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Abstract: The detection of myoglobin (Myo), cardiac troponin I (cTnI), creatine  

kinase-MB (CK-MB), and b-type natriuretic peptide (BNP) plays a vital role in diagnosing 

cardiovascular diseases. Here we present single site-specific polyaniline (PANI) nanowire 

biosensors that can detect cardiac biomarkers such as Myo, cTnI, CK-MB, and BNP with 

ultra-high sensitivity and good specificity. Using single PANI nanowire-based biosensors 

integrated with microfluidic channels, very low concentrations of Myo (100 pg/mL), cTnI 

(250 fg/mL), CK-MB (150 fg/mL), and BNP (50 fg/mL) were detected. The single PANI 

nanowire-based biosensors displayed linear sensing profiles for concentrations ranging 

from hundreds (fg/mL) to tens (ng/mL). In addition, devices showed a fast (few minutes) 

response satisfying respective reference conditions for Myo, cTnI, CK-MB, and BNP 

diagnosis of heart failure and for determining the stage of the disease. This single PANI 

nanowire-based biosensor demonstrated superior biosensing reliability with the feasibility 

of label free detection and improved processing cost efficiency due to good biocompatibility 

of PANI to monoclonal antibodies (mAbs). Therefore, this development of single PANI 

nanowire-based biosensors can be applied to other biosensors for cancer or other diseases. 

Keywords: myoglobin; cardiac troponin I; creatine kinase-MB; b-type natriuretic peptide; 

polyaniline; nanowire; conductometric biosensing 

 

OPEN ACCESS



Biosensors 2012, 2 206 

 

 

1. Introduction 

The incidence of myocardial infarction, which has one of the highest mortality rates in the US and 

Europe, increases in elderly people [1,2]. Therefore, the diagnosis and prevention of all cardiac 

disorders is very important. For the detection of myocardial infarction, myoglobin (Myo), cardiac 

troponin I (cTnI), creatine kinase-MB (CK-MB), and b-type natriuretic peptide (BNP) have been 

selected as biomarkers for the diagnosis [1,3,4]. Among those cardiac markers, Myo is the fundamental 

protein to check at the onset of infarction [1,5]. However, it has cross-activity with skeletal muscle 

pain [6]. Therefore, it is necessary to monitor the level of other proteins such as cTnI, CK-MB, and 

BNP in patients’ serum for accurate, prompt and continuous diagnosis of myocardial infarction [2–4]. 

cTnI is only specific to cardiac muscles and never found in healthy people [7]. CK-MB and BNP are 

related to recurrence of myocardial infarction and cardiac vascular disease, respectively [1,7].  

The detection of cardiac biomarkers has been investigated using several methods such as 

fluorescence [8,9], surface plasma resonance (SPR) [10,11], and electrical signals from nanowire-based 

biosensors [12,13]. For examples, biosensing based on fluorescence has been applied for the detection 

of Myo, which was carried out to measure fluorescent intensity from sandwich immunoassay labeled 

with fluorescent dyes [14]. In addition, SPR, which measures SPR angle shift once target proteins are 

bound on specifically functionalized substrates, is one of the most popular biosensing methods to be 

employed for various cardiac markers such as Myo, cTnI, and BNP [5,11,15]. Although the previously 

developed biosensors utilizing fluorescence or SPR have shown effective performances, these methods 

have some limitations in sensitivity, miniaturization and cost efficiency. They have relatively lower 

sensitivity and specificity than nanomaterial-based biosensors such as nanoparticles, carbon nanotubes 

(CNTs), and nanowires [16–18]. Those nanomaterials provide outstanding physical properties such as 

tunable conductivity by doping and synthesis methods, and high carrier mobility to realize real-time 

sensing in 0- or 1-dimensional structure [19,20]. To date, these advantages of nanomaterials have been 

actively studied to develop biosensors based on inorganic or organic nanomaterials. Inorganic 

nanomaterials such as Si nanowires and CNT have been fabricated through various methods and 

developed for the applications of electrical devices, chemical sensors, and biosensors [21–23]. For 

example, Si nanowire sensor arrays were developed to detect very low concentrations of cTnI by 

monitoring the change of conductance on the nanowire biosensor [13]. 

