induce autophagy-associated cell death in triple-negative breast cancer cells [139].
LYN-1604 has been shown to be a potent ULK1 agonist with an ECs5j of 18.94 nM in an in vitro kinase
assay [136]. It has been suggested that fluoxetine could have significant therapeutic effects on triple
negative breast cancer. It can induce autophagic cell death by activating the AMPK-mTOR-ULK axis
in cells. In addition, fluoxetine can also induce apoptosis in TNBC cells by upregulating caspase3/8
and PARP expression [140].

A growing number of cell- and animal-based assays have shown that structurally different
compounds from various natural products have the same chemotherapeutic effects on tumors [141]. It
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has been reported that an aqueous extract of clove can inhibit the growth of tumors by activating the
AMPK/ULK1 pathway, thus modulating autophagy. AEC inhibits the growth of pancreatic ASPC-1
and colon HT-29 cancer cells in vitro at an ICsj of 150 ug/mL in colon HT-29 cells [137]. Although many
natural products have health benefits and therapeutic effects on tumors, their poor water solubility, low
bioavailability, and rapid elimination limit their practical application as drugs [142]. However, several
combinations of natural products and nanotechnology have been tested to create natural product-based
nanoformulations. The formed nanoparticles have better affinity, fewer side effects, and can target
tumor cells to increase the therapeutic efficacy and improve prognoses for patients [143].

The roles of ULK1 in inducing autophagic cell death or cytoprotective autophagy in cancer are
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Figure 2. Summary of the relationships between ULKI1, autophagy, and cancer.

summarized in Figure 2.

4. ULK1 and Cancer Drug Resistance

With the rapid development of targeted drugs and cytotoxic drugs, most cancers are treatable,
and some tumors can often even be completely controlled. However, some metastatic tumors are still
incurable [144]. Drug therapy of tumors (including chemotherapy and targeted drugs) is currently the
most widely used form of cancer treatment. However, unfortunately, it is usually only effective at the
beginning of treatment. With the prolongation of the treatment cycle, the development of resistance
to these drugs in tumor cells is often inevitable [145,146]. Multidrug resistance (MDR) is a leading
cause of morbidity and mortality in cancer [147]. Drug resistance in tumor cells is caused by a variety
of factors including genetic differences in tumor cells and microenvironment. It has been shown the
tumor cells from the same tissue source are differently cytogenetic. The microenvironment around
tumor cells is essential for the development of tumor resistance [148]. It has been reported that the
extracellular milieu around tumors plays an important role in tumor development, metastasis, and the
regulation of resistance in various treatments [149]. Although the drug resistance of tumor cells is
inherent, acquired resistance is becoming more and more common [150-152].

4.1. The Pivotal Role of ULK in the Development of Drug Resistance in Human Cancers

The purpose of precision medicine is to develop a personalized treatment in order to address the
diversity of cancers. The targeted treatment of tumors is one such strategy and is one of the most
effective cancer treatment methods [153]. However, tumor tissue is a multicell system that continues to
evolve. Although some drugs and treatments have clinical significance, in the process of continuous
treatment, some remaining cells continue to proliferate and, then, acquire drug resistance [154].
Autophagy which is essential to the efficacy of anticancer drugs, as well as drug resistance can have
a prosurvival role in response to metabolic and therapeutic stresses [155]. Xia et al. demonstrated
that the mitotic kinase NEK2 is involved in the development of MDR by regulating autophagy in
multiple myeloma (MM). Autophagy is activated by the assembly of a complex of NEK2/USP7/Beclin-1
in MM cells. Indeed, treatment with a combination of the autophagy inhibitor chloroquine (CQ) and
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the chemotherapeutic bortezomib (BTZ) significantly prevents NEK2-induced drug resistance in MM
cells [156]. The efficacy of fluorouracil (FU) in the treatment of colorectal cancer (CRC) is greatly
limited by drug resistance. In this context, autophagy serves as a prosurvival mechanism during
chemotherapy challenge [5]. The inhibition of autophagy has been shown to counteract the resistance
to doxorubicin in breast cancer MCF-7 cells [157]. ULK1 is crucial in the regulation of autophagy
in cancer cells; the phosphorylation of ULK1 alters the activity of autophagy [158]. TOPK (T-LAK
cell-originated protein kinase) directly binds with and phosphorylates ULK1 at Ser469, Ser495, and
Ser533. The phosphorylation of ULK1 decreases the activity and stability of ULK1, thus, inhibiting
autophagy and promoting resistance against temozolomide in glioma cells [159]. The treatment of
tumors by targeting ULK, however, has presented many challenges in the intrinsic and acquired drug
resistance in cancer treatments [155] (Figure 3).
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Figure 3. A summary of how ULK1 is involved in the development of drug resistance in cancer.

