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Abstract: Deep Learning (DL) algorithms enabled computational models consist of multiple processing
layers that represent data with multiple levels of abstraction. In recent years, usage of deep learning is
rapidly proliferating in almost every domain, especially in medical image processing, medical image
analysis, and bioinformatics. Consequently, deep learning has dramatically changed and improved
the means of recognition, prediction, and diagnosis effectively in numerous areas of healthcare such
as pathology, brain tumor, lung cancer, abdomen, cardiac, and retina. Considering the wide range of
applications of deep learning, the objective of this article is to review major deep learning concepts
pertinent to brain tumor analysis (e.g., segmentation, classification, prediction, evaluation.). A review
conducted by summarizing a large number of scientific contributions to the field (i.e., deep learning
in brain tumor analysis) is presented in this study. A coherent taxonomy of research landscape from
the literature has also been mapped, and the major aspects of this emerging field have been discussed
and analyzed. A critical discussion section to show the limitations of deep learning techniques has
been included at the end to elaborate open research challenges and directions for future work in this
emergent area.

Keywords: deep learning; brain tumor; computer vision; bioinformatics; segmentation; medical
images; review

1. Introduction

The advancement in medical technologies helps the clinical experts to facilitate more efficient
e-health care systems to the patients. There is a number of medical domains where e-health care
systems are beneficial [1]. Computer vision-based applications of biomedical imaging are gaining
more importance as they provide recognition information to the radiologist for batter treatment-related
problems. Different medical imaging techniques and methods that include X-ray, Magnetic Resonance
Imaging (MRIs), Ultrasound, and Computed Tomography (CT), have a great influence on the diagnosis
and treatment process of patients [2,3].
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The formation of abnormal groups of cells inside the brain or near it leads to the initialization
of a brain tumor. The abnormal cells abrupt the processing of the brain and affect the health of a
patient [4]. Brain imaging analysis, diagnosis, and treatment with adopted medical imaging techniques
are the main focus of research for the researcher, radiologist and clinical experts [5]. The analysis
of brain images is considered imperative because diseases of the brain called brain tumors are fatal
and responsible for a large number of deaths in developed countries; for instance, according to the
National Brain Tumor Foundation (NBTF), 29,000 people are diagnosed with brain tumor in the United
States (US) with brain tumor and 13,000 of those patients die per annum [6]. A number of advanced
Magnetic Resonance Imaging (MRI) techniques that include Diffusion Tensor Imaging (DTI), MR
Spectroscopy (MRS) and Perfusion MR are used for the analysis of brain tumor through MRI [7–9].
Brain tumor is broadly classified into two types: cancerous tumors, known as malignant tumors, and
noncancerous tumors, known as benign tumors. Malignant tumors are further classified into grades I
to IV by World Health Organization (WHO) [10]. A Grade-I tumor is called Pilocytic Astrocytoma,
Grade-II tumor is Low-Grade Astrocytoma, Grade-III tumor is Anaplastic Astrocytoma and Grade-IV
tumor is Glioblastoma. Grade-I tumors and Grade-II tumors are semi-malignant tumors with less
aggressiveness. Grade-III and Grade-IV are malignant tumors and highly affect the health of the
patient and may lead to the death of tumor patients [11].

A variety of image-processing techniques and methods have been used for the diagnosis and
treatment of a brain tumor. Segmentation is the fundamental step in image processing techniques
and is used to extract the infected region of brain tissue from MRIs [12]. Segmentation of the tumor
region is an important task for cancer diagnosis, treatment, and the evaluation of treatment outcomes.
A vast number of semi-automatic and automatic segmentation methods and techniques are used for
tumor segmentation [13]. MRI contains methods with multiple sequence that include T1-weighted (TI)
and T1-weighted contrast-enhanced (T1c), T2-weighted and T2-weighted Fluid Attenuated Inversion
Recovery (FLAIR) techniques, which are employed for the segmentation of brain tumor.

MRIs have various features that are adopted in brain tumor segmentation studies that include image
textures [14], local histograms [15], and structure tensor eigenvalues [16]. Machine learning methods
such as Support Vector Machines (SVMs) [17–19] and Random Forest (RF) [14–16,20] are commonly
used for pattern classification in tumor segmentation studies. Deep-learning-based techniques
and methods are becoming popular in brain tumor segmentation studies, as their performance is
superior in image analysis fields, such as object detection [21], image classification [22] and semantic
segmentation [23–25]. Deep learning techniques have achieved state-of-the-art performance for
automatic segmentation of brain tumors through multi-model MRIs [1]. The Convolutional Neural
Network (CNN) is a powerful method for image recognition and prediction. However, CNN is mostly
used for brain tumor segmentation, classification, and prediction of survival time for patients [26–28].
More deep-learning-based methods that are utilized for tumor segmentation, classification, and
prediction include Stacked De-Noising Autoencoders [29] and Convolutional Restricted Boltzman
Machine [30]. Among all the deep learning methods and techniques, CNNs perform batter for
image segmentation, classification, and prediction. Two-Dimensional CNNs (2D-CNNs) [31–35]
and 3D-CNNs [16,36,37], were both adopted to build brain tumor segmentation, classification, and
prediction methods. Segmentation methods classify the image patch into different classes, such as
necrosis, healthy tissues, edema, enhancing core and non-enhancing core.

Different tumor cells show distinct phenotypic and morphological information for segmentation,
classification, and prediction, including gene expression, motility, cellular morphology, metabolism
metastatic potential, and proliferation. This paper presents a review of various methods, techniques,
frameworks, architectures, algorithms and critical studies using deep learning for segmentation,
classification, and survival time prediction. Survey taxonomy describes the methods, techniques,
systems, algorithms, frameworks, and architectures that are based on tumor segmentation, evaluation,
and features exploration for tumor prediction and its classification. The review performs an analysis
of the features extraction techniques, dataset utilized, tools, languages, and libraries that are used
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for implementation, recognition and evaluation measures. The issues and research gaps in various
existing research problems include the key issues in tumor recognition for monitoring, recognition
procedures and treatment plans for cancer patients.

The application of deep learning to brain tumor analysis first appears in conferences and
workshops, and then in journals. The number of research papers grew rapidly from 2015 to onward.
This topic has now became dominant at different conferences and journals.

Figure 1 illustrates the development of deep learning applications to brain tumor analysis. Figure 2
presents a literature-based taxonomy for brain tumor analysis.
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The development of deep learning application to brain tumor analysis motivated us to present a
comprehensive review in all fields of brain tumor that includes segmentation, prediction, classification,
both from a methodology-driven and applications perspective. The review also includes an overview of
all the research publications in tabular form that helps readers to quickly assess the field. Consequently,
this review presents a dedicated discussion section to the readers that covers the state-of-the-art
successful development, open research challenges and an overview of future research directions.

The review includes a large number of research papers, most of them recent, presenting an extensive
variety of deep learning applications in brain tumor analysis to identify the most relevant contribution
(“deep learning” AND “Brain Tumor”) in the title and abstract query performed. Additionally, MICCAI
workshop papers related to brain tumors have also been included in this review. In summary, the aim
of this review is (a) to show the deep learning development in the entire field of brain tumor, (b) the
identification of open research challenges for successful deep learning methods for brain tumor tasks,
(c) to highlight the successful deep learning contribution to brain tumor analysis.
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2. Healthcare Scalability Importance and Challenges

The scalability in healthcare services, that includes the patient prioritization process and patient
analysis, is a challenging task [38]. The demand for health care services is increasing gradually as the
number of patients increases due to a rise in the population. The priority of healthcare services is based
on the emergency status of patients. The identification of innovative research contributions for the
provision of effective and efficient health care systems is an important and challenging task [39–48].
Various studies are conducted in bioinformatics to improve the prioritization process and provide a
solution for the scalability problems in health care services [38,49].

This section introduces the relevant literature that explores the dilemma of the growing number
of elderly patients who need timely and effective telemedicine services. An increase in the number
of patients is expected to occur in the context of an ageing population [38,50–55] and disasters
phenomena [56]. There are a number of problems in health care services but the aging population is
considered to be the greatest problem [54,55,57,58].

The major changes in demographics lead to serious issues in the health care system [59]. As an
increment in serious problems and permanent issues in the health care domain rises, the social and
economic burdens increase [59–61]. Globally, health care systems and society loaded with burdens
may result in a population’s aging problems. By 2030, 13% of the world population will fall in the
aging category and the burden on the health care sector will be enormous [62]. Serious diseases that
include brain tumors, chest cancer, lung cancer, diabetes, hypertension, and heart failure, directly affect
medical health care expenses all over the world [63–65]. The manual treatment of serious disease is a
challenging task for the global health care systems in terms of quality of care delivery [65,66]. As the
number of patients in the health care domain increases, an increase in the United State (US) health care
services expenditure is reported. The Center for Medicare and Medicaid Services (CMS) revealed that
US health care expenditures gradually increases every year, as shown in Figure 3.
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3. Brain Tumor Classification

The deep learning techniques and methods have performed well on image classification and
supervised machine learning, as reported in recent research papers. Brain tumor has various classes,
which include glioma, meningioma and pituitary tumors. Brain tumor is further classified as benign or
low-grade I and II and malignant tumor, or high-grade III and IV. The following paragraphs thoroughly
explain the recent research into brain tumor analysis. Table 1 shows the various data sources and their
acquisition methods.
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Table 1. Data sources and their acquisition methods.