Biosensors based on inorganic nanomaterials require complicated processing conditions for 

functionalization with bio-recognition elements such as antibodies due to the low-biocompatibility of 

inorganic nanomaterials. In contrast, organic nanomaterials such as polyaniline (PANI) and 

polypyrrole (PPy) are more easily modified with biomolecules than inorganic nanomaterials [24–26]. 

During the functionalization of the PANI surface, the covalent bond between PANI and the antibody 

enables the direct measurement of the physical change of conductance, capacitance, or impedance 

upon the binding of antibodies to target proteins [27,28]. In addition, conducting polymers such as 

PANI or PPy are appealing for electrical, mechanical, or biomedical applications due to the advantages 

of controllable conductivity, mechanical flexibility, and exceptional bioaffinity [29]. Furthermore, the 

PANI or PPy nanowires have been applied in the organic nanowire field effect transistor (FET), light 

emission diode, and biosensor [30–34]. However, most of these applications were developed based on 
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bundled nanowires and required selection and alignment procedures that are time-consuming and 

lower the production yields.  

In this research, we report the development of single PANI nanowire-based biosensors for detecting 

four cardiac biomarkers: Myo, cTnI, CK-MB, or BNP. The single PANI nanowire was directly 

fabricated via the electrochemical deposition growth method between pre-patterned Au electrodes, 

avoiding the need for the selection and alignment of the nanowire [35,36]. For the functionalization of 

the fabricated single PANI nanowires, the mAbs of the aforementioned cardiac markers were covalently 

attached to PANI nanowires by a surface immobilization method. After the PANI functionalization, 

the biosensing of cardiac biomarkers was carried out by measuring the conductance change of the 

nanowires. The conductance of the PANI nanowire was monitored in the various conditions of the 

functionalized PANI nanowire, after injection of phosphate buffer saline (PBS), bovine serum albumin 

(BSA), and target biomarkers. The conductance of the nanowire can be modulated by the major carrier 

accumulation or depletion. The binding between immobilized mAbs and target biomarkers changes the 

net surface charge of the single PANI nanowire and induces the carrier accumulation or depletion 

depending on the values of net surface charge and types of nanowire. In addition, the nanowire shows 

no conductance change to BSA or non-target proteins due to the mAbs specificity.  

In order to study the biosensing performance, the single PANI nanowire-based biosensor was tested 

in the broad range from tens (fg/mL) to (ng/mL) of cTnI, CK-MB, and BNP proteins and showed 

linear sensitivity along different concentrations with a small standard deviation of less than 15%.  

In addition, the detection of cardiac biomarkers also showed a remarkable specificity value of over  

106 fold, where specificity is defined as the ratio of (the highest concentration of non-specific protein 

showing ignorable or non-response signal) to (the lowest concentration of specific protein showing 

significant signal change) in the test of BSA or other cardiac markers. The measurement of conductance 

facilitates fast response in a few minutes, while a conventional method like immunoassay requires  

at least a few hours to incubate the complex of mAbs and targets [37]. Furthermore, integration of 

microfluidic channels on the nanowire biosensors allows more accurate sensing and slow flow of 

sample solution only through the active area of the PANI nanowire [38]. 

2. Experimental Section  

2.1. Materials 

Ionic aniline solution (0.01 M aniline in 0.1 M HCl) was prepared for nanowire fabrication.  

All human cardiac biomarkers (Myo, cTnI, CK-MB, and BNP) and the corresponding mAbs  

(Myo-mAbs, cTnI-mAbs, CK-mAbs, and BNP-mAbs) were purchased from Abcam and Sigma-Aldrich. 