4.2. Drug Resistance-Associated Mutations

Mutations in drug-targeted proteins lead to changes in protein conformation and insensitivity to
anticancer drugs of tumor cells [160]. It has been reported that tyrosine kinase inhibitors are effective
to treat chronic myeloid leukemia (CML) by targeting the BCR-ABL protein in CML cells [161,162].
However, the development of drug resistance in patients during treatment is mainly caused by a
mutation in the BCR-ABL protein [163,164]. 1IB02, the inhibitor of Hsp90, which has an inhibitory effect
on a variety of tumor cells, could solve this problem by causing significant cytotoxicity to BCR-ABL cells
regardless of their sensitivity to tyrosine kinase inhibitors [165-167]. This is due to the fact that BIIB021
can significantly induce autophagic cell death by the downregulation of the AKT-mTOR pathway and
the activation of ULK1. Additionally, BIIB021 induces apoptosis by releasing of cytochrome ¢, which
promotes consequential activation of caspase-9, -3, and PARP [167,168]. It has also been found that
the mutation of BRAF protein in patients with colorectal cancer has an adverse prognosis, causing
mortality rates to increase by 70% as compared with normal BRAF backgrounds [169,170]. Although
BRAF inhibitors have been approved by the Food and Drug Administration, their therapeutic benefits
for cancer patients with BRAF protein mutations are still not obvious [171]. The main reason why
BRAFV600E-treated colorectal cancer (CRC) develops drug resistance to selective BRAF inhibitors
is that BRAF inhibitors can induce autophagy through the AMPK-ULK1 pathway [172]. Inhibiting
autophagy by pharmacological methods or siRNA, however, causes BRAFV600E CRC cells to be more
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sensitive to BRAF inhibitors to induce cell death and overcome the drug resistance-related mutations
in tumor cells [167,173].

Findings from the literature suggest that about 50% of colon cancers have mutations in KRAS, a
proto-oncogene that increases resistance to drugs [174]. Mutated KRAS regulates intracellular energy
metabolism. When two mitochondrial-targeted compound 3-carboxyl proxyl nitroxide (Mito-CP) and
mito-metformin were used to treat KRAS mutated cells, they not only decreased the ATP levels in the
tumor cells but also inhibited ATP-related oxygen consumption in cells. However, no obvious effect was
found in normal intestinal epithelial cells. Mitochondria-targeted drugs have the capability to activate
an AMPK-ULKI1 signaling cascade could overcome the resistance of mutant cells to drugs [175,176].

4.3. Immune Factors in the Tumor Microenvironment and Tumor Drug Resistance

The tumor microenvironment is the surrounding space composed of immune cells, stroma, and
vasculature. The tumor microenvironment mediates drug resistance via several mechanisms, such as
preventing immune clearance of tumor cells, hindering drug absorption, and stimulating paracrine
growth factors to signal cancer cell growth [177,178]. Recently, a number of studies have shown that
the tumor microenvironment could contribute to the regulation of tumor development, metastasis, and
drug resistance against various therapeutic methods [179]. Until now, although significant advances
have been made in chemotherapy and radiotherapy of tumors, the development of drug resistance
during treatment reduces the effectiveness of drugs [180,181]. The tumor microenvironment is a
dynamic network of tumor cells and extracellular matrix, usually lacking oxygen and nutrients and
presenting a low pH [182]. Most tumor cells adapt to this harsh environment and make use of the
limited resources in the environment to grow. Tumor cells can evade immune surveillance by inhibiting
immune cell activity [183,184]. It has been reported that the natural product, rocaglamide (RocA)
could enhance NK cell-mediated lethality, inhibit the growth of tumor cells, and shrink tumors in
in vitro and in vivo tests. RocA not only improves the level of NK cell-derived GZMB and enhances
the killing power of NK cells, but also targets ULK1, specifically inhibiting the translation of the ULK1
protein, and therefore inhibiting the progress of autophagy. The inhibition of autophagy increases the
sensitivity of non-small cell lung cancer cells to NK cells. However, after inhibiting the activity of NK
cells in mice with normal immune function, RocA’s inhibitory effect on tumor inoculation in mice was
significantly weakened, indicating that the lack of NK cells could lead to the resistance of tumors to
RocA [185,186].