Sr. No Paper Acquisition Method Dataset Sources

1. Xiaomei Zhao et al. [1]. Online repository BraTS 2013, BraTS 2015 and BraTS 2016

2. Mamta Mittal et al. [12]. Online repository BRAINIX medical images. (https://www.
medicalimages.com/search/brain.html)

3. Guotai Wang et al. [26]. Online repository BraTS 2018

4. Mikael Agn1 et al. [30]. Online repository BraTS (http://braintumorsegmentation.org/)

5. M. Zhou et al. [37]. Not given Not Mentioned

6. Subhashis Banerjee et al.
[67]. Online repository

TCGA-GBM, TCGA-LGG
(https://wiki.cancerimagingarchive.net/

display/Public/TCGA-LGG)

7. Yufan Zhou et al. [68]. Custom-developed
Proprietary Dataset. The public dataset [5]
includes 3064 (2D) slices of brain MRI from

233 patients.

8. Nyoman
Abiwinanda et al. [69]. Online repository Ffigshare Cheng (Brain Tumor Dataset,

2017)

9. Esther Alberts et al. [70]. Online repository The Cancer Imaging Archive” (TCIA)
(https://www.cancerimagingarchive.net/)

10. Ali ARI [71]. Not given Not Mentioned

11. Sajid Iqbal1 et al. [72]. Not given Not Mentioned

12. Yota Ishikawa et al. [73]. Not given Not Mentioned

13. Heba Mohsen et al. [74]. Custom developed Harvard Medical School website
(http://med.harvard.edu/AANLIB/)

14. Justin S. Paula et al. [75]. Custom-developed
Publically available Nanfang Hospital,

Guangzhou, China, and General Hospital,
Tianjing Medical University

15. Yan Xu et al. [76]. Online repository TCGA (https://wiki.cancerimagingarchive.
net/display/Public/TCGA-LGG)

16. Kaoutar B. Ahmed et al.
[77]. Online repository H. Lee Moffitt Cancer Research Center

17. A. R. Deepa1 & W. R.
Sam Emmanuel [78]. Online repository BraTS 2015

18. Mustafa Rashid Ismael
[79] Online repository BraTS

19. Renhao Liua et al. [80]. Custom d developed H. Lee Moffitt Cancer Research Center

20. Nøhr Ladefoged et al.
[81]. Custom-developed

PET/MRI system (Siemens Biograph mMR,
Siemens Healthcare, Erlangen, Germany)
(Delso et al., 2011) between February 2015

and October 2017, and 86 FET PET

21. Himar Fabelo et al. [82]. Custom-developed
The intraoperative hyperspectral (HS)

acquisition system was employed to create
the HS image database.

22. Yannick Suter1 et al. [83]. Online repository BraTS 2018

23. Yuexiang Li and Linlin
She [84]. Online repository BraTS 17

24. Dong Nie et al. [85]. Custom-developed
Glioma image database (collected during

2010–2015) of Huashan hospital, Shanghai,
China

25. Javeria Amin1 et al. [86]. Online repository BraTS 2012

https://www.medicalimages.com/search/brain.html
https://www.medicalimages.com/search/brain.html
http://braintumorsegmentation.org/
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
https://www.cancerimagingarchive.net/
http://med.harvard.edu/AANLIB/
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
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Table 1. Cont.

Sr. No Paper Acquisition Method Dataset Sources

26. Lina Chato and Shahram
Latifi [87] Online repository BraTS 2017

27. Virupakshappa &
Basavaraj Amarapur [88] Not given Not Mentioned

28. Eze Benson et al. [89]. Online repository BraTS 2018

29. Chenhong Zhou et al.
[90]. Online repository BraTS 2018

30. Richard McKinley et al.
[91]. Online repository 2017 BraTS

31. Geena Kim [92]. Online repository BraTS2017

32. Yan Hu and Yong Xia
[93] Online repository BraTS 2017

33.
Aparna Natarajan&

Sathiyasekar
Kumarasamy [94]

Not given Not Mentioned

34. Pawel Mlynarskia et al.
[95]. Online repository BraTS 2018

35. Parnian Afshar et al.
[96]. Not given Not Mentioned

36. Samya AMIRI [97] Online repository BraTS

37. Peter D. Chang [98] Online repository 2016 BraTS

38. Fabian Isensee et al. [99]. Custom-developed Not Mentioned

39. Sanjay Kumar et al.
[100]. Online repository BraTS Dec 2017

40. Guotai Wang et al. [101]. Not given Not Mentioned

541 Yun Jiang et al. [102]. Online repository BraTS2015

42. Dongnan Liu et al. [103]. Online repository BraTS17

43. Mina Rezaei et al. [104]. Online repository BraTS-2018 ISLES-2018
(http://www.isles-challenge.org/)

44. Haocheng Shen et al.
[105]. Online repository BraTS15, BraTS13

45. V. Shreyas and Vinod
Pankajakshan [106] Online repository BraTS

46. Nicholas J et al. [107]. Online repository MICCAI 2013 BraTS

47. Liya Zhao and Kebin Jia
[108] Online repository BraTS

48. R. Thillaikkarasi & S.
Saravanan [109] Not given Not Mentioned

49. Wu Deng1 et al. [110]. Online repository BraTS 2015

50.

51. Tony C. W. Mok et al.
[111]. Online repository BraTS15

52. Anshika Sharma et al.
[112]. Online repository IBSR data set Cyprus

(http://www.medinfo.cs.ucy.ac.cy/)

53. Zhe Xiao et al. [113]. Custom-developed MRIs from real patients in West China
Hospital

http://www.isles-challenge.org/
http://www.medinfo.cs.ucy.ac.cy/


Brain Sci. 2020, 10, 118 8 of 33

Table 1. Cont.

Sr. No Paper Acquisition Method Dataset Sources

54. Adel Kermi et al. [114]. Online repository BraTS’2018

55. Hongdou et al. [115]. Online repository BraTs 2018

56. Lutao Dai1 et al. [116]. Online repository BraTS 2018

57. Eric Carver et al. [117]. Online repository BraTS

58. Guotai Wanget al. [118]. Online repository BraTS 2017

59. Sara Sedlar [119] Online repository BraTS 2017

60. Zoltan Kap et al. [120]. Online repository BraTS 2016

61. G. Anand Kumar and P.
V. Sridevi [121]. Online repository BraTS 2015

62. Hao Dong et al. [122]. Online repository BraTS 2015

63. David Gering et al. [123]. Online repository 2018 BraTS

64. Reza Pourreza et al.
[124]. Online repository BraTS 2017

65. Caulo et al. [125]. Custom developed
Jan 2008–Sep 2012

University G. d’Annunzio of Chieti-Pescara,
Chieti, Italy

66. Cheng et al. [126]. Custom-developed
2005–2010

Nanfang Hospital and General Hospital,
Tianjin Medical University

67. Wang et al. [127]. Custom-developed
May 2004–Nov 2011 Hospital of Xi’an Jiaotong University

68. Chaddad [128]. Online repository Cancer Imaging Archive
(http://www.cancerimagingarchive.net/)

69. Rajini et al. [129]. Custom-developed
Department of Radiology, Rajah Muthiah

Medical College Hospital (RMMCH), Tamil
Nadu, India

70. Javed et al. [130]. Online repository brain database http://www.med.harvard.
edu/AANLIB/home.html

71. Al-Shaikhli et al. [131]. Online repository
Brain web for simulated brain database

(http:
//brainweb.bic.mni.mcgill.ca/brainweb/)

72 Lahmiri et al. [132]. Online repository Harvard Medical School (http://www.med.
harvard.edu/aanlib/home.html)

73 Lin et al. [133]. Custom-developed
Jan 2006–Dec 2012

National Defense Medical Center, Taipei,
Taiwan, Republic of China

74 Xiangmao Kong et al.
[134]. Online repository BraTS 2015 and BraTS 2017

The classification of brain tumors is a challenging task due to variations in the shape, size, location,
and contrast of tumor tissue cells. State-of-the-art deep learning techniques are used to classify different
types of brain tumors—glioma, meningioma and pituitary types—that are further separated into axial,
coronal and sagittal planes. Segmentation algorithms are employed for the extraction of features
from axial slices using Dense CNN and these sequential features of multiple frames are classified by
the recurrent neural network [68]. Generally, fully connected and convolutional networks are used
in the classification models of brain tumors. The dataset, which is publicly available, contains 3064
enhanced contract brain MRIs and 989 axial images to minimize the error rate of neural networks in
identifying the tumor. The test is performed on 512 × 512 axial images. Training is performed on axial
images using five-fold cross-validation tests that increase the accuracy of the classification [75]. Table 2
describes the literature overview related to brain tumor classification.

http://www.cancerimagingarchive.net/
http://www.med.harvard.edu/AANLIB/home.html
http://www.med.harvard.edu/AANLIB/home.html
http://brainweb.bic.mni.mcgill.ca/brainweb/
http://brainweb.bic.mni.mcgill.ca/brainweb/
http://www.med.harvard.edu/aanlib/home.html
http://www.med.harvard.edu/aanlib/home.html
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Table 2. Overview of papers using deep learning for brain tumor classification.