The BNP used in this research has 32 amino acids. For the surface immobilization of mAbs on the 

fabricated single PANI nanowires, ethyl(dimethylaminopropyl) carbodiimide (EDC, 0.2 M) and  

N-Hydroxysuccinimide (NHS, 0.2 M), and BSA (1 ng/mL–2 mg/mL) of certified analytical grade 

were purchased from Sigma-Aldrich and used without further purification. PBS (10 mM phosphate, 

pH 7.4) was introduced as washing and working buffer solution. 
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2.2. Fabrication of Single PANI Nanowire 

A 5 µm long single PANI nanowire was fabricated in a nanochannel bridging two metal electrodes 

through electrochemical deposition. First, Au electrodes were patterned lithographically and deposited 

using an e-beam evaporator (VE-180, Thermionics) on a Si/SiO2 substrate. The nanochannel with  

a width of 100 nm and depth of 100 nm was made between a pair of electrodes on the layer of 

polymethyl methacrylate (PMMA), which is coated using e-beam lithography (e-line, Raith). After 

preparing the nanochannel, a static current of 500 nA was applied to induce the electrochemical 

deposition of PANI along the nanochannel from the ionic aniline solution. The change of voltage 

between the two metal electrodes was monitored by a semiconductor analyzer (B1500A, Agilent). The 

drop of voltage to sub-micro voltage indicates completion of the fabrication of the single PANI 

nanowire. The substrate including the single PANI nanowires were soaked in acetone to remove the 

PMMA layer for 10 min. This electrochemical deposition growth method is explained in detail 

elsewhere [36].  

2.3. Functionalization of Single PANI Nanowire 

The fabricated single PANI nanowire was functionalized for a cardiac biosensor in order to detect 

cardiac biomarkers through the surface immobilization method utilizing EDC/NHS solution. The 

EDC/NHS solution with mAbs of target biomarkers assists to form covalent bonds between PANI and 

mAbs. The mixture of EDC/NHS and mAbs were prepared at three different concentrations (50, 100, 

and 200 µg/mL) for the optimization of functionalization in order to obtain the highest sensitivity of 

biosensor and linear sensing profile. Before functionalization, the single PANI nanowires were soaked 

in 0.1 M HCl for 10 min, then in the mixture solution of EDC/NHS and mAbs for 3 h at room 

temperature. After washing the functionalized PANI nanowires with PBS and de-ionized water  

(18.2 MΩ) to remove un-immobilized mAbs, the nanowires were immersed in 2 mg/mL BSA for 

blocking the non-reacted functional groups for 30 min. This was followed by another washing with 

PBS and de-ionized water to clean un-coated BSA on the surface of the nanowires. Finally, those 

single PANI nanowires were utilized for the cardiac biosensors. 

2.4. Preparation of Microfluidic Channel 

A microfluidic channel was fabricated using polydimethylsiloxane (PDMS, Sylgard 184, Dow 

Corning Corp.) and negative photoresist (SU-8 2050, MicroChem Corp.). A designed mold of the 

microfluidic channel was lithographically patterned and developed on a Si/SiO2 wafer with spin-coated 

SU-8 2050 of 100 µm thickness. The fabricated microfluidic channels are 700 µm in width, 100 µm in 

height, and 4 mm in length and these dimensions are determined by the diameters of fluidic tube and 

syringe needle. The prepared PDMS was poured on the mold of the microfluidic channel and cured in 

an oven at 80 °C for 45 min. The fabricated PDMS microfluidic channel was adhered to a nanowire 

biosensor chip after O2 plasma treatment (250 mT, 30 W, 30 s) as shown in the inset of Figure 1(a). 

The single PANI nanowire biosensor integrated with the microfluidic channel was tested by infusing 

PBS, BSA, or target solutions using a syringe pump with the flow rate of 0.03 mL/min. 
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Figure 1. An illustration and the experimental set-up of the single polyaniline (PANI) 

nanowire biosensor to detect cardiac biomarkers. (a) The experimental setup; the 

microfluidic channel is adhered on the nanowire biosensor and the nanowire biosensor chip 

is mounted on a probe station connected to the semiconductor analyzer and syringe pump 

with inlet and outlet; (b) The conductance change in the single PANI nanowire-based 

biosensor is monitored. The injection of PBS (mark a), BSA (mark b), and cardiac 

biomarker (mark c) shows the different changes of conductance. 