4.4. MicroRNA and LncRNA Involved in Drug Resistance

The heterogeneity of tumor cell genes and the differences in transcription process limit the efficiency
of many therapeutic methods [187]. MicroRNAs are a class of extremely conserved single-stranded
noncoding RNAs of about 19 to 25 nucleotides that negatively regulate the expression of different
genes at the transcriptional or post-transcriptional level [188-190]. MicroRNAs, as tumor suppressor
genes or oncogenes, regulate the occurrence and development of tumors [191]. Increasing amounts of
data have indicated that microRNAs play an important role in the development of drug resistance in
tumors [192]. Three compounds, doxorubicin (DOX), tamoxifen, and cisplatin have been shown to be
effective in the treatment of breast cancer [192]. However, due to inducing drug resistance in tumor
cells, their wide application has been limited. They could increase autophagy in cells and induce
protective autophagy, which ensures the survival of tumor cells in an adverse environment [193].
Mir-489 has been reported as a tumor suppressor in the treatment of breast cancer cells affecting the
activity of multiple genes during autophagy [194,195]. When mir-489 was used to treat doxorubicin-,
tamoxifen-, or cisplatin-resistant cell lines, it showed significant inhibition of cell proliferation [196].
It was found that mir-489 could directly target ULK1 and LAPTM4B genes, negatively regulate the
expression of ULK1 and LAPTM4B, hinder the fusion of autophagosomes and lysosomes, inhibit
autophagy, and thus overcome tumors’ drug resistance [197-199].
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Long noncoding RNA (LncRNA) is a kind of RNA with no protein-coding capacity that is
also over 200 nucleotides in length [200,201]. LncRNA affects protein regulation at transcriptional,
post-transcriptional, and epigenetic levels [202]. A growing body of evidence suggests that abnormal
expression of LncRNA contributes to tumor formation, metastasis, and drug resistance [203]. It
has been reported in the literature that LncRNA plays an important role in the drug resistance of
non-small cell lung cancer (NSCLC). The IncRNA small nucleolar RNA host gene 6 (SNHG6) enhances
colorectal cancer cell resistance to 5-fluorouracil (5-FU), promotes autophagy, and inhibits 5-FU-induced
apoptosis in vivo. Indeed, SNHG6 can promote chemoresistance through ULK1-induced autophagy
by reducing the availability of miR-26a-5p in CRC cells. Cancer cells that had knocked down SNHG6
(by SNHG6-specific shRNAs), overexpression of miR-26a-5p, or that were treated with 3-MA were
more sensitive to 5-FU [204,205]. Crizotinib showed a therapeutic effect on patients with NSCLC, but
after several cycles of treatment, the patient’s resistance to crizotinib increased, leading to treatment
failure [203]. HOTAIR (HOX transcript antisense intergenic RNA) is often highly expressed in NSCLC
and promotes cisplatin resistance in NSCLC. The silencing of HOTAIR reduced the proliferation and
induced apoptosis of NSCLC cells (A549). In addition, HOTAIR shRNA transfection inhibited the
resistance of A549 cells to crizotinib, inhibited cell survival, and promoted apoptosis as compared
with the HOTAIR scramble group. After HOTAIR was silenced, the number of LC3+ puncta and
the expression of Beclinl, p-ULK1, and the ratio of LC3 II/I/in crizotinib-treated A549 cells decreased.
Further studies have indicated that the main reason for HOTAIR silencing to reduce the resistance of
NSCLC cells could be the inhibition of the phosphorylation of ULK1, thus inhibiting the autophagy of
crizotinib-resistant cells [158].

4.5. Small Molecule Drugs Targeting ULK Reverse Tumor Resistance

As noted herein, ULK1 plays an important role in the initiation of autophagy [206]. The induction
of protective autophagy to inhibit apoptosis is one of the reasons for the development of drug resistance
in tumor cells during therapy [207]. Some small molecule drugs targeting ULK1 show inhibitory
effects on ULK1 expression and the activity of autophagy, and cause tumor cells to be more sensitive to
chemotherapeutic drugs [136,208]. It has been reported that overexpression of ULK1 is inversely related
to the prognosis of various tumors, such as colon cancer, breast cancer, lung cancer, nasopharyngeal
cancer, and esophageal cancer [136]. The knockdown of ULK1 in NSCLC cells induces an increase
in apoptosis and makes them more sensitive to cisplatin [209]. SBI0206965, a selective inhibitor of
ULK]1, can significantly reduce the cell survival of cisplatin-resistant NSCLC cells by decreasing the
conversion of LC3 I to LC3 II, upregulating the expression of autophagy substrate P62, and inhibiting
the progress of autophagy. A combination of SBI0206965 and cisplatin can block cisplatin-induced
autophagy and promote cell death. However, inhibition of autophagy by SBI0206965 was one of the
major reasons for overcoming the resistance of cisplatin to NSCLC cells [131,210]. In addition, more
and more natural products are being developed to treat tumors. Most of them are multitargeted drugs,
and the inhibition of tumors is achieved through multiple simultaneous effects. However, they can
sometimes produce more adverse consequences, such as inhibiting the proliferation of healthy tissues
and causing structural deformities, systemic toxicity, long-term side effects, drug resistance, and some
psychological problems [140,211,212]. The relationship between ULK1 and cancer drug resistance is
summarized in Table 4.
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Table 4. Molecular events of ULK1-related cancer drug resistance.