Study Method
Proposed Solution
and Preprocessing

Approach

Software’s/Tools/Languages/
Libraries used for

Simulation and
Implementation

Evaluation

Subhashis
Banerjee et al. [67].

Deep Convolutional
Neural Networks
(ConvNets) using

multi-sequence MR
images.

Terser flow and Python Accuracy = 97%

Yufan Zhou et al.
[68].

Convolutional Neural
Networks

DenseNet-RNN,
DenseNet-LSTM,

DenseNet-DenseNET

Tensor Flow, Nvidia Titan
Xp GPU Accuracy = 92.13%

Nyoman
Abiwinanda et al.

[69].

Convolutional Neural
Network AlexNet,VGG16,ResNet Matlab Accuracy = 84.19%

Esther Alberts et al.
[70].

SVM, RF, KNN, LOG,
MLP and PCA LBP, BRIEF and HOG Not Mention Accuracy = 83%

Ali ARI & Davut
HANBAY [71]

Convolutional Neural
Network ELM-LRF MATLAB 2015 Accuracy = 97.18%

Yota
Ishikawaet et al.

[73].

Deep Convolutional
Neural Networks

BING objectness
estimation, Voronoi

diagram, Binarization,
Watershed transform

Not Mention Accuracy = 98.5%

Heba Mohsen et al.
[74]. Deep Neural Network

Discrete Wavelet
Transform (DWT),

Principal Components
Analysis (PCA)

MATLAB R2015a and
Weka 3.9 Accuracy = 96.97%

Justin S. Paula et al.
[75].

Convolutional Neural
Network, Fully

Connected Neural
Network, Random

Forests

Not Mention Accuracy = 91.43%

Yan Xu et al. [76]. Deep Convolutional
Activation Features

Deep Convolutional
Activation Features

trained by ImageNet
knowledge

Not Mention Accuracy = 97.5%

Parnian
Afshar et al. [96].

Convolutional Neural
Networks(CNNs)

Capsule Networks
(CapsNets)

Python 2.7 and Keras
library Accuracy = 86.56%

The term cytotechnologist is used for experts who diagnose brain tumors. Astrocytes are a glia
type cell of nerves and it is very difficult to differentiate between astrocyte and low-grade astrocytoma.
The BING method is used to segment the cell regions and, for classification, convolution neural
networks with residual learning are employed [73]. After detecting brain cells, the Voronoi diagram,
watershed transform, and binarization are used in segmentation. Finally, CNN is performed on the
segmented cells that achieve 98.5% classification accuracy [73]. The Extreme Learning Machine Local
Receptive Fields (ELM-LRF) method is also proposed for the classification of tumors, which consists
of three phases: removal of the noise using local and nonlocal methods, segmentation of benign
or malignant tumor using ELM-LRF, and its classification. The cranial MR images are used in the
proposed solution as they contain mass. The proposed method is effective and, using cranial MR
images, an accuracy of 97.18% is achieved [71].

Misdiagnosis of the tumor affects the medical intervention and reduces the chances of survival
of patients. Conventional methods that identify the tumor using MRIs are time-consuming for large
datasets. The CNN architecture contains one layer each for max-pooling, flattening and convolutions,
and these layers are fully connected with hidden layers that do not need any prior region-based
segmentation. The architecture is trained on a publicly available dataset containing 3064 MRIs that
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achieve 98.51% accuracy for classification [69]. Three ConvNets-based models are proposed, in which
a Convolutional Neural Network is trained through scratch, slices, patches and multiplanar volumetric
slices of MRIs. Two ConvNets VGGNet and ResNet are trained by Images Net dataset and fine-tuning
is used to train the last few layers of the ConvNet. The performance of the proposed ConvNet is
tested using the Leave-One-Patient-Out (LOPO) scheme. ConvNet attains better accuracy compared
to the existing models as it contains a self-learning feature with kernels/filters on different layers of
ConvNet [67]. Oval multi-stream deep CNN architecture is proposed for brain tumor classification, in
which molecular-related subcategories are utilized for tumor grades. Different enhanced and sensitive
MRIs T1-MRI, T2-MRI, and FLAIR are used for fusion of the features in glioma grading classification.
The objectives are achieved by the proposed architecture that employs multi-stream 2D deep CNN in
glioma grading classification.

Fusion features are aggregated for scans of T1.MRI, T2.MRI and FLAIR brain images and 2D
slices of 2D images are used to mitigate the over-fitting problems. The proposed architecture performs
decently for grade glioma classification with 90.87% accuracy [135].

DNA methylation-based approaches that contain multi-modal medical images are used in the
classification of glioblastomas tumors. 3D implementation, such as Histograms of Oriented Gradient
(HOG), Local Binary Pattern (LBP) and Binary Robust Independent Elementary Features (BRIEF), is
developed for short local image descriptors where tumor regions are identified by Bag-of-patterns as
well as hand-crafted and auto-encoders deep features that are computed for segmentation masks in
tumor diagnosis [70].

4. Brain Tumor Prediction

Prediction of brain tumors and the chances of survival for patients are open challenges for the
researchers. MRIs opens ways of research in the field of brain tumors such as prediction, classification
and segmentation analysis. Brain tumors are classified into two categories that consist of benign and
malignant lesions. The multi-class tumors are also further subcategorized into XX and YY described
from major to minor [72]. The size of the dataset is strongly linked with regression and other deep
learning methods. The 3D-convolutional neural network plays an important role in classical regression
methods for survival time prediction of patients with high-grade brain tumors. 3D CNN is used with
Support Vector Classifier for better accuracy. Tumor cell shape, location, intensity and deep features
are investigated during the experiment. More training data are required for the regression-based
methods [83]. The survival time is varied in short-term, mid-term and long-term for high-grade
gliomas tumor patients. A research study is carried out for the accuracy of different machine learning
and deep leaning Brats 2017 dataset samples that consist of 163 samples of brain MRIs. Deep features
that include intensity and statistical texture, and volumetric and shape of tumor cell are important for
the training of various Machine Learning (ML) and Deep Learning (DL) methods. Different ML and DL
methods that include Support Vector Machine (SVM), e, linear discriminant analysis, logistic regression
and K-Nearest Neighbors (KNN) are tested on Brat’s dataset, and accuracies are compared. The best
prediction accuracy is achieved using a hybrid algorithm combining CNN and linear discriminant
analysis [87]. CNN is a well-known method for image recognition and prediction. MvNet and SPNet
are used to address the challenges of multimodal tumor segmentation. Multi-view Network slices the
multimodal images from different view-points, which consist of three Multi-branch layers that are
fully connected with Residual Networks (Mb-FCRN). Mb-FCRN produces independent segmentation
results and then SPNet is employed to measure the survival time for the temporized patients [84].
Table 3 shows an overview of the literature reports based on brain tumor prediction techniques using
deep learning.

A two-stage learning-based method is proposed by D. Nie for the prediction of overall survival
time for high-grade gliomas tumor patients. In the first stage, high-grade features are extracted to
enhance multi-modal, multi-channel MRIs to increase the predicted survival time. Two-stage learning
methods are used for contrast-enhanced MRIs as well as in Diffusion Tensor Imaging (DTI), and
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resting-state MRI images for computing different metric maps that include DTI images for generating
diffusivity maps and anisotropy-related fluctuation frequency maps. The 3D convolutional neural
network consists of multi-channel metric maps that are used to extract the high-grade predictive
features from the individual patch of these maps, and trains the network layers for prediction. In the
second stage, Support Vector Machine (SVM) are used to classify tumor-related features such as age,
histological type, and tumor size to predict the final (short or long) overall survival time of high-grade
gliomas patients with 90.66% accuracy [136].

The Extreme Learning Machine Local Receptive Fields (ELM-LRF) method is proposed for the
prediction of tumors, containing three phases that include the removal of the noises from images
by local and nonlocal methods, the prediction of benign or malignant tumor using ELM-LRF and
segmentation of tumor. The cranial MR images are used in the proposed method, as the images have
more mass. The proposed method is effective and gives a high accuracy of 97.18% for malignant
tumors when cranial MR images use [71].

High-grade gliomas brain tumor is very aggressive and leads to the death of a patient in 1–2 years.
The accurate and timely prognosis of the gliomas brain tumor increases chance of survival. The
extraction of the deep features of gliomas patients from MRI, DTI, and fMRI is important for prediction
of overall survival time. 3D CNN with multi-channel data extracts the deep and clinical features, and
using SVM predicts short, long and overall survival times of the gliomas patients [85].

