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18 Republicii St, 400015 Cluj-Napoca, Romania; isimon@umfcluj.ro
* Correspondence: ccristea@umfcluj.ro; Tel.: (+40)-0721-375-789
† These authors contributed equally to this work.

Received: 18 December 2018; Accepted: 27 February 2019; Published: 4 March 2019
����������
�������

Abstract: An important class of biosensors is immunosensors, affinity biosensors that are based on
the specific interaction between antibodies and antigens. They are classified in four classes based
on the type of employed transducer: electrochemical, optical, microgravimetric, and thermometric
and depending on the type of recognition elements, antibodies, aptamers, microRNAs and recently
peptides are integrating parts. Those analytical devices are able to detect peptides, antibodies
and proteins in various sample matrices, without many steps of sample pretreatment. Their high
sensitivity, low cost and the easy integration in point of care devices assuring portability are
attracting features that justify the increasing interest in their development. The use of nanomaterials,
simultaneous multianalyte detection and integration on platforms to form point-of-care devices are
promising tools that can be used in clinical analysis for early diagnosis and therapy monitoring
in several pathologies. Taking into account the growing incidence of autoimmune disease and the
importance of early diagnosis, electrochemical biosensors could represent a viable alternative to
currently used diagnosis methods. Some relevant examples of electrochemical assays for autoimmune
disease diagnosis developed in the last several years based on antigens, antibodies and peptides as
receptors were gathered and will be discussed further.
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1. Introduction

The body immune system consists of a complex network of cells and molecules working together
to protect the body against various diseases. However, under certain circumstances, the immune
system could attack and damage body’s own tissues, organs and cells, resulting in autoimmune
diseases (ADs) [1]. There has been a significant increase in autoimmune diseases (ADs) diagnosed
over the last decade, caused by genetics or environmental factors, like lifestyle choices or pollution [2].
Unfortunately, the symptoms of ADs are extremely vast, implying difficulties for physicians to establish
a diagnosis. Most importantly, the prevention and the management of ADs are difficult, which affects
the life quality and the life expectancy of the patients. The most frequent ADs include celiac disease,
rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and psoriasis.

It is estimated that ADs affect 5–10% of the general population. Only in the USA, the National
Institute of Health estimate that up to 23.5 million people suffer from ADs (for comparison, cancer affects
up to 9 million and heart disease up to 22 million) and that the prevalence is rising [3]. About 10% of the
adult population in Europe was diagnosed with an AD only in 2018. Unfortunately, in the last several
decades, significant changes occurred in Western dietary habits, in the quality of the environmental
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surroundings and in the degree of exposure to pollution and infectious diseases. Together with an
increased stress load, these changes caused an increase in ADs in Western countries [4]. Through their
chronic and debilitating nature, ADs are becoming a massive burden on patients, their families, and
society, leading to high medical costs and reduced quality of life. The etiology of most ADs remains
unknown and there is currently no cure, thus the diagnosis in early stages of the disease is of paramount
importance for a positive outcome for the patients. Currently, ADs are diagnosed based on physician
assessment combined with core laboratory tests. However, these tests are not sensitive enough to detect
early molecular events. Too often, the disease is diagnosed too late, in a stage when the tissue damage
is irreversible and the symptoms are hard to control [5]. For instance, rheumatoid arthritis (RA) is
a common chronic AD that, if left untreated, results in severe joint destruction leading to impaired
physical function and work disability. Irreversible damage frequently occurs early in RA. The early
diagnosis of RA is essential to avoid an aggressive treatment and to prevent joint damage and disability,
therefore there is an urgent need to diagnose RA as early as possible. Lupus is another AD that can
affect many different body systems—including joints, skin, kidneys, blood cells, brain, heart and lungs.

In the last several years, personalized medicine received much attention due to the possibility of
establishing an accurate diagnosis even before any symptom of the disease appears, which is fundamental
for patient survival. The main challenge in medical diagnosis is the early diagnosis and personalized
care of patients using non-invasive methods. To reach this goal, reliable methods to detect and monitor
specific biomarkers that indicate a pathological event are required. The demands of new analytical
methods that are reliable, cost-effective, accurate and capable of optimizing the existing protocols
by making them faster and more economical has impressively grown. In this light, electrochemical
biosensors are a very attractive alternative to other analytical devices, providing multiplexed analysis,
fast response, sensitivity, specificity and lower costs [6] compared with validated analytical methods.

