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Abstract: Protein aggregation and misfolding are some of the most challenging obstacles, customarily
studied for their association with amyloid pathologies. The mechanism of amyloid fibrillation
development is a dynamic phenomenon involving various factors such as the intrinsic properties of
protein and the physical and chemical environmental conditions. The purpose of this study was to see
the thermal aggregation profile of alpha-lactalbumin (α-LA) and to delineate the effect of trehalose
on its aggregation profile. α-LA was subjected to thermal aggregation at high concentrations. UV-
Vis spectroscopy, a turbidity assay, intrinsic fluorescence, Rayleigh scattering and a thioflavin T
(ThT) assay explained the steady outcomes that 1 M trehalose repressed α-LA aggregation in the
most effective way followed by 0.75 M and 0.5 M and to a significantly lesser degree by 0.25 M.
Multi spectroscopic obser Sania Bashir ations were further entrenched by microscopy. Transmission
electron microscopy confirmed that in the presence of its higher concentration, trehalose hinders
fibril development in α-LA. In vitro studies were further validated by in silico studies. Molecular
docking analysis indicated that trehalose occupied the binding pocket cavity of α-LA and offered
several significant interactions, including H-bonds with important residues. This study provides a
platform for trehalose in the therapeutic management of protein aggregation-related diseases.

Keywords: protein aggregation; trehalose; spectroscopy; transmission electron microscopy; molecu-
lar docking

1. Introduction

Several neurodegenerative diseases leading to amyloid fibrils and plaques are unam-
biguously associated with the intracellular aggregation of proteins [1,2]. Notwithstanding,
this fibrillation process experiences several events including halfway misfolding followed
by the development of oligomers, protofibrils and long-run fibrils. Alpha-lactalbumin
(α-LA), a Ca2+ metallo binding [3] milk protein, is a constituent of whey proteins. Whey
proteins, including α-LA, are exposed to heat during the process of pasteurization. Heating
extensively leads to the aggregation and gel development of proteins with both favorable
and non-favorable effects depending upon the objective of utilizing protein ingredients [4].
Recently, there has been an emerging interest growing to utilize conceivable heat treatments
to guarantee and maintain protein’s nutritional value and longevity. Thus, the choice of
an osmolyte, which potentially acts as a molecular aggregation blocker and contributes
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towards preventing aggregation in heat-sensitive proteins such as α-LA, maybe one of
the novel approaches. There are several reports in the literature of folding and unfolding
studies leading to aggregation, including α-LA [5–7]

Osmolytes, which are naturally occurring chemical chaperones, are intracellularly
accumulated to adapt heat and osmotic pressure. Their importance in maintaining protein
stability and folding has been previously acknowledged [8–11]. The role of osmolytes in
regulating the aggregation pathway of protein is in progress and feebly comprehended.
Among various osmolytes, trehalose has been visualized considerably for its broad range
relevance [12] with a generally regarded as safe (GRAS) value status [13]. However, various
speculations have been declared to clarify its adjustment behavior [14–20]. One of the
speculations is that its machinery of stabilization is intricate and cannot be attributed
exclusively to one theory [21]. Various studies have detailed that sucrose, trehalose and
proline decrease/restrain aggregation in model proteins such as lysozymes and α-LA
or therapeutic proteins such as α-synuclein and insulin, which cause neurodegenerative
diseases [22–24]. Even though osmolytes are generally not protein-specific, nonetheless,
in specific cases, osmolytes may destabilize or aggregate a particular protein [22]. On
the other hand, many osmolytes are known to stabilize proteins, and this stabilization is
protein-dependent [22,25]. Subsequently, there is a requirement for a selective osmolyte
treatment because different osmolytes affect proteins differently. According to the water
replacement theory, sugars help proteins maintain their native structure by facilitating
H-bonds formation between proteins and water molecules [26].