Table 3. Overview of papers using deep learning for brain tumor Prediction.

Study Method
Proposed Solution
and Preprocessing

Approach

Software’s/Tools/Languages/
Libraries used for

Simulation and
Implementation

Evaluation

Ali ARI & Davut
HANBAYaks [71].

Convolutional Neural
Network ELM-LRF MATLAB 2015 Accuracy = 97.18%

Yannick Suteret al.
[83].

3D-convolutional
neural networks

(CNNs)

Support Vector
Classifier (SVC),

Hand-Crafted Features

Scikit-learn3 version
0.19.1. Accuracy = 72.2%

Yuexiang Li &
Linlin Shen [84]. CNN

Multi-view Deep
Learning Framework
(MvNet) and SPNet

PyTorch Toolbox Accuracy =88.00%

Dong Nie et al.
[85].

3D convolutional
neural networks

(CNNs)

Multi-Channel
Architecture of 3D

convolutional neural
networks and SVM

Not Mention Accuracy = 90.66%

Javeria Aminrt et al.
[86].

Random forest (RF)
classifier

Gabor Wavelet
Features (GWF),
Histograms of

Oriented Gradient
(HOG), Local Binary

Pattern (LBP) and
segmentation based

Fractal Texture
Analysis (SFTA)

features

DWI and FLAIR

Dice Scores
Complete = 0.91

Non-Enhancing = 0.89
Enhancing = 0.90

Lina Chato &
Shahram Latifi [87].

Convolutional Neural
Network (CNN),

Linear Discriminant

Support Vector
Machine (SVM),

K-Nearest Neighbors
(KNN), Linear

Discriminant, Tree,
Ensemble and Logistic

Regression

Not Mention Accuracy = 68.8%

Virupakshappa &
Basavaraj

Amarapur [88].

Adaptive Artificial
Neural Network

(AANN)

Modified Level Set
approach MATLAB Accuracy = 98%
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The variable and complex shapes, textures, sizes, and locations of brain tumor cells are a few
challenges for automatic detection of the tumor. An unsupervised clustering method that has a
fused feature vector is a mixture of the Local Binary Pattern (LBP), Gabor Wavelet Features (GWF),
Histograms of Oriented Gradient (HOG) and Segmentation-Based Fractal Texture Analysis (SFTA)
are developed by J. Amin for the prediction of brain tumor. Random Forest (RF) is used with 0.5
holdout cross-validation to avoid overfitting problem in the prediction and classification of tumors
into complete, enhancing and non-enhancing regions [86].

Neuro endoscopy and invasive procedures have great impact on the prediction and treatment
of pituitary brain tumors. The Eyebrow Orbitotomy approach is used by neurosurgery and assistant
surgeons to predict the brain tumor [137].

Another approach is presented for the classification of brain tumor in which a modified level set
method is used to segment the tumor region. The feature set thr Gabor and moment invariant, and Grey
Level Co-Occurrence Matrix (GLCM), that are extracted using Multi-Level wavelet decomposition.
After features selection, Adaptive Artificial Neural Network (AANN) is applied on selected features
for the prediction of brain tumor. To increase the accuracy of the ANN, optimization for layers of the
network is performed using the Whale Optimization Algorithm (WOA) [88].

5. Exploring Deep Features for Brain Tumor

Deep features exploration and representation is an important task for the prediction and
diagnosis of brain tumor from radiological MRIs. Deep features are extracted from MRI images
for diagnosis, therapy, and prognosis in oncology. The radiomic properties of the images clearly link
with meaningful biological characteristics and give qualitative pieces of information that are familiar
to radiologists [138]. Deep convolutional neural networks achieve state-of-the-art performance for
prediction and classification when network is pre-trained as features extractor. Deep feature extractor
methods and techniques are better for the prediction of over-all survival time for the tumorized
patients [80]. Deep Convolutional Neural Networks (CNNs) activation method is used to extract
the features from ImageNet to train the CNNs networks for classification and segmentation. CNN’s
activation features method employs various techniques that include features’ selection, features’
pooling, and data augmentation algorithms [76].

To reduce the intensity of variation of the images’ different average filters, features selection,
features extraction and fusion are performed. Gabor Wavelet features technique is used to obtain the
texture information of the image that contains the locality orientation and frequency of the tumor.
Kernel Principal Component Analysis (KPCA) selects the small subset of the features and reduces
the redundancy by increasing the relevancy of the features. Gaussian Radial Basis Function (GRBF)
gives distinguished information of features from multiple sets of features for feature fusion [78].
Fine-tuning-based feature extraction is used in the pre-trained CNNs method. Fine-tuned CNNs are
initially trained with a large amount of natural image data and then adopt features representation that
is used for different brain tumor containing segmentation, classification, and prediction of survival
time for tumorized patients [77]. Table 4 shows the overview of the literature.



Brain Sci. 2020, 10, 118 13 of 33

Table 4. Overview of papers using deep learning for brain tumor Deep Features, Evaluation
and Framework.

Area Study Method
Proposed Solution
and Preprocessing

Approach

Software’s/Tools/Languages/
Libraries used for

Simulation and
Implementation

Evaluation

Deep
Features

Kaoutar B.
Ahmed et al.

[77].

Convolutional
Neural

Networks
(CNNs)

Fine-Tuning Weka Accuracy = 81%

A. R. Deepa &
W. R. Sam

Emmanuel [78].

Fused Feature
Adaptive MATLAB Accuracy = 99.84

Mustafa Rashid
Ismael [79].

deep neural
networks

Stacked Sparse
Autoencoder (SSA)

and Softmax
Not Mention Accuracy = 94%

Renhao
Liua et al. [80].

Deep
Convolutional

Neural
Networks

Pre-trained CNN
as a feature

extractor to get
deep feature

representations for
brain tumor

magnetic
resonance images.

Weka Accuracy = 95.4%

Evaluation
Nøhr

Ladefoged et al.
[81].

RESOLUTE and
DeepUTE Precision = 0.67

Frameworks
Himar

Fabelo et al.
[82].

2D
convolutional

neural network

TensorFlow and Titan-XP
NVIDIA GPU Accuracy = 80%

6. Brain Tumor Segmentation

Brain tumor segmentation is performed to extract the tumor region from the images for the further
classification and prediction of brain tumors. Different Machine ML/DL methods are proposed for the
segmentation of tumorized cells. Some of these ML methods use manually segmented images for the
training, which is costly, time-consuming and needs medical expertise. Two types of data, fully-annotated
and weakly annotated data, train the deep learning methods for segmentation. A method that uses
these two types of data, presented by V. Rao, adds an additional branch to the segmentation network
for image-level classification. The method also studies the weakly annotated images to learn to avoid
features that are irrelevant for the segmentation task [95]. Deep Neural Network (DNN) is applied on the
Pixel wise multimodal image representation that includes T1, T1c, T2, and Flair for the segmentation.
DNN learns from each pixel of the image and segments the brain region more accurately [139]. Table 5
describes the overview of recent development for brain tumor segmentation.

State-of-the-art neuroimaging techniques are available for the detection of visible and invisible
tumor cells. The variability in the shape and size of the tumor increases difficulties for automatic image
segmentation. A hybrid Random Forest and Support Vector Machine (RF-SVM)-based method learns
from the complex characteristics of the tumor lesion. RF-SVM consists of two-stage cascade in the
first stage, random forest learns from the tumor label space and, at the second stage, the predicted
features are fed into the SVM for classification. RF-SVM performs well as it is used solely for the
segmentation [140].

Fully Convolutional Network (FCN) is used for segmentation of the tumor region and modifies
the network with bounce structural chart to facilitate the semantic requirements for segmentation.
Three-dimensional CNN is used for segmentation of the brain tumor. S. Kumar uses UNET and crops the
image when fed into the network for better results [100]. The interactive deep-learning-based framework
consists of the integration of CNNs into the bounding box and the scribble-based image segmentation
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pipeline is developed by G. Wang for tumor segmentation. The image-specific fine-tuning-based
CNN’s model becomes more adaptive for specific test images [141].

Table 5. Overview of papers using deep learning for brain tumor segmentation.

Study Method
Proposed Solution
and Preprocessing

Approach

Softwares/Tools/Languages/
Libraries used for

Simulation and
Implementation

Evaluation

Xiaomei
Zhao et al.

[1].

Fully Convolutional
Neural Networks

(FCNNs)

Integration of FCNNs
and CRFs

Tesla K80 GPUs and Intel
E5-2620 CPUs

Dice Scores
Complete = 0.84

Core Tumor = 0.67
Enhancing = 0.62

Mamta
Mittal et al.

[12].

Stationary Wavelet
Transform (SWT) and

the new Growing
Convolution Neural
Network (GCNN).

Not Mention
Accuracy = 98.6

Precision = 0.9881
Recall = 0.9823

Yan Xu et al.
[76].