Drug Resistance Cancer Cell Type

Event

Effects on Cancer Drug Resistance

Chronic myeloid leukemia (CML)
resistance to tyrosine kinase inhibitors

A mutation in the BCR-ABL protein;
IIB02 producing significant
cytotoxicity to BCR-ABL mutation
cells BIIB021 inducing autophagic cell
death by the downregulation of
AKT-mTOR pathway and the
activation of ULK1

Overcoming drug resistance

Colorectal cancer (CRC) resistance to
selective BRAF inhibitors

A mutation in BRAF protein;
BRAFV600E of colorectal cancer (CRC)
develops drug resistance to selective
BRAF inhibitors is that BRAF
inhibitors induce cytoprotective
autophagy through AMPK-ULK1
pathway

Inhibiting autophagy and overcoming
drug resistance

Colorectal cancer cell resistance to
5-fluorouracil (5-FU)

SNHG6 enhances chemoresistance
through ULK1-induced autophagy via
reducing free miR-26a-5p

Inhibiting autophagy, SNHG6
knockdown or overexpression of
miR-26a-5p, thus overcoming drug
resistance

Colon cancers resistance to KRAS
drugs

Two mitochondrial targeted
compound 3-Carboxyl proxyl
nitroxide (Mito-CP) and
Mito-Metformin cause mitochondrial
autophagy of KRAS cells by activating
AMPK-ULKI signaling cascade

Overcoming drug resistance of KRAS
mutant cells

Non-small cell lung cancer (NSCLC)
cells resistance to NK cell-mediated
killing

The natural product rocaglamide
(RocA) inhibited autophagy by
targeting to ULK1 and restored the
level of NK cell-derived GZMB
(granzyme B) in NSCLC cells
increasing their susceptibility to NK
cell-mediated killing.

Overcoming resistance of NSCLC cells
against NK cell-mediated killing

Breast cancer cell resistance to
doxorubicin (DOX), tamoxifen and
cisplatin

Mir-489 directly targeting ULK1 and
LAPTM4B genes, negatively
regulating the expression of ULK1 and
LAPTM4B inhibiting autophagy

Overcoming resistance to doxorubicin
(DOX), tamoxifen and cisplatin

NSCLC resistance to crizotinib

HOTAIR (HOX transcript antisense
intergenic RNA) is a high expression
in NSCLC and promotes cisplatin
resistance in NSCLC

HOTAIR shRNA transfection
overcoming the resistance of A549
cells to crizotinib by inhibiting
autophagy activity decreasing the
phosphorylation of ULK1

Cisplatin-resistant NSCLC cells

SBI0206965, as a selective inhibitor of
ULKT1 blocks cisplatin-induced
autophagy and promotes cell death

Overcoming NSCLC cells resistance to
cisplatin

5. Conclusions and Future Prospective

Drug resistance is a major problem in cancer therapy. The development of drug resistance in
tumors counteracts the therapeutic effects of chemotherapeutic compounds, which leads to a more

aggressive recurrence of tumors, and worse prognoses of cancer patients. So far, the solutions to tumor
resistance have been mainly focused on selecting more sensitive drug targets, genetically modifying the
target, changing the drug structure, using drugs in combination, inhibiting prosurvival pathways, etc.
With an increasing number of anticancer drugs on the market, the improvement of preclinical models,
and the development of technologies such as high-throughput screening, there are more opportunities
to understand and overcome tumor resistance.

Mammalian Unc-51-like kinases 1 and 2 (ULK1 and ULK2) belong to the ULK/Atg1 family of
ULK and are a promising therapeutic target for tumors because they are a direct target of energy- and
nutrient-sensing kinases. ULK1 also mediates the adverse prognosis and drug resistance of tumors.
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Both the inhibition and activation of ULK1 have significant effects on tumor therapy. Regulation of
ULK1 plays a fundamental role by influencing cell growth and the development of drug resistance
in tumor cells. Although the use of ULK inhibitors as monotherapy have provided modest effects,
combining them with other anticancer drugs could help overcome the development of drug resistance
during tumor treatment.

Although the role of ULK in the progress of autophagy is clear, other functions of ULK beyond this
are not well understood. Future studies are still needed to reveal the presence of further mechanisms.
In addition, most studies, to date, have mainly focused on the expression of the ULK gene. With
the advancing development of precision medicine, it is crucial to identify more potential predictive
biomarkers for tumor treatments, such as ULK inhibitors. This would facilitate the effective design of
clinical trials that would accelerate the introduction of these compounds to clinical practice in the most
efficient and beneficial manner. Hence, cancer patients would benefit from a tailored therapy with
various ULK inhibitors alone or in combination with other molecular targeted therapies.
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