Electrochemical biosensors based on antibodies (Abs), antigens (Ags) and peptides as recognition
elements have been the most investigated due their high affinity, versatility and commercial availability
of the biological elements. The huge interest towards them is justified by their use as high-throughput
laboratory instruments and as small devices for point-of-care (POC) analysis suitable for onsite analysis.

This paper reviews the biomarkers and electrochemical biosensors reported in literature in the last
five years for the detection of AD biomarkers. The first part deals with the description of general aspects
in the design and development of electrochemical platforms for the detection of ADs biomarkers, while
the second part briefly describes common biomarkers and recent progress made for their detection
using biosensors based on Abs/Ags and peptides.

2. Platform Design for AD Biosensors

Biosensors developed for the diagnosis and detection of ADs are mostly affinity biosensors
which have as a working principle the specific antigen (Ag)–antibody (Ab) interaction combined
with different transducers. These are known as immunosensors. The signal related to formation of
the immunocomplex is usually generated by the use of various labels. Label free detection is also
possible for the quantification of the immune-complex thanks to the modern transducer technology [7].
The working principle of immunosensors is based on specific recognition of Ags by Abs that link with
high binding constants [8].

Most of the immunosensors reported for ADs are based on labeled methods and a direct and
indirect format. They usually employ an Ag as recognition element since the targets in ADs are usually
autoantibodies. Ags are firstly immobilized on the electrode surface. Then, the analyte is added (the
sample containing autoantibodies present in ADs). The Ags selectively recognize and bind the Abs
from the sample, and the formation of the Ag–Ab complex can be assessed using secondary Abs,
which are usually labeled with an enzyme. Upon the addition of the enzyme’s substrate, the product
of the enzymatic reaction (electrochemically active) enables the quantification of the target analyte.
In the cases where the target analyte is an antigen, for example an interleukin (IL), a sandwich assay
may be employed, using a primary Ab as recognition element.
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In sandwich assays after the recognition of the Ags by the Abs immobilized on the surface of the
electrodes, a second labeled Ab binds to a second binding site of the Ag. The detection in this case needs a
label such as enzymes (with its specific substrate) or nanoparticles which could provide the redox signal.

Even though the concept of directly or indirectly detecting the binding event is quite simple
and elegant, the development of such a device demands a multidisciplinary approach, combining
the expertise of immunologists, biochemists, engineers, and materials scientists. The main challenge
remains in developing the intimate interface between the biologic component and the transducer.

Although progress has been made to obtain new synthetic molecular receptors in the laboratory
such as phages, molecular imprinted polymers [9–11] and aptamers [12,13], Abs and Ags [14] are still
the most used bioreceptors among biosensors in clinical analysis and medical diagnosis, including in
those for ADs. Lately, peptides have been more and more used in the role of molecular receptors. Their
biocompatibility and their structural similarity with proteins made them an ideal substitute for proteins as
a recognition element for different AD biomarkers. The most known methods for peptide immobilization
on an electrode surface are by covalent bonds or by using self-assembled monolayers (SAMs). Once
immobilized, peptides can play different roles, like bioreceptors or enzymatic substrate [15].

2.1. Bioelement Immobilization Methods

The immobilization method employed to link the bioelement to the transducer is of paramount
importance for the performance of the biosensor. For example, the bioelement can be directly adsorbed
onto the electrode, or can be linked via SAMs. Adsorption of the bioelement is a simple procedure,
however, it does not allow a controlled orientation of the recognition element for the proper binding of
the Ag or the Ab. Additionally, fouling of the electrode surface may occur. Thus, methods that allow a
controlled, oriented immobilization of the bioelement are preferred. For example, SAMs can be readily
formed onto gold electrodes via Au-S linking. Thiolated Abs can be employed, or a SAM layer may be
used to link Abs via carboxyl or amino groups. Polymers exhibiting various functional groups, such as
poly (sodium-4-styrensulfonic acid) [16] or polydopamine [17] are also employed for oriented immobilization.

Important progress has been made in the last years in the development and design of
immunosensors regarding the immobilization method in particular in the use of nanomaterials [18].