Deep Convolutional
Activation

Features(CNNs)

CNN Activations
Trained by ImageNet

to Extract Features
through Feature

Selection, Feature
Pooling, and Data

Augmentation

Not Mention Accuracy = 84%

Eze
Benson et al.

[89].

Convolutional Neural
Network (CNN)

Singular Hourglass
Structure NVIDIA TITAN X GPU Coefficient = 92%

Chenhong
Zhou et al.

[90].

Convolutional Neural
Network

OM-Net MC-baseline
and OM-Net from
multiple aspects to
further promote the

performance.

Not Mention

Dice Scores
Enhancing = 0.8136

Whole Tumor = 0.909
Core Tumor = 0.8651

Geena Kim
[92].

2D Fully
Convolutional Neural

Networks

double convolution
layers, inception

modules, and dense
modules were added

to a U-Net to achieve a
deep architecture

Not Mention

Dice Scores
Enhancing = 0.75

Whole Tumor = 0.88
Core Tumor = 0.73

Yan Hu &
Yong Xia

[93].

Deep Convolutional
Neural Network

3D Deep Neural
Network-based

Algorithm Cascaded
U-Net

NVIDIA GTX 1080

Dice Scores
Enhancing = 0..55

Whole Tumor = 0.81
Core Tumor = 0.69

Aparna
Natarajan &
Sathiyasekar
Kumarasamy

[94].

Fuzzy Logic with
Spiking Neuron Model

(FL-SNM)
MATLABR2017 Accuracy = 94.87%

Peter D.
Chang [98].

Fully Convolutional
Neural Networks

Fully Convolutional
Residual Neural

Network (FCR-NN)
MATLAB R2016a

Dice Scores
Complete = 0.87

Core Tumor = 0.81
Enhancing = 0.72

Fabian
Isensee et al.

[99].

Convolutional Neural
Networks UNet Architecture Pascal Titan X GPU

Dice Scores
Whole = 90.1

Core Tumor = 90.0
Enhancing = 84.5

Sanjay
Kumar et al.

[100].

Fully Convolution
Neural Networks UNET Architecture Not Mention Accuracy = 89%

Guotai
Wang et al.

[101].

Convolutional neural
networks (CNNs)

Fine-tuning-based
Segmentation (BIFSeg) NVIDIA GPU Accuracy = 88.11%
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Table 5. Cont.

Study Method
Proposed Solution
and Preprocessing

Approach

Softwares/Tools/Languages/
Libraries used for

Simulation and
Implementation

Evaluation

Yun
Jiang et al.

[102].

Convolutional Neural
Networks

Statistical
Thresholding and

Multiscale
Convolutional Neural
Networks (MSCNN)

Not Mention

Dice Coefficient = 86.6%
Predictive Positivity Value

(PPV) = 88.6%
Sensitivity Coefficient = 85.2%

Dongnan
Liu et al.

[103].

Deep Convolutional
Neural Network

(DNN)

3D Large Kernel
Anisotropic Network

CBICA’s Image Processing
Portal

Dice Scores
Whole = 0.86

Core Tumor = 0.81
Enhancing = 0.793

Mina
Rezaei et al.

[104].

3D Conditional
Generative Adversarial

Network (cGAN)

Adversarial Network,
named Voxel-GAN

Keras library and
Tensorflow

Dice Scores
Whole = 0.84

Core Tumor = 0.79
Enhancing = 0.63

Dice = 0.83
Hausdorff = 9.3
Precision = 0.81

Recall = 0.78

Haocheng
Shen et al.

[105].

Fully Convolutional
Network (FCN)

Boundary-Aware Fully
Convolutional

Network
Keras and Theano

Dice Scores
Complete = 88.7

Core Tumor = 71.8
Enhancing = 72.5

V. Shreyas
and Vinod

Pankajakshan
[106].

Simple Fully
Convolutional

Network (FCN)
U-Net Uadro K4000 GPU

Dice Scores
Whole = 0.83

Core Tumor = 0.75
Enhancing = 0.72

Nicholas
J et al. [107]. Random Forests Random Forests with

ANTsR
ANTsR Package, CMake

Tool, R-code

Dice Scores
Complete = 0.87

Core Tumor = 0.78
Enhancing = 0.74

Liya Zhao &
Kebin Jia

[108].

Convolutional Neural
Networks (CNNs)

Multi-Scale CNN
Architecture of tumor
Recognitionon 2D slice

and Multiple
Intermediate Layers in

CNNs

Not Mention Dice Accuracy = 0.88%

R.
Thillaikkarasi

& S.
Saravanan

[109].

CNN with M-SVM

Novel Deep Learning
Algorithm

(Kernel-based CNN)
with M-SVM

Not Mention Accuracy = 84%

Wu
Deng et al.

[110].

Convolutional Neural
Network

Dense Micro-block
Difference Feature

(DMDF) and Fisher
vector Encoding

Non-quantifiable local
feature FCNN and Fine
Feature Fusion Model

GPU NVIDIA GeForce
GTX1070, Ubuntu 16.04

LST 64-Bit operating
System

Accuracy = 90.98%

Tony C. W.
Mok et al.

[111].

Generative Adversarial
Networks

Novel automatic data
augmentation
Coarse-to-Fine

Generator to capture
the Manifold,

Coarse-to-Fine
Boundary-Aware

Generator CB-GANs

Nvidia GTX1080 Ti GPU

Dice Scores
Complete = 0.84

Core Tumor = 0.63
Enhancing = 0.57

Anshika
Sharma et al.

[112].
Neural Network

Differential Evolution
algorithm Embedded
with OTSU method

Hybridization of
Differential

Evolution(DE) and
OTSU

MATLABR2012a Accuracy = 94.73%
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Table 5. Cont.

Study Method
Proposed Solution
and Preprocessing

Approach

Softwares/Tools/Languages/
Libraries used for

Simulation and
Implementation

Evaluation

Zhe
Xiao et al.

[113].

Coarse-to-Fine and
’Stacked Auto-Encoder’

(SAE). Stacked
Denoising Auto
Encoder SDAE

Not Mention Accuracy = 98.04%

Adel
Kermi et al.

[114].

2D Deep
Convolutional Neural

Networks (DNNs)

Weighted
Cross-Entropy (WCE)
and Generalized Dice

Loss (GDL) U-net

intel Xeon E5-2650 CPU@
2.00 GHz (64 GB) and

NVIDIA Quadro 4000–448
Core CUDA (2 GB) GPU.

Dice Scores
Whole = 0.86

Core Tumor = 0.80
Enhancing = 0.78

Hongdou
Yao et al.

[115].
Cascaded FCN GTX 1080Ti GPU

Dice Scores
Whole = 0.86

Core Tumor = 0.73
Enhancing = 0.63

Lutao
Dai et al.

[116].

Deep Convolution
Neural Networks

Integration of modified
U-Net and its

domain-adapted
version (DAU-Net).

XGBoost

Dice Scores
Whole = 0.91

Core Tumor = 0.85
Enhancing = 0.80

Eric
Carver et al.

[117].
U-net Neural Network XGBboost

Dice Scores
Whole = 0.88

Core Tumor = 0.76
Enhancing = 0.71

Guotai
Wang et al.

[118].

Convolutional Neural
Networks

Cascade Fully
Convolutional Neural
Network with multiple
layers of Anisotropic

and dilated
Convolution Filters

NVIDIA TITAN X GPU

Dice Scores
Whole = 0.83

Core Tumor = 0.90
Enhancing = 0.78

Sara Sedlar
[119].

Convolutional Neural
Network (CNN

Multi-Path
Convolutional Neural

Network (CNN)

nVidia’s GeForce GTX 980
Ti (6 GB) GPU and Intel

Core i7-6700K CPU @ 4.00
GHz (32 GB).

Dice Scores
Whole = 0.84

Core Tumor = 0.69
Enhancing = 0.60

Zoltan
Kap et al.

[120].

Decision Trees and
Random Forest

technique
Not Mention

Dice score = 80.1%
Sensitivity = 83.1%
Specificity = 98.6%

G. Anand
Kumar & P.
V. Sridevi

[121].

3D Convolutional
Neural Network

(3DCNN)

EGLCM Feature
Extraction to Assess,

Evaluate and Produce
accurate predictions

and detailed
segmentation maps.

MATLABR2017a Not Mention

Hao
Dong et al.

[122].

Fully Convolutional
Networks

U-Net based Deep
Convolutional

Networks
NVIDIA Titan X (Pascal)

Dice Scores
Complete = 0.86

Core Tumor = 0.86
Enhancing = 0.65

David
Gering et al.

[123].

Convolution Neural
Network

Multi-Plane Reformat
(MPR)

TensorFlow and Neural
Networking API Keras

Dice Scores
Active= 0.76

Core Tumor = 0.86
Whole = 0.89

Reza
Pourreza et al.

[124].

Deeply-Supervised
Neural Network

Holistically-Nested
Edge Detection (HED)

Network

Caffe library Python and
NVIDIA Titan Xp graphic

card

Dice Scores
Whole = 0.86

Core Tumor = 0.60
Enhancing = 0.69

Samya
AMIRI
[140].