In the current research, we explored the effect of trehalose on α-LA aggregation. This
study was motivated by our earlier work that showed saccharides as potential osmolytes
interceded with the aggregation of several proteins [27]. Proteins are stabilized in the
presence of trehalose in the native state and help rejuvenate denatured proteins by main-
taining steady non-native states [12,28]. Several hypotheses have been proposed to clarify
this stabilization by trehalose [12]. The vitrification hypothesis proposes that trehalose
forms a cocoon-shaped matrix that protects proteins from stress conditions. Trehalose is
a genuinely exceptional sugar as it does not have a reducing hydroxyl end group, being
made out of two glucose molecules associated through α,α-1,1 linkage (Figure S1). Table S1
lists its various physical and chemical properties. This osmolyte has incredible capacities to
ensure the natural structures of proteins during dehydration and fills in as a bio-protectant
against different stresses; for example, osmotic shock, desiccation, freezing or heat [29,30].

Trehalose has a significant impact on protein misfolding disorders such as Alzheimer’s
disease [31] and Huntington’s disease [32,33]. This osmolyte reduces aggregation by
driving aggregation towards an off-pathway amorphous aggregation formation. Trehalose
as a potential osmolyte could also inhibit the aggregation reported by Liu et al. [31] and
others [34–36] in various neurological disorders where responsible peptides such as Aβ42
and Aβ40 dissolved their aggregates, causing Alzheimer’s disease. Promising results were
also seen in Huntington’s disease [37] where a competent inhibitor of poly-glutamine was
reported to be aggregated by Tanaka et al. [33]. Trehalose could likewise repress prion
aggregation [38,39]. Few reports exist representing its ability to significantly contribute to
Parkinson’s disease PD therapy as well [40–42].

Consequently, in this present investigation, we have utilized biophysical and com-
putational experiments to obtain better and more profound insights into how trehalose’s
presence prevents aggregation in globular proteins. Trehalose was chosen as it has been
demonstrated to be the best molecular chaperone against thermal stress [15]. Trehalose
masks the beginning of protein aggregation [23]. The results from this study might help to
design restorative drugs against Alzheimer’s and Parkinson’s.
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2. Results and Discussion
2.1. UV-Vis Spectroscopy
Thermal Transition Curve of α-LA in the Presence of a Varying Concentration of Trehalose

To evaluate the aggregation profile of the apo form of α-LA, thermal transition curves
at a fixed concentration of the protein (1.5 mg mL−1) as used earlier [27] were measured
in the presence of different molar concentrations of trehalose (0.5, 0.75 and 1.0 M) by
following changes in absorbance at 400 nm (A400) in the temperature range 20–85 ◦C at
pH 4.5. Figure 1A shows the results of these measurements. It should be noted that an
increase in absorbance occurred due to an increase in the scattering of light by the presence
of aggregates. It can be seen in Figure 1A that the A440 of the protein in the absence of
trehalose increased at higher temperatures. This absorbance decreased as we increased the
osmolyte concentration. At the highest osmolyte concentration (1 M) used in this study,
the protein’s absorbance was reduced from 1.89 in the absence of osmolytes to 0.2 (see
Figure 1A and Table 1). From the results shown in Figure 1A, it can be concluded that
trehalose protected the protein from aggregation. Furthermore, protection from aggregation
increased with an increase in the osmolyte concentration.
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Scheme 400. versus [Trehalose]. Each thermal aggregation profile was fitted according to Equation (1). (B) A plot of Amax

(maximum absorbance) versus Trehalose (the molar concentration).

Table 1. Values of aggregation parameters obtained for temperature-dependent apo-α-LA aggregation at different concen-
trations of trehalose.