Integrating nanomaterials into immunosensors have the final goal of obtaining nanostructured
surfaces for the immobilization of the Ab or the Ag and enhance the performance of the biosensors.
Nanomaterials, such as carbon nanotubes, graphene or metallic particles have high conductivity and
electrocatalytic effect, improving the electron transfer and giving higher signals. The roughened
surface generated by the modification of the electrode with nanomaterials facilitates the attachment
of a higher number of biomolecules to the electrode surface leading to higher sensitivity [19]. Most
nanomaterials are biocompatible [20]. Other immobilization strategies may be considered and applied
for AD immunosensors, given the fact that they were successfully applied for other targets. Although
not reported so far for AD biosensors, magnetic beads functionalized with various groups, such as
avidin, protein A or G, can also be used as support for the immobilization of the Ab or the Ag with
the advantage of high loading capacity of biomolecules, easy separation and easy washing steps [21].
Another immobilization strategy is based on using aryl diazonium salts to link the Ab directly onto the
electrode by electroaddressing [22] or using polymer composites to covalently link the capture Ab in an
oriented manner [23]. These strategies could be easily adapted and employed for the immobilization of
bioelements specific for AD biomarkers. Peptides could be considered such bioelements, having a low cost,
fast and easy synthesis and the capacity of specific cleavage in order to specifically recognise AD biomarkers.

2.2. Signal Generation

Various strategies have been used to transduce and amplify the signals of Ag–Ab interactions.
Most strategies rely on the use of labels such as enzymes (Figure 1), electroactive molecules, metal ions;
however, label-free detection by electrochemical impedance spectroscopy (EIS) has been also widely
exploited due to its simplicity and possibility for real-time monitoring of various analytes [20].
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2.2.1. Labels in Electrochemical Immunosensors

Electrochemistry offers versatile methods for sensing Ag–Ab complex formation that are sensitive
and accurate, have a low cost, low sample volume consumption and are easy to integrate in a portable
device [24]. Voltammetry (cyclic voltammetry CV, differential pulse DPV and square wave voltammetry
SWV) and chronoamperometry are the electrochemical methods most commonly used to convert the
Ab–Ag binding event into a measurable signal, the current response. Voltammetry measurements can
be performed in quiescent, under solution stirring or in flow that improves the mass transport to the
working electrode and lowers the detection limit to reach the range important from the clinical point
of view. Moreover, using flow or batch injection analysis speeds up the test time and improves the
throughput of samples [25]. Since Ags and Abs are not intrinsically electroactive, a label is usually
linked to the Ag or the Ab to produce the electrochemical signal [26]. Usually, a labeled secondary
Ab is used to generate the signal, in order to avoid labeling Abs for each specific Ag. This is a
generic labeled IgA/G antiAb. The label is usually an enzyme or nanomaterials such as metallic
or semiconductor particles. Recently, nanomaterials have been employed as nanocarriers in the
fabrication of immunosensors. These include carbon nanotubes (CNTs), metallic particles, dendrimers,
silica particles, graphene or magnetic beads. Due to their high surface area, they can load a high
number of enzymes or electroactive species, thus leading to signal amplification (additionally to their
excellent conducting and electro-catalytic properties) and better detection limits [27]. Additionally,
they can be easily conjugated with Abs via covalent linkages if they are functionalized by amine or
carboxylic groups [28]. For example, Wang et al. used CNTs as carriers to load a high number of
enzymes by covalent bonds, which lead to great signal amplification (100 times compared to single
enzyme labeling). The loading was estimated to be 9600 enzymes per CNT. The labeling strategies
were applied for an immunoassay based on magnetic beads to detect IgG and a low limit of detection
(LOD) of 500 fg mL−1 was achieved [29]. Similarly, Rusling’s group loaded horseradish peroxidase
(HRP) onto CNTs to label the secondary Ab in an immunosensor for the prostate specific Ag (PSA)
reaching a LOD of 4 pg mL−1 [30].

Electroactive labels such as metallic nanoparticles, in particular gold and silver, are employed
in the construction of immunosensors for ADs. Usually conjugated with the detection Ab, metallic
nanoparticles generate signals by their redox properties in certain conditions e.g., in acidic conditions
for gold nanoparticles (AuNPs) [31]. For example, Dequire et al. used colloidal gold as labels, the
signal being generated by anodic stripping voltammetry after oxidative gold dissolution in acid [32]
while Liu et al. directly quantified gold used as label by stripping analysis without dissolution [33].
Moreover, AuNPs can be used as labels with the role of electrocatalyst, favorizing the redox reaction
of a redox active compound added to the system. Das et al. employed AuNPs as electrocatalyst
for the reduction of p-nitrophenol to p-aminophenol greatly enhancing the electrochemical signal
of the immunosensor [34]. Hybrid silver/gold particles can be employed as labels as well, signal
generation being obtained by acidic dissolution of silver and its subsequent stripping analysis [35].
Electrochemical stripping transduction of semiconductor nanoparticles such as CdS, ZnS, CuS or PbS
has also been employed to generate signals related to the immuno-binding event.