Random forest (RF)
based Learning
Transfer to SVM

RF-SVM cascaded

MATLAB Mean Dice index
Secore = 72.0%
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Table 5. Cont.

Study Method
Proposed Solution
and Preprocessing

Approach

Softwares/Tools/Languages/
Libraries used for

Simulation and
Implementation

Evaluation

Guotai
Wang et al.

[141].

Deep Convolutional
Neural Networks

(CNNs)

3D Unet, Cascaded
Network of WNet,

TNet and ENet
NVIDIA TITAN X GPU

Dice Scores
Whole = 90.21

Core Tumor = 85.83
Enhancing = 79.72

Mikael
Agn et al.

[142].

Gaussian Mixture
Model Combined with
a Spatial Atlas-based

Tissue Prior Generative
Model

Convolutional
Restricted Boltzmann

Machines (cRBMs)
MATLAB 2014b.

Dice Scores
Complete = 87

Core Tumor = 82
Enhancing = 70

Xiangmao
Kong et al.

[134].
U-Net

Novel Hybrid Pyramid
U-Net (HPU-Net)

Model for Pixel-Level
Prediction

NVIDIA Titan X GPU

Dice Scores
Complete = 0.90

Core Tumor = 0.71
Enhancing = 0.78

Predictive Positivity Value
(PPV)

Complete = 0.91
Core Tumor = 0.87
Enhancing = 0.93

Sensitivity
Complete = 0.96

Core Tumor = 0.79
Enhancing = 0.67

Richard
McKinley et al.

[143].

Convolutional Neural
Network (CNN)

Densenet and
DeepSCAN Not Mention Dice Scores

Pawel
Mlynarskia et al.

[144].

Deep Learning
Fully-Annotated and
Weakly-Annotated

TensorFlow Accuracy = 85.67%

The large size and dimensions of images (an image size up to gigabyte) and a limited amount
of training data affect the performance of the Deep Convolutional Neural Network (DCNN). The
convolutional neural network extracts the features and train their activation function through ImageNet
knowledge, along with features selection, data augmentation, and feature pooling functions [76].
Convolutional Neural Network uses an encoder and decoder network with a singular hourglass
structure for segmentation of the tumor region. Some preprocessing techniques are applied first and
then the processed data is fed into the network. The hourglass method classifies the tumor into a core
using one pass iteration [89]. Convolutional Neural Network has a powerful learning ability that
learns attentive and contextual information when multiple deep layers of a variant structure are added
to the network architecture, and produces more robust results for tumor segmentation. The risk of
over-fitting for segmentation is reduced with the modified network and achieves a better Dice score for
Brats 2018 data set [90]. Multi-Scale information requires brain image segmentation using boundary
detection with the global context. The CNN uses down and upsampling of images to compute the
features at a multi-scale level for semantic segmentation. The downsampling path requires a pooling
operation which includes CNN, that is not desirable for segmentation tasks. The dense net is applied
on a Brats 2017 dataset that excludes the pooling operation and adds delated convolutions, excluding
the non-brain tissue for segmentation of the tumor region [91]. 2D fully convolutional network
preforms better for segmentation with an increase in the depth of the architecture. Inception modules,
convolutional layers, and the dense module were added in the U-Net architecture to the depth of the
network and performance of the U-Net is computed. Deep U-Net architecture is trained on different
image orientations without data augmentation techniques [92]. The 2D deep neural-network-based
algorithm detects and segments the intra structure of tumors including enhancing, non-enhancing,
necrosis and edema, forming multimodal MR brain images. Cascade U-net detects the tumor region
and DCNN segments the patch base intra-tumor structure [93].
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Fuzzy Logic with a Spiking Neuron Model (FL-SNM) is used for segmentation of the tumor region
in MRIs. Modified Kuan Filter (MKF) is used to remove Poisson and Gaussian noise ftom the image
before bringing it to the FL- SNM model. Random Search Algorithm (RSA) optimizes the image pixels
and improves the Peak Signal-to-Noise Ratio (PSNR). Anisotropic Diffusion Filter (ADF) smooths the
image and reduces the over-filtering problems. Afterwards, Fisher’s Linear Discriminant Analysis
(FLDA) extracts the statistical texture features from the MRIs. The extracted features are transferred
to the FL-SNM for the effective segmentation of the tumor region. Chicken Behavior-Based Swarm
Intelligence (CSI) algorithm optimizes the weight value as weight and bias values are important in the
FL-SNM model for tumor segmentation [94].

The segmentation of brain MRIs is implemented using the newly presented Fully Convolutional
Residual Neural Network (FCR-NN), which is based on the linear identity of mappings. FCR-NN is a
combination of optimizied residual and fully convolutional networks that efficiently segments low-
and high-grade image features. In FCRe-NN, two different networks train the data, initially whole
segmentation is performed and later on, tissue-based sub-region segmentation is achieved. FCR-NN
enhances the overall Dice score for complete core and enhancing tumor [98].

Glioblastoma brain tumor segmentation is performed using convolutional neural networks with
few layers and small receptive fields that minimizes the contextual and quality information for tumor
segmentation. U-Net employs multiple layers for training and uses dynamic sampling of training
data [99].

6.1. Feasibility Studies on Segmentation

Deep learning methods and models use a large amount of data for semantic segmentation of
brain tumors, and it is a challenging task to acquire sufficient data for the training of models. The
labeling of medical images requires domain knowledge expertise. Sharing the medical data of patients
to a centralized location results in privacy, legal, data-ownership and technical challenges at the
international level. The federated learning approach is used for semantic segmentation without sharing
patient data by the multi-institutional collaboration. Federated learning provides better accuracy for
semantic segmentation, with respect to the model that is trained on sharing data [145].

Tumor lesion location, use of Anti-Epileptic Drugs (AEDs) and the development of psychiatric
symptoms have strong correlations among them. Treatment-Emergent Psychiatric Adverse Event
(TE-PAEs) is possible through AED therapy and meets the conditions that includes onset within 4
weeks after AED therapy is perfromed, the absence of any other notorious possible concurrent cause,
and disappearance upon drug discontinuation [146].

6.2. Proposed Approaches for Segmentation

The diagnosis, planning, treatment, and evaluation of treatment outcome depends on accurate
and reliable tumor segmentation. Fully Convolutional Neural Networks (FCNNs) and Conditional
Random Fields (CRFs) are jointly used for the segmentation of tumor regions. Firstly, FCNNs-CRFs
train FCNNs using slices and patches of 2D images. The parameters of FCNNs with image slices
are used to train CRF as Recurrent Neural Networks (CRF-RNN), and image slices are used for the
fine-tuning of FCNNs and CRF-RNN. 2D images patches are used to obtain coronal, axial and sagittal
views, and voting-based fused-strategy is performed to combine these slices in tumor segmentation.
The FCNNs-CRFs segment images into slice-by-slice orientation instead of patches which makes it
much faster as compared to other existing segmentation models [1].

The variational model detects the saliency in MRIs and segments tumor regions. The variational
model also detects the region of interest for the tumor. The proximal point algorithm solves the
non-convex and non-smooth problems in the segmentation [147] to find a method for segmenting
the brain tumor. The method consists of preprocessing, post-processing and a deep learning-based
classification model. The model starts from preprocessing, which extracts the images patches for brain
MRIs to achieve the gray level sequences of MRI patches that trains the deep learning network. The
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deep learning uses a stacked autoencoder to extract the high-level features of the image and uses
the selected images patches for classification. Morphological filters are used for post-processing and
convert the obtained result into a binary image for final segmentation result [113].

Multi-modal MRIs are used for brain tumor segmentation using automated generative models.
The generative model is useful for healthy brain tumor tissues, the combination of spatial atlas-base
for tissue prior and Gaussian mixture models for tissue modulation. To shape the core and complete
tumors prior-to-tumor-based model, convolutional Restricted Boltzmann Machines (cRBMs) was
presented by M. Agn [142]. The cRBMs model is effective for low and high-grade gliomas’ segmentation
as it uses expert segmented images for training that do not use intensity information of images [142].

The Hybrid Pyramid U-Net (HPU-Net) model explores the contextual information of different
region-based contexts. HPU-Net predicts pixel-level segmentation using global context information
and produces good quality results for tumor segmentation. HPU-Net is based on multimodal
tumor segmentation and performs end-to-end training and testing. The model uses downsampling
and symmetrical upsampling paths and concatenates the features of up and downsampling at the
symmetrical block. In the up-sampling process, multiple-scale features are extracted from each block
and are added pixel-wise to recover the origin resolution. The integration of multi-scale, semantic and
location information before the softmax layer increases the efficiency of tumor segmentation [142].