Concentration
(mg mL−1) Ao Amax b Tagg (◦C) Ti

(Tagg − 2b) (◦C)

0.0 −0.010 ± 0.005 1.890 ± 0.009 2.610 ± 0.070 58.22 ± 0.08 53.02

0.5 −0.020 ± 0.006 1.727 ± 0.0105 2.788 ± 0.080 61.30 ± 0.08 55.72

0.75 −0.003 ± 0.002 0.617 ± 0.005 3.126 ± 0.100 65.87 ± 0.11 59.67

1.0 −0.002 ± 0.001 0.207 ± 0.002 2.899 ± 0.113 69.75 ± 0.13 64.17

Equation (1) was used to analyze each curve shown in Figure 1A. For parameters A,
Amax, Tmax and b, we utilized the dependence of A400 on the temperature to estimate the
variable trehalose concentration. The results of this analysis of each thermal transition
curve are given in Table 1. This Table also shows Ti’s values, the point at which aggregation
started, which was estimated using the relation (Tagg − 2b) [43]. It can be seen from
Figure 1A and Table 1 that the initiation of the aggregation of the protein was delayed in the
presence of trehalose, and this delay (Ti) increased with an increase in the concentration of
the osmolyte. For example, the aggregation delayed to 64 ◦C in the presence of 1 M trehalose
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instead of 53 ◦C in the absence of trehalose. Hence, it was visualized that 1 M trehalose
showed the best inhibition of aggregation. How trehalose protected the protein from
aggregation at higher temperatures could be understood by plotting Amax, the maximum
absorbance versus the concentration of trehalose, shown in Figure 1B. This Figure shows
that aggregation was significantly reduced from 1.89 in the absence of trehalose to 0.2
in the presence of 1 M trehalose. Data are shown in Table 1 (also see Figure 1A,B) led
us to conclude that a higher concentration of the osmolyte could protect proteins from
aggregation at high temperatures. This observation supported earlier studies that indicated
that trehalose stabilizes proteins by the mechanism of preferential hydration [29,44,45].
This osmolyte property would increase the lag period of the onset of aggregation with an
increase in its concentration.

A = Ao +
Amax

(1 + e(−(T − Tagg)/b)
(1)

where A is the absorbance at any temperature, T, Ao is the absorbance of the initial baseline,
Amax is the absorbance of the final plateau line, b is the constant independent of T at a
given wavelength, and osmolyte concentration and Aagg is the temperature at 50% of the
maximum absorbance occurrence.

2.2. Fluorescence Study
2.2.1. Trehalose Effect on Thioflavin T Assay

Thioflavin T (ThT) is a characteristic dye that defines the composition of the cross-
β-sheet responsible for the formation of amyloids or occasionally amorphous proteins in
aggregates. As ThT interacts with amyloid fibrils, it exhibits a high fluorescence in the
range of 480–500 nm after excitation at 450 nm [46,47]. The rise in the intensity of ThT
fluorescence by several folds relative to that of the native protein suggests the existence
of aggregates as ThT is known to bind to β-sheets extensively [47] Upon a thermally
induced aggregation at 70 ◦C for 30 min, α-LA (1.5 mg mL−1) was observed to have a high
ThT fluorescence relative to that of the native protein (Figure 2). Figure 2 shows the ThT
fluorescence in the presence of varying concentrations of trehalose. It should be noted that
the measurements of all spectra shown in this Figure were obtained at 25 ◦C. It should
also be noted that the ThT fluorescence spectrum was subtracted from that of ThT in the
presence of an aggregated protein with different concentrations of osmolytes. No blank was
subtracted from the ThT spectrum in the presence of the native protein while the spectrum
of ThT in the presence of the native protein was subtracted from each of the spectra of the
aggregated α-LA in the presence of different concentrations of trehalose. Spectra of the
respective trehalose + ThT were subtracted from the spectra of the aggregated protein in
the presence of varying concentrations of trehalose. In fact, the fluorescence spectrum in
the presence of trehalose were the differential spectra. It was evident that 1 M trehalose
caused a maximum reduction in ThT fluorescence intensity. Interestingly, the spectrum in
the presence of 1 M osmolyte was very close to that of the dye in the presence of the native
protein. Thus, trehalose at 1 M concentration acted as the best inhibitor in preventing the
aggregation of α-LA, whereas 0.25 M was the least effective.
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recorded at 25 ◦C.