  

2.5. Detection of Target Proteins on the Nanowire Biosensor 

The detection of cardiac biomarkers was carried out using the conductometric sensing method by 

measuring the conductance change of the nanowire. After adhesion of the microfluidic channel on the 

functionalized PANI nanowires, the nanowire biosensor was connected to the semiconductor analyzer 

through a probe station as shown in Figure 1(a). 

In order to inject PBS or target protein solutions, a micro-tube was connected from an inlet of the 

microfluidic channel to the syringe pump. Another micro-tube was connected with the other end of the 

microfluidic channel as an outlet to withdraw PBS or target protein solutions as shown in the inset of 

Figure 1(a). The change of conductance on the nanowire was measured by applying a static current  

of 50 µA and sampling ratio of 2 Hz with the semiconductor analyzer. Using a flow rate of 0.03 mL/min, 

laminar flow was established in the micro-tube and microfluidic channel, preventing nanowire 

breakage and conductance variation due to turbulence. In conductometric biosensing on the single 

PANI nanowire, first, a baseline of conductance was obtained from the flowing PBS solution (mark a) 

as shown in Figure 1(b). Once the conductance was stabilized in 300 s after injection of PBS solution 

into the microfluidic channel, the high concentration of BSA (mark b) was applied for the test of 

specificity in the nanowire biosensor. When the solution reaches the PANI nanowire and fills out the 

microfluidic channel, the conductance of the nanowire shows little change from the baseline of 

conductance. However, the injection of the target biomarker (mark c) shows a clear change of 

conductance value due to the binding of mAbs with target biomarkers as depicted in the inset of  

Figure 1(b). 
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3. Results and Discussion 

3.1. Functionalization of Single PANI Nanowires with mAbs 

The same single PANI nanowires were compared by scanning electron microscopy (SEM) before 

and after the surface immobilization of mAbs to observe the change of nanowire surfaces as shown in 

Figure 2(a,b). In the SEM images, the observed difference of PANI nanowire surface distinguishes the 

functionalized nanowire from the non-functionalized nanowire. Before the functionalization, the single 

nanowire has a smooth surface and uniform dimension with a width of 100 nm as shown in  

Figure 2(a). In contrast, the surface of the functionalized single PANI nanowire shows a rough 

morphology with attached particles of 10–30 nm in diameter in Figure 2(b). 

Figure 2. Scanning electron microscopy (SEM) images of single PANI nanowires.  

(a) before the surface functionalization and (b) after the surface functionalization with cTnI 

mAbs. The two SEM images were taken at the same location of the nanowire. 

  

During the functionalization of the nanowire, several washing processes with PBS and de-ionized 

water eliminate un-immobilized mAbs from the surface of the nanowire and the substrate including the 

Au electrodes and SiO2 layer. Based on these observations in Figure 2, the size of these particles is 

consistent with the average size of antibodies [39,40]. Therefore, we conjecture that the immobilization 

of mAbs with EDC/NHS solution allows strong binding between the PANI nanowire and mAbs due to 

this difference on the surface of the nanowire after the washing process, discussed also in other 

researches [41,42]. For the further verification of the surface immobilization, various methods such as 

the characterization of chemical bond changes and the observation of labeled immobilized antibodies 

with fluorescent materials or nanoparticles has been employed [43,44]. In our experiments, the surface 

immobilization methods of mAbs have been verified with fluorophore-tagged immunoglobulin G (IgG) 

mAbs and Raman spectroscopy [45,46]. The immobilized fluorophore-tagged IgG mAbs emitted red 

fluorescent light on the only nanowire excluding Au electrodes or the SiO2 layer. In addition, the Raman 

spectroscopy showed the presence of 1,638 cm−1 and 1,240 cm−1 bands from Amide groups, providing 

the immobilization of the IgG mAbs on the PANI nanowire. The functionalization only occurs on the 

single PANI nanowire not the Au electrodes and SiO2 layer of the biosensor chip. This approach 

eliminates the need for any passivation layer, which was required to prohibit signal interference from 

electrodes or substrate in studies using inorganic nanomaterials [23,38]. The surface immobilization 

method using EDC/NHS provides an efficient functionalization process of the single PANI nanowire, 

reducing process steps and the passivation layer unlike inorganic materials-based biosensors. 
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3.2. Detection of Cardiac Biomarkers 