Enzyme, such as HRP, Glucose oxygenase (GOX) or Alkaline phosphatase (AP) are commonly
employed in immunosensors for the electrochemical signal tracing through their biocatalytic
reaction [36]. The detection Ab is usually labelled with the enzyme to quantify the captured Ag, in a
sandwich format, or the Ab, in indirect assays. Even though the enzyme amplifies the electrochemical
responses, it is always necessary to use a mediator either added in the detection solution or immobilized
onto the electrode surface to accelerate the electron transfer on the electrode surface [36–38]. For example,
for HRP hydroquinone or o-aminophenol are added in the system to mediate the electron transfer
between HRP and its substrate H2O2 [39,40]; however, reagentless immunosensors based on direct
electrochemistry of the enzyme were also developed. In this case, the immobilization method of the
enzyme is crucial to have exposed active centers of the enzyme available for electron transfer and most
immunosensors work with the direct format of immunoassay [36]. Direct electrochemistry of HRP is
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based on Fe(III) to Fe (II) conversion [41]. For GOX, the direct electrochemistry is based on the exposure
of its FAD cofactor for facilitating direct electron transport [42].

2.2.2. Label-Free Electrochemical Immunosensors

Even though the various labeling strategies presented above are important not just to generate
the signal but also to lower the detection limit (e.g., nanocarriers), immunosensors for direct, label-free
measurements of various biomarkers are attractive, as they also provide real-time monitoring. EIS
is an electrochemical technique, it is widely used as detection method for label free immunosensors.
Among the advantages of developing label free immunosensors, it is important to remember the
high decreasing of time needed for detection, and the cost-reduction by avoiding the labeling step.
To develop a sensor without a label that can generate a high electrochemical signal, the EIS response
must by amplified and ways to increase the transfer resistance must be found.

Biomarkers like Myelin basic protein (MBP), or interleukins and tumor necrosis factor alpha
(TNF) were used to diagnose ADs, using label free EIS immunosensors. In order to obtain a good
sensitivity, the electrodes have been modified with materials like platinum, gold, TiO2 or polymers
in order to obtain a higher signal, to increase the electroactive surface and to obtain lower limits of
detection [43–45].

Figure 1. Scheme showing the basic components of electrochemical immunosensors with enzyme
labels: A. antigen’ detection principle; B antibody’s detection principle (adapted from [46]).

3. Biosensors for ADs Based on Antibodies and Antigens

Due to the limited knowledge on the pathogenesis of ADs, the medical treatment is mainly based
on treating the symptoms rather than curing the disease. To reduce the severity of the symptoms and
the irreversible damage to organs or joints, it is important to detect and treat the disease in early stage.
The diagnosis of ADs is usually based on symptoms and laboratory tests confirming the presence of
serological and genetic biomarkers, such as autoantibodies or complement proteins [47]. Biomarkers
are markers that have a characteristic that can be measured objectively and evaluated as an indicator
of physiological or pathogenic processes or pharmacologic response to an intervention [48]. Several
biomarkers were identified for ADs [49,50], but more research is needed in this field. Some biomarkers
are more sensitive and specific for a certain AD, for example anti-cyclic citrullinated peptide (anti-CCP)
Ab for RA, while others are non-specific exhibiting elevated levels in a number of diseases, such as the
pro-inflammatory cytokines.