2.2.2. Intrinsic Fluorescence

A significant shift in the microenvironment surrounding the chromophore is indicative
of the global transformation of the native protein to aggregate. The human α-LA contains
three residues of tryptophan and four residues of tyrosine found in the protein at strategic
positions [48] responsible for the cumulative intensity giving sharp absorption peaks at
280 nm. Intrinsic fluorescence emission spectra of the native α-LA and α-LA aggregated
in the absence and presence of different molar concentrations of trehalose are shown in
Figure 3. The native α-LA showed a maximum emission at around 337 nm when excited
at 280 nm, a characteristic of the native α-LA. An aggregated α-LA solution showed a
significant redshift and a visible decrease in Trp fluorescence than the native α-LA. This
reduction in fluorescence, coupled with a significant redshift of 10 nm, indicated that the
tryptophan residues’ burial changed to a more polar environment [49].

In the presence of trehalose, the aggregated α-LA solution displayed a decrease
in intrinsic fluorescence in a concentration-dependent manner. In the presence of 1 M
trehalose, the intrinsic fluorescence was nearly restored implying that 1 M trehalose acted
as the best inhibitor in preventing the aggregation of α-LA. These observations were in
accordance with the ThT fluorescence results and affirmed that 1 M trehalose acted as the
best concentration for maximally inhibiting the formation of the α-LA aggregate.
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molar concentrations of trehalose at 25 ◦C.

2.2.3. Rayleigh Scattering

Rayleigh–Tyndall scattering is a process that shows information in different directions
about the dispersion induced by the samples. The radiation may arise from an individual
molecule called Rayleigh scattering or colloidal suspension resulting from Tyndall scat-
tering. Light scattering determination is a very sensitive technique for the identification
of protein aggregation. Figure 4 depicts the degree of light scattering by native α-LA and
aggregated α-LA in the absence and presence of a varying trehalose concentration (0.25, 0.5,
0.75 and 1 M). The native α-LA displayed the least light scattering, while the aggregated
α-LA in the absence of trehalose displayed a massive increase in light scattering, which was
indicative of aggregate formation [50]. In the presence of different molar concentrations
of trehalose, α-LA displayed a substantial decrease in light dispersion; the spectrum in
the presence of 1 M trehalose was very close to that of the native protein in the absence of
osmolytes (Figure 4A). It is evident from Figure 4A that 0.25 M trehalose was the least effec-
tive in reducing light dispersion, whereas 1 M trehalose was found to be the most effective,
implying that 1 M trehalose acted as the best concentration for maximally inhibiting the
formation of α-LA aggregates. However, there was no significant light dispersion observed
in the case of trehalose individually. These findings were consistent with previous studies
confirming that 1 M trehalose serves as the most effective concentration in preventing
α-LA aggregation.
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2.3. Turbidity Assay

Turbidity refers to the haziness or cloudiness of a fluid caused by individual par-
ticles [49]. The aggregation propensity of α-LA was monitored spectrophotometrically
at 350 nm in the absence and presence of trehalose’s varying molar concentration. The
native protein showed a negligible or insignificant absorbance at 350 nm and, thus, a high
absorbance at 350 nm was implicative of the formation of aggregates due to the scattering
caused by larger aggregated particles [51]. Figure 4B shows that the thermally induced
aggregation of α-LA (1.5 mg mL−1) in the absence of trehalose at 70 ◦C for 30 min showed a
very high absorbance at 350 nm due to the existence of aggregates. There was an observed
decrease in the absorbance at 350 nm with an increase in trehalose concentration; the
maximum reduction was observed for 1 M trehalose. These observations were in line with
earlier results that implied that the presence of 1 M trehalose prevented the aggregation of
α-LA maximally; i.e., it acted as the best inhibitor in preventing the aggregation of α-LA.