The detection of Myo, cTnI, CK-MB, and BNP on the single PANI nanowire biosensors was carried 

out by monitoring the change of conductance in the nanowires as shown in Figure 3. The integration of 

the microfluidic channel assists accurate and reliable biosensing by directing the flow of the solution 

only onto the active area of the single PANI nanowire and minimizing the damage of the nanowire with 

a slow flow rate. In addition, the lowest detections of Myo, cTnI, CK-MB, and BNP could be obtained  

at 100 pg/mL, 250 fg/mL, 150 fg/mL, and 50 fg/mL as demonstrated in Figure 3(a–d), respectively.  

Figure 3. Single PANI nanowire biosensor chips integrated with microfluidic channel 

present the lowest detection of cardiac biomarkers. (a) Detection of Myo (a: PBS,  

b: 100 ng/mL BSA, and c: 100 pg/mL Myo); (b) Detection of cTnI (a: PBS, b: 10 ng/mL 

BSA, c: 5 fg/mL cTnI, d: 250 fg/mL cTnI, e: 20 pg/mL cTnI); (c) Detection of CK-MB  

(a: PBS, b: 10 ng/mL BSA, c: 150 fg/mL CK-MB); (d) Detection of BNP (a: PBS,  

b: 100 ng/mL BSA, c: 50 fg/mL BNP, and d: 1 pg/mL BNP). 

  

  

This detection limit of Myo supported with the microfluidic channel is much lower than our 

previous result of 1.3 ng/mL and shows ultra-high specificity to BSA of 100 ng/mL [45]. In these tests, 

the specificity values were calculated in the range from 1 × 104 fold in Myo detection to 2 × 106 fold in 

BNP detection (cTnI: 4 × 105 fold and CK-MB: 6.7 × 105 fold). These detection limits of cardiac 

biomarkers were measured in the absence of non-specific proteins; the biosensing of cardiac 

biomarkers was measured after the flow of non-specific protein solution into the microfluidic channels. 

In order to apply the biosensor for practical diagnosis, it is necessary to verify sensing performance in 

the presence of BSA or non-target cardiac biomarkers as shown in Figure 4. 
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Figure 4. Specificity tests of the single PANI nanowire biosensor in the presence of  

non-target proteins. (a) For detection of cTnI (a: PBS, b: 1 ng/mL BSA, c: 500 fg/mL cTnI, 

d: PBS, e: 1 ng/mL Myo, f: 1 ng/mL CK-MB, g: 1 ng/mL BNP, and h: 1 ng/mL cTnI), the 

nanowire biosensor responds to only cTnI; (b) For detection of CK-MB (a: PBS,  

b: 1 ng/mL BSA, c: 100 ng/mL BSA, d: 25 pg/mL CK-MB, e: PBS, f: 1 ng/mL Myo,  

g: 1 ng/mL cTnI, h: 1 ng/mL BNP, and i: 1 ng/mL CK-MB), the nanowire biosensor 

responds to only CK-MB; (c) For detection of BNP (a: PBS, b: 100 ng/mL BSA,  

c: 1 ng/mL BNP, d: 10 ng/mL BNP, e: PBS, f: 1 ng/mL Myo, g: 1 ng/mL cTnI, h: 1 ng/mL 

CK-MB, and i: 1 ng/mL BNP), the nanowire biosensor responds to only BNP. 

  

 

The presence of non-target proteins may interfere with the sensing performance due to the screening 

or physical absorption of non-target proteins. The detection of cardiac biomarkers with BSA may 

provide similar conditions to the practical diagnosis, because serum albumin is one of the most 

abundant proteins in human serum. On the other hand, the biosensing with other cardiac biomarkers 

shows functionality to detect only specific target proteins depending on the immobilized mAbs.  

