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Abstract: Solid Al–air batteries are a promising power source for potable electronics due to their
environmentally friendly qualities and high energy density. However, the solid Al–air battery
suffers from anodic corrosion and it is difficult to achieve a higher specific capacity. Thus, this
work aims at suppressing the corrosion of Al anode by adding an electrospun Al2O3 interlayer on
to the surface of the anode. The Al2O3 interlayer effectively inhibits the self-corrosion of the Al
anode. Further, the effects of the thickness of the Al2O3 film on corrosion behavior were investigated.
The results showed that the Al–air battery with a 4 µm Al2O3 interlayer is more suitable for a low
current density discharge, which could be applied for mini-watt devices. With a proper thickness
of the Al2O3 interlayer, corrosion of the anode was considerably suppressed without sacrificing the
discharge voltage at a low current density. The Al–air battery with a 4 µm Al2O3 interlayer provided
a significantly high capacity (1255 mAh/g at 5 mA/cm2) and an excellent stability. This wo presents a
promising approach for fabricating an inhibiting corrosion interlayer for solid Al–air battery designed
for mini-watt devices.
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1. Introduction

Portable and wearable electronic devices have received widespread attention for practical
applications such as smart sensors [1,2] and flexible devices [3,4]. The possibility of using solid batteries
as power sources in electronic devices is in urgent demand. With respect to liquid batteries, the solid
ones have the well-known advantages of excellent temperature stability, high electrochemical stability,
flexibility and absence of leakage [5,6]. These characteristics enhance the safety issues associated
with energy storage. Lithium-ion batteries (LIBs) have been recognized as the energy sources for
flexible electronic devices due to their reasonable theoretical energy density (~400 Wh/kg) and cycle
life (~5000 cycles) [7]. However, the performance of LIBs is highly dependent on the expensive
raw materials for the cathode [8]. In addition, the safety issues of LIBs, such as thermal runaway,
pose ongoing challenges for their application in personal electronics [9]. Solid metal–air batteries
(including Zn [10,11], Al [12–14], Fe [15] and Li [16]) have been widely agreed upon as a next-generation
energy storage system owing to their light weight, high safety and environmental friendliness [17].
Solid metal–air batteries generally use alkaline gel electrolyte instead of traditional liquid alkaline
electrolyte [18–21]. More specially, the Al–air battery is a promising candidate due to its lower market
price (76% of Zn), greater reserve (1093 times of Zn), higher theoretical energy density (six times of
Zn) [13] and specific capacity (2980 mAh/g) [22]. However, these theoretical targets are difficult to
achieve with the current Al–air batteries. One of the main obstacles is the corrosion of Al anode in the
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alkaline electrolyte [18]. The hydrogen evolution corrosion in the discharging process limits both the
cell practical voltage and the metal utilization [23,24].

To solve the above issues, one method has been suggested of alloying the Al anode with other
elements, such as Ga, Zn, Ti, Sn, Mg, and In [25–27]. The results showed that aluminum alloys could
increase the hydrogen over-potential and reduce hydrogen evolution of the anode. For the electrolyte,
the researchers have found that adding additives (including organic [21,28], inorganic [29] and hybrid
inhibitors [30]) helps to make the electrolyte less corrosive. It is generally recognized that the inhibitor
molecules act by adsorbing on the metal surface to form a protecting film, which would lead to a
decrease in corrosion rate [31,32]. To better tune the Al/electrolyte interface, surface modifications on Al
anode have been reported to suppress the corrosion. Mutlu et al. [33] modified Al anode with copper
nanoparticles by electrodeposition process. It protects the Al from the corrosion reaction by forming a
barrier interlayer between the anode and electrolyte. Similarly, Lee et al. [34] coated polyaniline (PANI)
film onto the Zn surface by chemical synthesis to inhibit the corrosion of Zn anode for a Zn–air battery.
The corrosion inhibition efficiency is closely related to the uniformity of the protecting interlayer.
Electrospinning is considered to be an efficient and versatile technique to produce ultrathin films with
continuous nanofibers [35]. The film fabricated through electrospinning is a 3D porous structure with
high porosity. This technique is usually applied to prepare organic or inorganic materials [36].