2.4. TEM Analysis

Microscopic studies further entrenched spectroscopic observations. Transmission
electron microscopy was also deployed to check the effect of trehalose on the aggregation
of apo-α-LA. Figure 5A,B show TEM images of the native α-LA and aggregated α-LA
(1.5 mg mL−1) in the absence of trehalose (the formation of the aggregate occurred on
heating the protein at 70 ◦C for 30 min), respectively. There existed abundant ribbon-like
fibrils, reported earlier for aggregated α-LA [27]. Figure 5C shows TEM images of α-LA in
the presence of 1 M trehalose. It can be seen in these Figures that 1 M trehalose inhibited
α-LA aggregation. These microscopic observations were in line with earlier spectroscopic
observations and affirmed that the presence of 1 M trehalose prevented the thermally
induced aggregation of α-LA.
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2.5. Molecular Docking Analysis

After spectroscopic and microscopic observations, the next aim was to entrench
our observations through silico analysis. Hence, molecular docking was performed to
study the binding between α-LA and trehalose. Trehalose presented the docking score of
−5.8 kcal mol−1 towards α-LA. It possessed the pKi (–log Ki) and ligand efficiency values
of 4.25 and 0.16 kcal mol−1 non-H atom−1, respectively. Interaction analysis of all possible
docked conformers of trehalose was carried out to investigate their binding pattern and
possible interactions towards the α-LA binding pocket. Trehalose preferentially occupied
the binding site of α-LA with many interactions (Figure S2). Trehalose was present in
the binding pocket cavity of α-LA and showed significant interactions with essential
residues. Trehalose formed ten hydrogen bonds with six residues, His32, Asn44, Glu49,
Tyr103, Leu105 and Ala106, along with a few van der Waals interactions (Figure 6B,C).
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An interpolated charged surface representation indicated that trehalose occupied the
binding pocket cavity of α-LA with a virtuous complementarity fit (Figure 6D). The water
replacement theory suggests that trehalose replaces hydrogen bonds between proteins and
water and forms a hydrogen bond with the protein that balances out α-LA stability. Thus,
these observations were in line with this theory, evident from the presence of ten hydrogen
bonds. The study indicated that trehalose acted as a potent binding partner of α-LA and,
hence, these in silico observations were as per in vitro assays affirming that trehalose acted
as a potent inhibitor to prevent α-LA aggregation.
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3. Materials and Methods
3.1. Materials

Lyophilized α-LA (holo) from bovines and trehalose were bought from Sigma–Aldrich
Co. (St. Louis, MO, USA). Other chemicals were purchased from Merck, Germany. A
millipore filter of pore size 0.22 µm was obtained from the Millipore Corporation Bangalore,
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India. A Whatman filter paper was bought from Whatman International Ltd. Twofold
refined and de-ionized water from a Milli-Q® UF-Plus filtration framework was utilized to
prepare the buffer and other solutions. Figure S1 shows the structure of trehalose.

3.2. Protein Dialysis and Analytical Procedures

The required amount of holo-α-LA powder was dissolved in a 0.1 M KCl solvent
solution. An apo form of α-LA was prepared by adding 5 mM (ethylene glycol-bis(β-
aminoethyl ether)-N,N,N′,N′-tetraacetic acid) EGTA to a holo-α-LA (Ca2+ bound) solution.
This solution of apo-α-LA was dialyzed against several changes of 0.1 M KCl solution at
pH 7.0 and 4 ◦C. The dialysis tubing was prepared following the procedure of McPhie [52].
The dialyzed protein solution was filtered through millipore filters of pore size 0.22 µm.