Celiac disease (CD) is one of the most common AD triggered by the ingestion of wheat gluten and
similar proteins in barley and rye, which produces and autoimmune response that induces atrophy
and hyperplasia in the small intestine [51]. The worldwide prevalence of celiac disease increased from
0.03% in the 1970s to 1% to this day [52]. Diagnosis is usually based on endoscopy with a small biopsy
and evaluation of the serological markers [51]. Antigliadin Abs (AGA) and anti-transglutaminase
Abs (anti-tTG) are present in the blood and small intestine mucosa of these patients, serving as
specific biomarkers of the disease [53,54]. IgA isotypes are the most specific, but are not present
in 2–5% patients diagnosed with CD. In this case, IgG isotype is considered [55]. An interesting
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concept towards point-of-care diagnostics of celiac disease was reported by Gianneto et al. The group
developed a portable device in which the electrochemical signal was acquired and processed through
a developed IoT-WiFi integrated board that is capable of sharing the results via the cloud with doctors
or caregivers. The electrochemical platform consisted of screen-printed electrodes functionalized with
AuNPs on which transglutaminase was immobilized to capture anti-tTG Abs. The amperometric
signal was generated via a secondary Ab labelled with AP [56]. Simultaneous detection of multiple
biomarkers increases the accuracy of the detection. For example, Cosa-Garcia’s group developed
an immunosensor capable of detecting two biomarkers, each with two isotypes, for celiac disease
IgA AGA, IgB AGA, IgA anti-tTG and IgB anti-tTG. Screen-printed electrodes were modified with
nanostructured carbon-metal hybrid and the Ags, AGA and tTG were immobilized onto the electrodes
to capture the specific Abs. The detection Ab labeled with AP and a mixture of 3-indoxyl phosphate
with silver ions was used as substrate. LODs between 2.45 and 3.16 U mL−1 were obtained, which are
in the relevant clinical range. The sensor was also tested on real patients’ serum [57].

Multiple sclerosis (MS) is one of the most common ADs and it is characterized by an abnormal
inflammation process that leads to myelin destruction and to irreversible changes in the nervous
system. MS affects mostly young teenagers born in high developed countries. The golden standard
used nowadays for the diagnosis of MS is magnetic resonance imaging (MRI), but, even though the
MRI may fail, considering the fact that symptoms are not entirely corelated with the clinical setting.
Considering this, the need for new diagnosis methods is even more justified. Patients with MS can
develop a series of autoantibodies that are present in the biological fluids, autoantibodies that cannot
be found in the biological fluids of healthy subjects, and that can be used as diagnosis and prognosis
biomarkers [58].

Studying the myelin oligodendrocyte glycoproteins has be found that [Asn31(Glc)]hMOG(30–50)
glycoprotein is able to differentiate the serum of MS positive patients from the serum of MS negative
ones, recognizing the autoantibodies developed by MS patients. An antigenic probe, CSF114(Glc),
was designed and synthesized in order to detect the minimal epitope of the above glycoprotein, an
N-glucosylated amino acid on a type I0 b-turn. CSF114(Glc) was able to differentiate a significant
proportion of MS sera from negative MS sera, recognizing IgMs in about 30% of MS patients [59,60].

Rheumatoid arthritis (RA) is another common AD with a prevalence of about 0.5–1%. The main
symptom in RA is joint pain and deformation due to synovial chronic inflammation that leads to
joint destructions and disability [61]. Clinical remission is possible in early RA; however, it is not
achievable in all patients, since RA is a rather heterogeneous disease [62]. Thus, the diagnosis of RA in
early stages is crucial for the outcome of the disease. Related to the prognosis of the disease, there are
several biomarkers, which point to a poor prognosis, with rapid joint distraction, if a patient is tested
seropositive: high acute phase reactants (erythrocyte sedimentation rate, ESR, C reactive protein, CRP),
rheumatoid factor (RF) and anti-CCP Ab [63,64]. RF and anti-CPP are common biomarkers used for
the clinical detection of rheumatoid arthritis. Anti-CPP is more specific than RF and is produced in
the mucosal tissues and at the point of inflammation [65]. The concentration of CPP in serum and
synovial fluid show the onset of RA and also points to its severity [66]. Another biomarker for RA is
the macrophage migration inhibitory factor (MIF) is present in high concentrations in the blood and
synovial liquid of patients suffering from this disease [17]. Other (non-specific) biomarkers for RA
include tumor necrosis factor (TNFα), interleukin 6 (IL-6), osteopontin, osteocalcin, amino-terminal
telopeptide of type 1 collagen (NTX), carboxyl-terminal telopeptide of type 1 collagen (CTX), matrix
Metalloproteinase 3 (MPP)-3 and so on [64].

Other examples of immunosensors for the detection of common biomarkers expressed in ADs
are provided in Table 1. Most of the work reported in the literature employs electrochemistry as a
detection technique given its high sensitivity. Detection limits in the fg mL−1 range of concentrations
were reported by electrochemical immunosensors.
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Table 1. Immunosensors based on antibodies for diagnosis and monitoring of autoimmune diseases.

Target Electrode Architecture Type of Assay Label Detection Method LOD LR Sample Ref.