In this work, we modified an Al2O3 interlayer on the surface of an Al anode by electrospinning
to inhibit the corrosion of the anode in alkaline electrolyte. Al2O3 has been proven to be an efficient
inhibitor for the hydrogen evolution reaction. The study by Lee et al. [37] suggested that Al2O3 has a
positive effect on controlling the hydrogen evolution reaction of Zn anode in alkaline electrolyte for
Zn–air battery. In addition, they proved that the Al2O3 film could be more effective to control corrosion
than just adding Al2O3 powder into the electrolyte. Wongrujipairoj et al. [38] fabricated an Al2O3 film
onto the surface of Zn anode by sol-gel method. The Al2O3 film effectively mitigated the corrosion of
the Zn anode. However, limited reports are available on the electrospun Al2O3 film as an inhibiting
corrosion interlayer of the Al anode for solid Al–air batteries.

Here, we demonstrate an efficient electrospinning method to fabricate an Al2O3 interlayer for a
solid Al–air battery. The electrospinning strategy could cause a uniform deposition of Al2O3 on the
surface of the Al anode. The surface structures and morphology of the Al anode were analyzed by
scanning electron microscope (SEM) and X-ray diffraction (XRD). The electrochemical measurements
were used to evaluate the anode performance. The solid Al–air battery with the modified Al anode
exhibited a stable operating voltage and a fairly high Al anode utilization and discharge capacity.

2. Experiment

2.1. Materials

Polyacrylonitrile (PAN, Mw = 150,000), N,N-Dimethylformamide (DMF, 99%) and Al(NO3)3·9H2O
were provided by Sinopharm Chemical Reagent Co., Ltd.(Shanghai, China). Reagents for the gel
electrolyte synthesis, including KOH, ZnO, N,N′- methylene-bisacrylamide (MBA), acrylic acid (AA)
and K2S2O8, were purchased from Shanghai Titanchem Co. Ltd. (Shanghai, China). The catalyst for
the air cathode, MnO2 was from Tianjin Fuchen. Al foil served as an anode and was provided by
Shenyang Kejing.

2.2. Fabrication of Al2O3 Interlayers

The precursor solution was prepared by dissolving 0.2 g Al(NO3)3·9H2O and 0.8 g PAN in 15 mL
of DMF. The solution was maintained under constant magnetic stirring for 24 h at room temperature to
obtain a homogeneous solution. Then, the precursor solution was loaded into a plastic syringe with a
stainless-steel nozzle, which was connected to a high voltage power supply. The syringes were pushed
by a syringe pump with a flow rate of 1 mL/h. A rotating cylinder coated with aluminum foil was
used as a collector. The applied voltage and distance of tip to collector were set as 15 kV and 15 cm,
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respectively. Subsequently, the collected electrospun nanofibers were stabilized in air at 300 ◦C for 2 h
with a heating rate of 5 ◦C/min. The preparation process is shown in Figure 1b.Batteries 2020, 6, x FOR PEER REVIEW 3 of 12 
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Figure 1. Scanning Electron Microscope (SEM) images of the electrospun nanofibers before (a) and
after (d) heat treatment. (b) Schematic showing the fabrication process of the Al2O3 interlayer. (c) The
Al2O3 interlayer fabricated by electrospinning. (e) Sandwich structure of the Al–air battery.

2.3. Characterization and Electrochemical Tests

The morphology of the samples was characterized by SEM (Su-8010, Hitachi, Tokyo, Japan).
The crystalline structures of the samples were characterized using an XRD instrument (Bruker D8
Advance, Bruker Corp., Billerica, MA, USA) with a Cu kα radiation of 0.1541 nm as an X-ray source.
The thickness of the Al2O3 interlayer was measured by Dektak XT (Bruker, Karlsruhe, Germany)
profile meter.