Brain tumor segmentation has received great attention in the domain of soft computing and
medical images. Machine learning and deep learning methods require a large amount of data for their
training that is expensive in the biomedical field. Different data augmentation techniques are available
to expand the size of taring data to achieve better segmentation results. Generative Adversarial
Networks (GANs)-based automatic data augmentation methods, presented by T. C. W. Mok and A. C.
S. Chung, make the available annotated samples more efficient for deep-learning-methods [111]. The
method consists of the coarse-to-fine generator that captures manifold training data and generates
general augmented data for the segmentation [111]. Differential Evolution algorithm combined with
OTUS is used to optimize the threshold value of the particular image and train the neural network
for segmentation [112]. Deep learning technologies in the medical field improve the awareness of
bio mechanisms for brain tumor segmentation. The segmentation of brain tumors is difficult due to
variability in the size, shape, and location of tumor cells. The identification and segmentation of gliomas
tumor from MRIs is a challenging task due to variabilities in tumor location, shape, spatial extent,
intensity signature and the possible distance between normal and tumorized tissues. A novel, simple
Fully Convolutional Network (FCN) segments the tumor efficiently and gives a faster runtime than
other methods [106]. A Multiple Convolutional Neural Network-based framework with discrimination
mechanisms was proposed by L. Zhao and K. Jia to overcome the segmentation problem, that includes
accurate segmentation and protects the image form large and complex biases added to the MRIs. The
2D multiple CNNSs reduce the segmentation time for 3D voxel classification of brain tumors [108].
Another Multiscale Convolutional Neural Network that is based on statistical threshholding, segments
the tumor region effectively. The statistical threshold method perfoms the coarse segmentation of
the tumor. The multiscale convolutional neural network obtains the 2D multi-modality image that is
roughly segmented by the statistical method for final tumor segmentation [102].

A generative adversarial network (voxel-GAN) addresses the data imbalance problems in the
brain tumor’s segmentation as the majority of the voxels come from the healthy region and few
voxels belong to the non-healthy or tumor region. 3D conditional Generative Adversarial Network
(cGAN) consists of a segmentor and discriminatory segmentor to learn the segmentation labels from
3D MRIs and the discriminator differentiates the segmentor output in the ground truth data and
the output that is artificially generated. The discriminator and segmentor networks are trained on
newly generated weight adversarial loss to reduce the imbalance problem in the training data [104].
3D Deep Convolutional Neural Networks (3D DNNs) are most popular for tumor segmentation
as 3D DNNs have a strong learning capability with a large number of parameters for effective
segmentation. 3D large kernel anisotropic network addresses problems that arise due to a large number



Brain Sci. 2020, 10, 118 20 of 33

of parameters, especially the selection of valid receptive fields which forms a large number of features
that causes high computational cost and model overfitting. The 3D large kernel consists of an encoder
and decoder, a large kernel encoder to make sure the valid receptive field is large enough and an
anisotropic CNNs encoder is used to simulate the isotropic ones with fewer parameters [103]. Fully
Convolutional Network (FCN) along with multi-task are presented by H. Shen for the automatic
segmentation of brain tumor. Multi-task FCN extracts the contextual information at multi-levels using
the symmetric-difference from multi-model MRIs. It integrates boundary information directly into the
loss function and achieves efficient segmentation results [105].

Random Forest technique computes probabilities for multi-modality geometry, intensity and
asymmetry feature sets for the supervised segmentation. Random Forest model also generates
probability maps and these maps are used to refine the Markov random field for probabilistic
segmentation. Advanced Normalization Tools (ANTs) and R Statistical (ANTsR) are used to investigate
the learning capabilities of random forest for probabilistic segmentation [107].

6.3. Enhancement Approaches towards Segmentation

The brain tumor develops due to the creation of abnormal cells in the brain tissue, and there are
two types of brain tumors including benign and malignant tumors. The benign tumor does not affect
human health but the malignant tumor has a lethal effect on the surrounding healthy and normal
tissues in the brain that leads to the death of a patient. Early detection of tumor is necessary for
treatment and patient survival. Segmentation of the tumor region is a challenging task due to the
irregular shape and location of the tumor cell.

A kernel-based CNN combined with M-SVM presents an effective method for the enhancement
and automatic segmentation of tumors. The method consists of preprocessing phase, features extraction
method and tumor segmentation. Laplacian Of Gaussian (LOG) filtering method and Contrast Limited
Adaptive Histogram Equalization are used for MRIs enhancement and extraction of features that
are based on the shape, size and their location in the brain. The kernel-based CNN method uses
MRIs and M-SVM to classify the tumor that is segmented by kernel-based CNN [109]. Stationary
Wavelet Transform (SWT) and Growing Convolutional Neural Network are jointly used for a better
segmentation of tumor region. SWT enhances the accuracy level of GCNN for segmentation [12].

A hybrid method, used for the segmentation of tumors by W. Deng, is a combination of a fully
convolutional neural network and Dense Micro-block Difference Feature (DMDF) [110]. The Fisher
vector encoding method analyzes the texture features to avoid rotational change and scale in texture
images. The obtained local feature is fused to the Fully Convolutional Neural Network (FCNN) for
fine boundary segmentation and then the de-convolutional skips the connection and a high-quality
features map is obtained for segmentation [110].

6.4. Approaches toward Automatic Segmentation

The automatic segmentation of brain tumors into the whole tumor, core tumor and enhancing
tumor form multi-model MRIs is dependent on tumor regions. The cascade of full CNNs decomposes
the multi-class segmentation region into three binary segmentation regions. The cascade FCNNs work
as the first segment for the whole tumor and bounding box of results is used for the segmentation
of the core tumor. In the second stage, bounding box results of the core tumor are used to segment
the enhancing tumor. The cascade of FCNNs consists of multiple layers of dilated and anisotropic
convolutional filters and reduces the false-positive rate using multi-view fusion. The multi-scale
prediction and residual connections of cascade FCNNs boost the segmentation performance [118].

Deep Learning (DL) and Multi-Atlas (MA) methods performed on Dual-Energy Computed
Tomography (DECT) data have distinguished the healthy tissues from tumor tissues that are referred
to as Organs-At-Risk (oARs). The Dual-Energy CT (DECT) dataset has high-resolution images as
compared to single-energy CT. DL methods achieved better results for segmentation on DECT in
comparison to single-energy CT for qualitative and quantitative analysis [148]. A 3D convolutional
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neural network deals with the partial volume averaging, inter-slice intensity variation and noise
sensitivity. The intensity in homogeneity and intensity non-standardization is used to segment the
tumor regions effectively. N3T-spline reduces the intensity and noise variation by correcting the bias
field distortion and using a gray level co-occurrence matrix to extract the features from texture patches.
3D CNNs use these features and automatically segment the tumor into various abnormal tissues [121].

Structured Random Forest (SRF) and Bayesian Networks (BN)-based learning frameworks
segment the multi-label images automatically. The structured random forest and Bayesian networks are
embedded into multi-layer deep learning architecture and they cooperate for better learning of tumor
features for multi-label segmentation. In the SRF-BN method, SRF performs pixel-level segmentation
by exploring the contextual and structural information of the image, and BN supervises the statistical
dependencies of image components at super pixel-level.

BN input probabilities maps are generated by SRF and original multi-model images are employed
in each multi-layer of deep architecture. In the context of learning transfer from SRF to BN, BN
performance has been improved gradually. In the next layer, the performance of SRF increases
using original multimodal image and BN segmentation maps. In the SRF-BN method, both use the
segmentation maps from the previous layer and the learning capabilities are increased in the networks.
Thus better performance is achieved in the segmentation of tumors [97].

The U-Net base fully convolutional network measures the tumor’s level and automatically
segments the tumor region into the whole, core and enhancing tumor [122].

The 2D Deep Convolutional Neural Networks (DNNs) automatically extracts the tumor into
whole-tumor and intra-tumor regions’ in multimodal 3D MRIs. 2D convolutional neural network
inspired by U-Net is modified using Generalized Dice Loss (GDL) and Weighted Cross-Entropy (WCE)
as a loss function is used to address the class imbalance problems the tumor data. The proposed
method was tested on BraTS 2018 dataset and had achieved a good dice score for Whole, Core and
Enhancing tumor [114].

Deep Convolutional Neural Networks (DCNNs) use relatively small datasets for their training and
data augmentation techniques are used to increase the performance of CNNs. The network structure
of the CNNs is updated through flipping, scaling, image 3D rotation, adding noise at both training
and testing times, and applying data augmentation techniques increase the performance of DCNNs in
brain tumor segmentation [101].

Cascade’s fully convolution neural network is an effective method for image segmentation
that splits multi-model MRIs into subhierarchy regions. 3D SE-inception network employs the 3D
multi-model image data instead of 2D images. The 3D SE-inception uses dilated convolutional filters,
and 3D Squeeze and Excitation structures for 3D segmentation. In the 3D SE-inception system, the
bounding box results of whole tumor are used for the segmentation of the core tumor and bounding
box results of core tumor are used for the segmentation of enhancing tumor [115].

The hybrid method of modified U-Net is combined with a domain-adapted version (DAU-Net) to
segment the tumor by dividing the training samples in two domains. Firstly the preliminary tumor
segmentation results are obtained and secondly, the domain invariant features are computed using
modified U-Net [116].