Celiac Disease

IgA anti-tTG
IgB anti-tTG

AuNPs/SAM-GCE Indirect AP DPV 3.2 AU mL−1

1.4 AU mL−1 0–30 AU mL−1 Real patients
serum [55]

CNTs/AuNPs-SPE Indirect AP CV 9.1 U mL−1

9.0 U mL−1 - Real patients
serum [66]

Au/SAM-GCE Indirect HRP CV 1.7 AU mL−1

2.7 AU mL−1 0–30 AU mL−1 Serum [67]

IgA anti-tTG Graphite epoxy Indirect HRP Chronoamperometry - - Real patients
serum [68]

GQD/AuNPs/MWCNTS/PAMAM Direct - DPV with redox probe 20 fg mL−1 - Spiked serum [69]

Anti-tTG
poly (sodium-4-styrensulfonic

acid)- gold SPE Indirect POD EIS - - Real patients
serum [16]

Multichannel SPE array Indirect CdSe QDs DPV 7 U mL−1 0–40 U mL−1 Spiked serum [70]

AGA
Gold electrodes with

carboxylic-ended bipodal
alkanethiol

Indirect HRP Chronoamperometry 46 ng mL−1 0–1 µg mL−1 Real patients
serum [53]

Rheumatoid Arthritis

MIF AuNPs-NTiP-Thi-gold electrode Direct - DPV with redox probe 0.7 ng mL−1 0.03–230 ng mL−1 Real patients
serum [67]

Multiple Sclerosis

Anti-MBP Gelatin-NTiP-Pt electrodes Direct - EIS 0.15 ng mL−1 0.48–2500 ng mL−1 Spiked serum
Spiked CSF [42]

Non-Specific Biomarkers

HIgG GO-SPE Direct - CV with redox probe 1.70 ng mL−1 2–100 ng mL−1 Urine [71]

AuNPs-PDA-GO Sandwich AgNPs/carbon
nanocomposite/benzoquinone DPV 0.001 ng mL−1 0.1–100 ng mL−1 Spiked serum [17]

IL-17 Graphene-GC Sandwich cadmium-polystyrene beads SWV 50 fg mL−1 0.1 pg −1 ng mL−1 Spiked serum [72]

IL-12
Electroplating gold onto a

disposable printed circuit board
electrode

Direct - EIS <100 fM 0–25 pg mL−1 Spiked serum [43]

TNFα
Poly(3-thiophene acetic acid)-ITO Direct - EIS 3.7 fg mL−1 0.01–2 pg mL−1 Serum [44]

GO-PTCNH2 Direct - Photoeletrochemical 3.33 pg mL−1 10–100 ng mL−1 Serum [73]

LOD, limit of detection, LR, linear range, AP, alkaline phosphatase; AGA, antigliadin Abs; anti-tTG, anti-transglutaminase Abs; CV, cyclic voltammetry; CSF, cerebrospinal fluid; CNC,
carbon nanocomposite; DPV, differential pulse voltammetry; GO, graphene oxide; GADA, glutamate decarboxylase Ab; HRP, horseradish peroxidase; HIgG, human immunoglobulin G;
IgA, immunoglobulin A; IgB, immunoglobulin B; IL-17, interleukin 17; IL-12, interleukin 12; ITO, indium tin oxide; MIF, Macrophage migration inhibitory factor; MBP, myelin basic
protein; NTiP-titanium nanoparticles; PDA, polydopamine; POD, peroxidase; PTCNH2, amino-terminated perylene derivative; SWV, square wave voltammetry; SPE, screen printed
electrode; TNFα, tumor necrosis factor alpha; Thi, thionine.
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4. Biosensors for ADs Based on Peptides

Due to their capacity to self-assemble in highly-ordered 1D, 2D and 3D structures, peptides
represent one of the most versatile tool in the creation of flexible frameworks. Peptides can be used
as bioreceptors for the developing of novel biosensors due to their ability to modify their secondary
structure by modifying the amino acid (AA) sequence and to optimize the interactions between
adjacent peptides.

Short peptides, up to 10 AA residues, can easily be obtained by synthesis, using simple, short and
low-cost techniques, having a good biocompatibility, better chemical and conformational stability then
proteins and offering short response time in electrochemical detection [74].