The biosensing of cardiac biomarkers for cTnI, CK-MB, and BNP with non-target proteins are 

demonstrated respectively in Figure 4(a–c). Each nanowire biosensor was tested with BSA at a concentration 

of 1–100 ng/mL followed by each target protein, showing a significant conductance change as shown in 

Figure 4 (black solid line). The nanowire biosensors were tested with the addition of other cardiac 

biomarkers (red dash line) and show good specificity to detect only the target biomarkers. In the 

presence of non-target proteins, the nanowire biosensors have around 1 × 103–1 × 106 fold specificity 

values, which are lower than the specificity values in the test with the integrated microfluidic channel but 
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acceptable for biosensing applications. Non-specific binding of non-target proteins is restrained by the 

blocking process with BSA (2 mg/mL) on the surface of the nanowire after the functionalization process. 

The concentration of BSA blocking solution was considered to cover only the area unoccupied by mAbs 

without losing biosensing activity [47]. Therefore, a satisfying level of specificity was obtained and the 

developed single PANI nanowire-based biosensors demonstrated to be feasible to detect cardiac 

biomarkers under conditions where the target biomolecules are together with a high concentration of 

non-target biomolecules. 

In the biosensing of cardiac biomarkers, it is crucial that a biosensor has a broad range of detection 

for the diagnosis of heart disease. In order to investigate the sensing performance, various concentrations 

of BNP from 1 ng/mL to 100 ng/mL were introduced to the single PANI nanowire biosensor as shown 

in Figure 5(a). Above the baseline of conductance in PBS (mark a), the nanowire biosensor shows 

noticeable conductance changes along the different concentration of BNP as demonstrated in Figure 5(a); 

(b): 100 ng/mL BSA; (c): 1 ng/mL BNP; (d): 10 ng/mL BNP, and (e): 100 ng/mL BNP. The increased 

concentration of BNP provides a stronger charge effect due to accumulation of holes in the PANI 

nanowire. However, the continuous biosensing tests with several different concentrations of cardiac 

biomarkers consume the detectable mAbs and make the change of conductance become small with the 

saturation of conductance. During the biosensing of BNP, the change of conductance occurs within  

a few minutes after the introduction of the target proteins solutions to the single PANI nanowire.  

In addition, the continuous biosensing tests for Myo, cTnI and CK-MB show similar results to BNP 

with increasing the concentration of cardiac biomarkers [45]. Therefore, our biosensing results for 

cardiac biomarkers indicate that the developed single PANI nanowire biosensors show a wide sensing 

range, required reference values, and fast response time required to provide label free emergency 

detection and diagnosis. 

The sensing performance of the nanowire biosensor such as cost efficiency, sensitivity, and sensing 

reproducibility may be maximized by finding the optimum conditions of functionalization 

(concentrations of 50, 100, and 200 µg/mL for each mAbs) as shown in Figure 5(b–d). The biosensing 

tests were carried out at least 3 times using different nanowires at each concentration to avoid the issue 

of sensitivity loss due to multiple biosensing tests in the same nanowire. In order to find optimal 

conditions with antibody concentration, we investigated various conditions of surface immobilization 

satisfying sensing performance and to realize cost-efficiency in the development of the nanowire 

biosensor. In cTnI mAbs of 50 and 100 µg/mL, the sensitivities of the nanowire biosensors remained at 

around the level of 0.02 and 0.05 over cTnI of 30 pg/mL as shown in Figure 5(b). For cTnI sensing, 

functionalization using mAbs of 200 µg/mL showed the highest sensitivity and broadest sensing range 

from 300 fg/mL to 3 ng/mL. Standard deviations under the condition of 200 µg/mL are much smaller 

than other conditions indicating the best reproducibility. Similarly to the test of cTnI, the optimizations 

of surface immobilization for CK-MB mAbs and BNP mAbs were carried out as shown in  

Figure 5(c,d), respectively. CK-MB of 200 µg/mL shows the relatively smaller deviation and more 

linearly increased sensitivity than other concentrations of CK-MB mAbs. BNP of 100 µg/mL shows 

linearly increased sensitivity along the broad range of BNP concentrations from 50 fg/mL to 3 ng/mL. 