3.3. Aliquots Preparation and Fibril Formation

The required amount of trehalose was dissolved in the 0.05 M sodium acetate buffer
(pH 4.5), and this solution was filtered through a Whatman filter paper. The protein was
incubated with different concentrations of trehalose before subjecting it to heat. A total
of 30 min were given to provide equilibrium between the trehalose and the protein. The
protein in the absence and presence of different trehalose concentrations was heated to
70 ◦C for 30 min to promote aggregation. The heated solution was cooled down to 25 ◦C
and all spectroscopic measurements were done at 25 ◦C. All experiments were carried
out in triplicate. A 1.55 M stock solution of trehalose, the most concentrated solution,
was prepared in the buffer. The trehalose solution’s concentration was determined using
the reported value of the refractive index [44,45,53]. The pre-incubated protein solution
containing different trehalose amounts (0.25 M, 0.5 M, 0.75 M and 1.0 M) aggregated at
70 ◦C was used for further experiments. For comparison, apo-α-LA without trehalose
was also incubated to be used as a control. Various biophysical techniques were used to
characterize proteins under different solvent conditions.

3.4. UV-Vis Spectroscopy

Absorption measurements were carried out in a Jasco V-660 UV-Vis spectrophotometer
equipped with a Peltier-type temperature controller. The absorption of protein solutions
in the absence and presence of different trehalose concentrations (0.5, 0.75 and 1 M) was
measured in the temperature range 20–85 ◦C. Equation (1) (shown in the Results and
Discussion section) was used to analyze for aggregation parameters (A0, Amax, Tagg and b)
using a non-linear regression method.

3.5. Turbidity Assay

The apo-α-LA (1.5 mg mL−1) was incubated in different trehalose concentrations
(0.25 M, 0.5 M, 0.75 M and 1.0 M) at 25 ◦C for 30 min to achieve an equilibrium. The
aggregation was induced by heating the protein solution at 70 ◦C for 30 min. This heated
sample was cooled down to 25 ◦C to measure turbidity at 350 nm by using a UV-Vis
spectrophotometer (Jasco UV-660) as described earlier [27].The turbidity measurement
was also made using a proper blank of a native apo-α-LA in a buffer (i.e., in the absence
of trehalose).

3.6. Thioflavin T (ThT) Assay

The apo-α-LA solution containing a fixed concentration ratio of protein to ThT (1:10)
was incubated with different trehalose concentrations at 25 ◦C for 30 min to achieve an
equilibrium. The aggregation was induced in the solution by heating the protein samples
in the presence of osmolytes at 70 ◦C for 30 min. The samples were cooled down to 25 ◦C,
and fluorescence spectra measurements were taken in a Jasco FP-6200 spectrofluorometer
using a 1 cm quartz cell. During these measurements, both the excitation and emission slit
width were kept at 10 nm, and a 1 cm pathlength cell was used as described earlier [27].
All solutions contained 1.5 mg mL−1 protein and 15 mg mL−1 ThT [27]. To remove any
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insoluble particles, the solution was filtered with 0.22 µm before the measurements. ThT
fluorescence contribution in the buffer was subtracted from each spectrum of the solution
containing ThT, protein and trehalose.

3.7. Intrinsic Protein Fluorescence

The apo-α-LA (1.5 mg mL−1) was incubated with different trehalose concentrations
(0.25 M, 0.5 M, 0.75 M and 1.0 M) at 25 ◦C for 30 min to achieve an equilibrium. The
aggregation was induced in the solution by heating the protein samples in the presence of
the osmolytes at 70 ◦C for 30 min. The samples were cooled down to 25 ◦C and excited at
280 nm with a 300–400 nm recording emission range. Spectra were measured in a Jasco
FP-6200 spectrofluorometer (Tokyo, Japan) using a 1 cm pathlength quartz cell as described
earlier [54].