Peptide based electrochemical biosensors developed in recent years were characterized by good
sensitivity and the ability for miniaturization, both of them being interesting criteria in biosensors
field of research (Table 2). Even though the good sensitivity recommends the use of peptides, there is
still work to be done. Most of the published methods did not report platforms characterization using
real samples from real patients or tests using multiple analytes that could interfere with the detection,
proving lack of selectivity. Therefore, the multiplex and simultaneous analysis of target analytes is
necessary. There are also studies to be conducted in order to prove the repeatability, reproducibility
and stability of peptide based biosensors [15].

Developing peptide based biosensors instead of immunosensors or aptasensors is a continuously
growing tactic, and more and more articles are being published (Figure 2).—from 2008, whenonly
eight articles were reported in Scopus [75] having the words peptide based biosensor in their title, up
until 2018, when 20 articles were published using the same criteria. Starting in 2008 when 34 articles
reported peptide biosensors in their title, abstract or keywords, the number increased continuously up
until 2018 when 89 articles were published under the same criteria. The ScienceDirect database was
used for this classification.

Figure 2. Number of articles containing Peptide biosensor in their title published in Scopus [75].

Real-Fernandez et al. demonstrated that the synthetic glucosylated myelin oligodendrocyte
glycoprotein fragment, (Asn31(Glc)hMOG(30–50)), was able to detect autoantibodies in MS patients.
Moreover, the detection MS autoantibodies was attributed to the N-linked glucosyl moiety. After the
optimization of recognition properties, a specific peptide antigenic probe was developed. The next step
was to develop a label free serodiagnosis SPR biosensor for MS, based on the specific immobilization
of CSF114 on a sensor chip surface, in order to diagnose the MS by the differences between the
number and the type of autoantibodies detected in MS patients’ sera, and the ones detected in healthy
individuals The differences between the MS and healthy individuals mean values were 94.6 vs. 48.9
Response Units, respectively. The results obtained with the biosensor were similar to those obtained
with an already validated ELISA [58].
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Table 2. Peptide based biosensors developed in recent years.

Analyte Electrode
Architecture Method Peptide Sequences Label LD (ng mL−1) LOQ (ng mL−1)

Linear Range
(ng mL−1) Real Samples Ref.

MMP-14 Gold electrode DPV VMDGYPMP-(CH2)6-Cys CIS-Fc 3 10−4 10−3 10−3–10−2 -
[78]

MMP-14 EIS Cys- (CH2)6—VMDGYPMP-NH-CO-Fe - 0.03 0.1 0.1–7 -

Aβ1 Ab SPE CV DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAI
IGLMVGGVV (Aβ1-40) - 0–10 - [79]

MMP-7 Au-rGO/MB-SA
+PdNP SWV NH2-KKKRPLALWRSCCC-SH - 3 10−6 10−5 10−5–10

Spiked serum
samples [80]

EGFR Gold electrode DPV YHWYGYT- PQNVI 9-mercapto-1-nonanol 3.7 10−5 10−4 10–10−4 Diluted
human serum [81]

Type IV
collagenase

QCM gold
electrode QCM AuNP modified P - 0.96 10 10–60 Spiked serum

samples [82]

Type IV
collagenase QCM P - 21 40 40–120 -

JIA—IgG SPE DPV ACSSWLPRGCGGGS - 1:300 diluted
serum

1:10–1:300
diluted serum

Real patients
serum [83]

MMP-9 Gold SPE EIS Leu–Gly–Arg–Met–Gly–Leu–Pro–Gly–Lys Dextran 50 50–400 - [84]

MMP-9 Gold electrode SWV Gly-Pro-Leu-Gly-Met-Trp-Ser-Arg-Cys MB 6 10−2 nM 6 10−2–50 nM
Spiked serum

samples [77]

MMP-7 AuNP-GCE-
P-PtNPs-S1

DPV NH2-KKKRPLALWRSCCC-SH - 0.05 10−3 2 10−3 2 10−3–20 - [76]