However, the deviation in that condition is greater than for BNP mAbs (50 µg/mL and 200 µg/mL) as 

shown in Figure 5(d). Based on these tests, the optimal functionalization of single PANI nanowires is 

determined by the linear sensitivity in the broad range of target concentration and good sensing 



Biosensors 2012, 2 214 

 

 

reproducibility with a small standard deviation of sensitivity. The various results from the optimization 

of functionalization may be caused by the size of mAbs, uniformity of the immobilized mAbs per unit 

area and orientation of the immobilized mAbs [48]. Considering the concentration of mAbs, if an 

insufficient amount of mAbs on the PANI nanowire were provided, an insufficient conduction change 

could result from the small net surface charge. On the other hand, if a high concentration of mAbs was 

employed, the plentiful active binding sites on the surface of the nanowire could improve sensing 

linearity and sensitivity. However, excessively immobilized mAbs in the functionalization of the 

nanowire may crosslink together between primary amines and carboxylic groups of the mAbs. This 

reaction results in less active binding sites and low sensitivity [49]. 

Figure 5. Biosensing of cardiac biomarkers in a broad sensing range and optimization of 

sensing performance. (a) Stepwise change of conductance according to introducing 

different concentrations of BNP to the nanowire biosensor (a: PBS, b: 100 ng/mL BSA,  

c: 1 ng/mL BNP, d: 10 ng/mL BNP, and e: 100 ng/mL BNP); (b) In order to optimize the 

condition of functionalization, sensitivities of the nanowire biosensors are compared in 

different concentrations of cTnI mAbs. 200 µg/mL cTnI mAbs presents the best linear 

sensing profile and the highest sensitivity of the three different conditions of cTnI mAbs; 

(c) For CK-MB, 200 µg/mL CK-MB mAbs shows the best sensing profile without 

fluctuation of sensitivity; (d) For BNP, 100 µg/mL BNP mAbs provide higher sensitivity 

in the broad sensing range than other conditions. 

  

  

In Figure 5(b–d), the low concentrations (50 µg/mL, marked as solid black square) of each mAbs 

show the competitive sensitivity in the range from 50 fg/mL scale to 5 pg/mL scale. However, the 

sensitivities of the nanowire biosensors with mAbs of 50 µg/mL are very poor and show the saturation 
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behavior in high concentrations of the target biomarkers. In these biosensing regions, the small number 

of binding sites from the immobilized mAbs result in the weak net surface charge to the single PANI 

nanowires for the detection in the high concentration of target biomarkers. The high concentrations of 

mAbs (100 or 200 µg/mL) have shown a relatively higher sensitivity and linear sensing profile than the 

mAbs of 50 µg/mL in this research. Therefore, plentiful binding sites on the functionalized nanowire is 

an important condition for realizing a high performance biosensor. However, the advantages of the 

single PANI nanowires-based biosensor will not include cost efficiency of the surface immobilization, 

if concentrations greater than 200 µg/mL mAbs are employed. 

3.3. Effect of Net Surface Charge on the Single PANI Nanowire Biosensor 

The single PANI nanowire biosensor for the detection of cardiac biomarkers has demonstrated high 

sensitivity, fast detection, and good sensing reproducibility. The use of conductometric measurement 

has the advantages of not requiring a reference electrode and low operating voltage [50,51]. During 

biosensing, the increased conductance is mainly caused by charge carrier accumulation on the P-type 

PANI nanowire through binding of the charged target proteins to the immobilized mAbs on the surface 

of the PANI nanowire.  

The charge of the target protein solutions is related to the pH value of PBS, which is used as  

a buffer solution for the target protein, and the isoelectric point (pI) values of the proteins. It is generally 

known that Myo, cTnI, CK-MB, and BNP have pIs of 7.2, 5.2–5.4, 5.2, and 6.5 respectively [52–54]. 