3.8. Rayleigh Scattering

Rayleigh scattering measurements were performed in a Jasco FP-6200 spectrofluorom-
eter (Tokyo, Japan) as reported earlier [47,55]. The apo-α-LA (1.5 mg mL−1) was incubated
with different trehalose concentrations (0.25 M, 0.5 M, 0.75 M and 1.0 M) at 25 ◦C for 30 min
to achieve an equilibrium. The aggregation was induced in the solution by heating the
protein samples in the presence of trehalose at 70 ◦C for 30 min. The samples were cooled
down to 25 ◦C, and the measurements were carried out.

3.9. Transmission Electron Microscopy

Transmission electron microscopy is a tool to provide an insight into the morphology
of aggregates [56]. The apo-α-LA (1.5 mg mL−1) was subjected to thermal aggregation
in the presence and absence of 1 M trehalose. The aggregates were placed on 400-mesh
copper grids, covered with carbon stabilized formvar film and air-dried. The removal of
excessive fluid was done after 2 min followed by the staining of the grid by using uranyl
acetate. Samples were then air-dried and scanned in a TECNAI G2 20S-TWIN transmission
electron microscope operating at an accelerating voltage of 80 kV.

3.10. Molecular Docking Analysis

The apo-α-LA structure was downloaded from the Protein Data Bank (PDB ID: 1F6S),
and the trehalose structure was downloaded from the PubChem database (PubChem CID:
7427). The molecular docking of trehalose with α-LA was performed to predict their bind-
ing affinity and detailed interactions. The docking was performed using InstaDock, which
uses QuickVina-W in docking calculations with a blind search space for the ligand [57,58].
PyMOL [59] and Discovery Studio Visualizer [60] were used for visualization and analysis.

We also calculated the inhibition constant [61], which is a negative decimal logarithm
of the inhibition constant that comes from the ∆G parameter of the docking result. The pKi
value of both compounds was calculated while using the following formulae:

∆G = RT
(

LnKipred

)
(2)

Kipred = e(∆G/RT) (3)

pKi = −log(Kipred) (4)

∆G was the binding affinity (kcal mol−1); R was the gas constant, 1.98 cal K−1 mol−1 [62];
T was the room temperature, 298.15 K; pred denotes predicted.

Ligand efficiency (LE) is one of the useful parameters used in lead selection by com-
paring average binding energy values per atom [61]. Here we calculated the LE of quercetin
and naringenin while utilizing the following formula:

LE = −∆G/N (5)
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LE was the ligand efficiency (kcal mol−1 non-H atom−1), ∆G was the binding affinity
(kcal mol−1) and N was the number of non-hydrogen atoms in the ligand molecule.

4. Conclusions

UV-Vis spectroscopy, a ThT binding assay, intrinsic fluorescence, Rayleigh scattering
and turbidity assay measurements showed that the presence of trehalose inhibited α-LA
aggregation in a dosage-dependent manner with 1 M trehalose acting as the best concen-
tration causing the maximal inhibition of protein aggregation. Microscopic techniques
complemented these observations; TEM analysis suggested that the native α-LA was
transformed into fibrils when subjected to thermal treatment and 1 M trehalose inhibited
aggregation in αLA. Furthermore, in vitro and microscopic observations were supported
by an in silico approach. Molecular docking studies suggested that trehalose as a potent
binding partner of α-LA and hydrogen bonding were the key players in this interaction.
Together with spectroscopic and microscopic observations, these observations affirmed that
trehalose bonded with α-LA and the presence of 1 M trehalose prevented the aggregation
of α-LA. This research gives evidence of the benefits of the naturally occurring sugars as
inhibitors of amyloid fibril production and the possible use of naturally occurring sugar
osmolytes for the therapeutic management of protein aggregation-related disorders.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-2
73X/11/3/414/s1, Figure S1: Structure of trehalose, Figure S2: Diagrammatic representation of
trehalose binding with alpha-lactalbumin with significant interactions offered Table S1: Different
Physical and Chemical Properties of Trehalose.
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