LD – Limit of detection; LOQ – Limit of quantification; DPV—Differential Pulse Voltammetry; EIS—Electrochemical Impedance Spectroscopy; CV—Cyclic Voltammetry; SWV—Square Wave
Voltammetry; QCM—Quartz Crystal Microbalance; SPE—Screen Printed Electrode; GCE—Glassy Carbon Electrode; CIS-Fc—ferrocene carboxylic acid; MMP—Matrix Metalloproteinase;
Aβ1 Ab—amyloid-β1 Antibody; Au-rGO/MB-SA—reduced graphene oxide-Au/methylene blue-sodium alginate hydrogel; PdNP—Pd Nanoparticles; EGFR—Epidermal growth factor
receptor; MB—methylene blue; AuNP—Au Nanoparticles; JIA—Juvenile idiopathic arthritis; IgG—Immunoglobulin G; PtNP—Pt Nanoparticles; S1—single stranded DNA; P—Peptide.
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Using a gold electrode as immobilization surface, the result was enhanced and a detection limit
was obtained, with a calibration curve for the anti-CSF114 Abs in the range of 1.25–20 µg mL−1,
allowing using the biosensor even for MS prognosis [60]. Furthermore, after labeling CSF114 with
a ferrocenyl moiety, the peptide was immobilized on a platinum electrode, without any previous
surface modification. The developed biosensor was characterized using CV, the interactions between
Fc-CSF114(Glc) and autoantibodies being characterized by a shift of the oxidation potential with
several tens of millivolts towards more positive values using autoantibodies concentrations higher
than 0.1 mg mL−1 [61].

Matrix Metalloproteinases (MMPs) are a large group of Calcium-dependent endopeptidases.
Their overexpression is usually correlated with a series of pathological conditions like inflammatory
diseases or cancer. Moreover, MMPs are between the most used biomarkers in electrochemical peptide
based detection. A number of biosensors for the selective detection of MMPs are reported in the
literature (Table 2) using different electrode architectures and obtaining different results. The best limit
of detection was obtained for MMP-7 (5 × 10−5 ng mL−1) [76] using a peptide and single-stranded
DNA S1 modified platinum nanoparticles immobilized on AuNP modified Glassy Carbon Elecrodes
(GCEs). In this case, the peptide served as a recognition element for the MMP-7. After the recognition
event, the PtNP-S1 bioconjugates were released from the electrode surface. The indirect detection
was made by measuring 4-chloro-1-naphthol oxidation using DPV, after a previous hybridization
of the remaining S1 the electrode surface, after the MMP-7 recognition and the formations of DNA
nanoladders, ideal nanocarriers for the loading of the enzyme needed for 4-chloro-1-naphthol oxidation
(Figure 3). The biosensor presented a linear range for MMP-7 detection, using DPV measurements of
2 × 10−4–20 ng mL−1 [76].

Figure 3. Schematic illustration of matrix metalloproteinases 7 (MMP-7) electrochemical biosensors [76].

A simpler electrochemical peptide based biosensor for the selective detection of MMPs was
developed by Donk-Sik Shin et al. In this case, a methylene blue modified peptide was immobilized
on a 300 µM gold electrode. MMP-9 interaction with the platform leads to peptide cleavage and to
a loss in the SWV signal (Figure 4). The biosensor is characterized by a LOD of 5.52 ng mL−1 and a
linear range of 5.52–4.6 × 103 ng mL−1. Even though its analytical parameters are not as good as in the
above study, this biosensor has the advantage that it was not only tested on real samples like serum
samples, but it can also detect live MMP-9 release from monocytes [77].
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Figure 4. Schematic illustration of matrix metalloproteinase MMP-9 electrochemical biosensors [77].

5. Conclusions

ADs represent nowadays an important health issues, taking into account that annually new cases
are reported and, for most of this diseases, no cure is available on the market. Therefore, an early
diagnosis will help practitioners and also patients, reducing the incidence of premature death. Due to
the advancements in molecular biology and immunology, almost every AD possesses its own set of
biomarkers (proteins, Abs or peptides), which could be found in detectable concentrations in body
fluids. The main challenge remains the implementation of point of care devices able to detect the ADs’
biomarkers before any symptoms appear. Many attempts are already reported in the literature and
relevant reviews were dedicated to electrochemical biosensors, which represent viable alternatives for
the development of point of care devices.

Several examples of electrochemical biosensors reported in the recent years for the detection of
relevant biomarkers in ADs diagnosis were reported. The attention focused on: different approaches of
bioelements’ immobilization, integration of nanomaterials for improving the sensitivity, multianalyte
detection and on the type of analyzed biological samples. Taking into account that electrochemical
immunosensors could detect biomarkers (proteins and peptides) in fM ranges without any laborious
pre-treatment of the real samples, the integration on these sensors into decentralized analyzers will be
the next logical step. In this vast pathology with so many different manifestations, early diagnosis will
lead to the improvement of the patient life quality and health care cost reductions.

However, there are gaps to be filled up from the bench to the market, but with the last achievement
in nanomaterials technology and molecular biotechnologies, electrochemical biosensors could have a
bright future as a potential diagnostic devices for ADs.
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