A U-net neural network with three layers, one for the each region of interest, segments the
tumor region into the whole, core and enhancing tumor effectively. The U-net model preprocesses the
data of the patients before segmenting the tumor regions into the whole, core and enhancing tumor.
The proposed multi-U-net model predicts the tumor location and survival time of the tumorized
patient [117].

Convolutional neural network segments the tumor on the basis of multi-paths and is very effective
for automatic segmentation as the multi-path CNNs is obtained using the contextual information in
segmentation of multi-scale-regions of MR images. In the multi-path, CNNs spatial information is
used to identify the healthy and tumorized regions of the brain [119].
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Random Forest (RF) and Binary Decision Tree use multi-spectral MR images for efficient
segmentation of the brain tumor region. RF-BDT preprocess the image dataset by reducing the
effect of relative intensities and increase the features information at each voxel of the MR image [120].

Semi-Automatic Images Segmentation (SAMBAS) was presented by D. Gering for tumor
segmentation in which Multi-Plane Reformat (MPR) is used to draw a long axis of the 3D segmented
image. When 3D segmentation is performed on MPR, the 2D segmentation is updated in real-time. All
necessary additional short axes, long axes, and other editing operations are drawn on the MPR plane.
SAMBAS performs probability distribution in MPR segmentation and accelerates the process of 3D
segmentation [123].

The deeply supervised neural network based on Holistically-Nested Edge Detection (HED)
automatically segments the brain tumor from multi-model MRIs. The HED method works for binary
edge detection of images for classification but also is applicable for multi-class tumor segmentation. The
HED method segments the brain tumor into multiple classes that include whole, core and enhancing
tumors [124].

7. Brain Tumor Evaluation

Positron Emission Tomography (PET) images tool is used for assessing brain tumors and
differentiating tumor progression from reactive changes. The integration of Fluoro Ethhlyl Tyrosine
and PET (FET-PET) method adds valuable information to MRIs for a better decision. Attenuation
Correction term is used for acceptance of tumor in the FET-PET method. Deep-UTE and RESOLUTE
methods generate CT-AC metrics more effectively. The Deep-UTE method produces more robust
clinical metrics using CT-AC and overall patient survival time is increased. PET/MRIs’ attenuation
correction in the Deep-UTE method is reliable for brain tumor evaluation due to better noise handling
capability and less runtime properties [81].

8. Frameworks for Brain Tumor

The main aim of brain surgery is to perform the resectioning of tumors more accurately and
preserve normal brain cells for the patient. The development of label-free and non-contact methods
and frameworks is necessary to support the reliable resection of the tumor in real-time. Hyperspectral
imaging is non-ionizing, label-free and non-contact. The deep-learning framework preprocesses the
hyperspectral images in vivo brain tissues. The framework generates a thematic map that shows the
parenchymal area of the brain and the location of the tumor is identified that helps the surgeon in
successful and precise tumor resection [82]. Figure 4 shows the recent developments in deep learning
for brain tumor analysis.
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9. Discussion

9.1. Overview

Numerous papers were studied to conduct a review that shows how deep learning methods
and techniques achieve state-of-the-art performance in every aspect of medical image analysis,
especially in the field of brain tumor analysis, segmentation and classification. The large diversity of
deep-learning-based architectures and methods is covered in this article. The pre-trained Convolutional
Neural Network is used as a features extractor in various studies. The Capsule Network and Generative
Adversarial Network (cGAN) has also been used for medical image analysis in various articles. These
pre-trained networks download easily and can be directly applied to any format of medical images.
Moreover, the existing approaches and systems use handcrafted features. In the last three years, for
medical image analysis, an end-to-end trained CNNs approach has been preferred by researchers.
It is reported that Convolutional Neural Networks (CNNs) have replaced traditional handcrafted
machine learning methods and were integrated into existing medical image analysis pipelines. A large
number of papers that are studied in this review, follow the above approach that is being practised in
current standards.

9.2. Key Aspects of Successful Deep Learning Methods

After reviewing the various papers, one would expect to be capable to distill the perfect deep
learning architecture, approach, and method for individual tasks and application areas. The CNN-based
architectures and methods would be top performers in most brain-tumor-based image analysis
competitions. We can draw one striking conclusion that the exact architecture is not an important
determinant for getting a good solution. We have observed, in different challenges including BraTS
challenges (2015–2019), many researchers have used similar architectures in the same types of networks,
but got extensively varying results [143,144]. Many researchers even added more layers in the
CNNs network to increase the accuracy, which is the key aspect overlooked in expert knowledge.
The researchers and groups that acquire good performance by applying deep learning methods
and algorithms were able to do so using means outside the network such as the implementation
of novel data augmentation and preprocessing techniques. In many BraTS challenges, researchers
improved accuracy by adding normalization pre-processing steps that improve the generalization
capabilities of the network without changing the CNN’s architecture. Different researchers focus on
data augmentation techniques and strategies that make the CNN’s network more robust and they state
that these strategies are very useful to obtain good performance. Data augmentation and pre-processing
techniques are the key contributors to good solutions. Several researchers have observed that designing
architectures for specific task properties attain better results than straightforward CNNs. Multi-view
and multi-scale networks are examples of task-specific architectures that were encountered by the
researchers several times. Network input size and receptive field are basic parts in designing a network
(i.e., the input space area corresponds to a single output unit). The selected input size should fulfill the
required context and resolution to solve the problem. The increment in the patch size to gain more
context would not be beneficial without changing the receptive fields of the network. Another standard
sanity check was performed by the researchers to assess the visual input of the network for the same
task. If the researchers are domain experts and do not achieve good performance results then the need
for modification in network architecture or input is high. The model hyper-parameter optimization
(e.g., dropout rate, learning rate) aspect also affects the performance of the network. Disappointingly,
there were no clear techniques or methods to assess the best set of hyper-parameters for empirical
exercise. Researchers have also experimented Bayesian methods for hyper-parameters’ optimization
but in the domian of brain image analysis, these methods have not been implemented till now.
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9.3. Open Research Challenges, Limitations and Future Directions

The implementation of deep learning methods and algorithms in brain tumor image analysis
presents numerous unique challenges. The lack of large training datasets is a challenging obstacle for
deep learning methods. In the last decade, several PACS, MRIs and CT systems have been installed in
various hospitals that generate tons of medical images. In some other fields, image data are used in
well-structured digital archives that have a specific purpose. The PACS and CT systems are not broadly
used in other fields of medicine such as pathology and ophthalmology. It has been observed that the
number of available public datasets has increased gradually. Sophisticated text-mining techniques and
methods are mandatory when writing reports on annotations or change structured labels in automated
manners, where deep-learning-based methods and techniques are widely used. The introduction of
structured labeling reports in the health domain, especially in brain tumor analysis, is expected to
become easier in the future. It is predicted that, in future, the use of text-free and structured reports
for training a network may increase rapidly, especially in the domain of brain tumor analysis. The
researchers have asked domain experts (e.g., pathologists, radiologists) to make task-specific (e.g.,
segmentation, prediction, classification) and text-free reports from image data to train deep learning
algorithms. The labeling of tumorized images is not only time-consuming but it also requires a
high level of expertise that is challenging in brain tumor analysis.The training of systems based on
deep learning algorithms, performing the segmentation of tumors, mostly in 3D networks, needs
slice-by-slice annotations that are a not only challenging but also time-consuming task. The effeicient
learning of deep learning methods from a limited amount of image data is also a major limitation of deep
learning algorithms. Various researchers have trained their 3D segmentation models using only 2D
segmentation [149]. To evaluate tumor analysis algorithms and to predict a tumor in brain MRIs, BraTS
datasets are widely used. In this dataset, four types of tumor are annotated by radiologists. Training a
deep learning system using these data needs additional consideration for modeling uncertainty and
noise in the standard reference. A few researchers have provided solutions by incorporating label
uncertainty directly in the loss function, but this is still an open challenge. Another problem related to
data is class-imbalance. For example, data augmentation techniques are used to generate new lesions
of brain tumors through scaling and rotation but this may cause class-imbalance. Pereira evaluates the
data augmentation strategies for tumor lesion segmentation to combat class imbalance [150]. However,
most deep learning methods and architecture in brain tumor analysis still deal with patch classification,
where the anatomical location of the patch remains unknown for the network. A possible solution
for this is that the entire image is fed into the deep network and using various methods, the learning
process of network is achieved, for example, Milletari et al., designed a loss function that is based on
the Dice coefficient [151]. However, if the network has a small receptive field for the entire image
data, then there is no advantage for deep networks. The feeding of a full image into the network is
not feasible sometimes due to a few constraints such as limited memory, GPU, and bandwidth, as
the size of brain tumor images is generally in the gigapixels range. Another research challenge is
that, generally, researchers have employed the same fixed size for a kernel to perform image slicing,
which may hide some useful information from another region that is ignored by the kernel. A few
researchers have used a variable size of kernel to slice the image data but more work is needed in this
area. Figure 5 describes the open research challenges in brain tumor analysis.
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