The net charges of these target protein solutions in PBS (pH 7.4) are negative due to the pI values 

lower than pH 7.4. Based on our biosensing experiments and pI values of target proteins, it is assumed 

that the negative charges of target proteins resulted in a carrier accumulation on the PANI nanowire 

and consequently an increase of conductance. To verify this hypothesis, another cTnI solution in PBS 

of pH 5 was prepared and tested as shown in Figure 6(a). cTnI in PBS with pH 5 has positive charges 

due to a pI value of 5.2–5.4 and the binding to immobilized cTnI mAbs leads to carrier depletion in the 

PANI nanowire. Figure 6(a) shows that the conductance of the PANI nanowire decreased upon the 

addition of the cTnI solution. The inset of Figure 6(a) depicts the change of conductive area in the 

nanowire by depletion after binding the positive charged target protein to the mAbs. 

The conductometric biosensing on the single PANI nanowire easily differentiates signal changes from 

very low concentrations to high concentrations of target proteins, determined by the electric field 

strength from the net charge in complexes of mAbs and target proteins. The tiny dimension of nanowire 

can be easily affected by the single molecular charge on the surface [55,56]. The complexes of mAbs and 

target cardiac biomarkers lead to charge neutralization and redistribution at the interface between the 

mAbs and the target proteins [57,58]. The opposite charges to the target proteins assemble at the top of 

mAbs while the same charges to the target proteins redistribute to the bottom of mAbs on the nanowire 

surface. The driven charges in the complexes of mAbs and proteins affect the accumulation or depletion 

of major carriers in the nanowire. In addition, the higher concentrations of charged proteins lead to 

higher sensitivity due to stronger potential from the complex of mAbs and proteins as compared in 

Figure 6(b). In these biosensing tests, the different concentrations of cTnI are compared in their 

sensitivity from different single PANI nanowires-based biosensors. Non-response to 100 ng/mL BSA 

(mark “a” on the black line in Figure 6(b)) demonstrates that non-specific proteins do not construct 
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complexes with mAbs or pre-coated BSA on the free-site of the nanowire. Therefore, it is conjectured 

that the charge neutralization in complexes of mAbs and target proteins realizes conductometric 

biosensing and as low as 100 pg/mL Myo, 250 fg/mL cTnI, 150 fg/mL CK-MB, and 50 fg/mL BNP for 

detection limits. However, this conjecture includes partial shortcomings, and is insufficient to support 

high specificity in biosensing. Those aforementioned sensing mechanism and the specificity of the 

nanowire biosensor leave room for further investigation and discussion. 

Figure 6. Tests of net surface charge effect on the functionalized PANI nanowires.  

(a) Decrease of conductance on the nanowire biosensor in sensing test with positively 

charged cTnI protein solutions (a: PBS of pH 5, b: 1 ng/mL, and c: 10 ng/mL). cTnI 

protein solutions were prepared with PBS of pH 5; (b) Comparison of sensitivity with 

different concentrations of cTnI detection. The nanowire biosensor shows significantly 

higher sensitivity with higher concentration. The mark “a” on black solid line presents the 

injection of BSA (100 ng/mL). After the injection of BSA, 300 fg/mL cTnI was injected 

into the biosensor. 

  

4. Conclusions  

The detection of cardiac biomarkers was successfully carried out through use of the single PANI 

nanowire biosensor, showing ultra-high sensitivity, good sensing reproducibility and high specificity. 

The high specificity of above 106 fold to BSA or other non-specific proteins showed the promising 

potential of using the single PANI nanowire biosensor for biomedical diagnosis. The integration of  

a microfluidic channel on the nanowire biosensor allows accurate detection of target proteins and very 

low detection limits of Myo, cTnI, CK-MB, and BNP, minimizing breakage of the nanowire, safe 

sample handling, and limiting the flow of target solutions only onto the nanowire. In addition, this 

microfluidic channel provides the advantages of sensing reliability and system stability due to the flow 

rate control in the laminar flow region. The design of the single PANI nanowire biosensor reported 

here can be applied for the detection of various other biomarkers such as cancer markers promising 

satisfaction in required sensing performance via the surface immobilization of mAbs using EDC/NHS. 
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