The polymer alkaline gel electrolyte and flexible air cathode were prepared according to our
previous paper [6,39], respectively. A 3 × 4 cm aluminum foil served as the metal anode. The solid
Al–air battery was assembled as the sandwich type, as schematically illustrated in Figure 1e. The Al
anode modified with an Al2O3 interlayer is shown in Figure 1c. In order to analyze the electrochemical
performance of the Al anode with Al2O3 film, cyclic voltammetry was carried out at a scan rate of
100 mV/s from −1.9 to −0.5 V in 4 M KOH solution by the Metrohm Autolab. The constant current
discharge was carried out using a battery testing system (CT2001A, LAND Electronics Co., Ltd., Wuhan,
China). The electrochemical tests were carried out by an electrochemical workstation (RST5000, Shiruisi,
Zhengzhou, China). An Hg/HgO and a platinum wire were used as reference and counter electrodes.
Potentiodynamic polarization was measured at a scan rate of 1 mV/s. Electrochemical impedance
spectroscopy (EIS) measurements were tested with an AC amplitude of 10 mV and frequency from
0.01 Hz to 100 kHz. All the electrochemical tests for every material were repeated at least three times
to ensure reproducibility.

3. Results and Discussion

3.1. Characterization of the Al2O3 Interlayer

The surface morphology of the electrospun interlayer after heat treatment was investigated by
SEM, as shown in Figure 2a. A perfect fibers formation characterized by a similar size of about 450 nm
was observed for the samples, as shown in Figure 2b. A higher roughness degree (Figure 1d) after heat
treatment was due to the decomposition of Al(NO3)3·9H2O along the nanofibers. In addition, PAN
in the nanofibers could be decomposed and burned at 250 ◦C [40]. XRD patterns of the electrospun
samples were reported in Figure 2c. A peak of 2θ = 17◦ was attributed to the (001) reflection of
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the orthorhombic PAN [41]; this is because PAN could not decompose completely until 700 ◦C [42].
Characteristic diffraction peaks of the Al2O3 phase at 2θ = 25.3◦, 35.1◦, 37.4◦, 43.4◦, 52.9◦, 57.7◦, 62.1◦,
67.2◦and 68.3◦ were observed in the pattern of the nanofibers representing the (012), (104), (110), (113),
(024), (116), (122), (214) and (300) reflections, respectively. The observations were consistent with the
reported dates (JCPDS Card 42-1468). No other peaks were observed for the film, suggesting better
control over the chemistry of the Al2O3 film offered by electrospinning.
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Figure 2. (a) SEM image of the Al2O3 film. (b) The diameter distribution of the Al2O3 film. (c) XRD
patterns of the Al2O3 nanofibers.

3.2. Electrochemical Characterization of Al-Air Batteries

The open-circuit potential (OCP) of Al anodes with different thickness Al2O3 films in 4 M KOH
electrolyte is displayed in Figure 3a. Compared with a pure Al anode, the Al anode with thicker Al2O3

film has the more negative OCP in alkaline electrolyte solution. This indicates that the Al2O3 film can
considerably shift the OCP negatively. The negative potential shift may be explained by the fact that
the Al2O3 film protects the Al anode and alleviates the polarization reaction. To examine the effects
of the protection of Al2O3 film on the Al anode, the Al anode with Al2O3 films was subjected to 1 h
of OCP exposure in the electrolyte solution followed by 1 h of anodic polarization under a current
density of 5 mA/cm2. Figure 3b shows the potential transient of the Al anode recorded during four
continuous cycles. The results show that the potential transient of Al anode with Al2O3 film is more
stable during the cycling and has a better discharge performance than the pure Al anode, especially for
the case of 6 µm Al2O3 film.
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Figure 3. (a) Open-circuit potential (OCP) curves of Al anodes without and with different thicknesses
of Al2O3 films in 4 M KOH. (b) Potential-time transients recorded for Al anodes without and with
different thicknesses of Al2O3 films during 4 cycles (consisting of 1 h rest period at OCP and 1 h
discharge at a current density of 5 mA/cm2) in 4 M KOH.

Figure 4 shows the cyclic voltammograms of Al anodes with different thicknesses of Al2O3 films
from −1.9 to −0.5 V at a scan rate of 100 mV/s in 4 M KOH solution. The anodic peaks A and B for pure
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Al are at −1.13 and −1.06 V vs. Hg/HgO. The cyclic voltammogram of the Al anode with an Al2O3

film displays that the peak A and B shifted positively, and the peaks shift more significantly in the
positive direction with the increasing thickness of the Al2O3 film. The peak A in the anodic sweep is
due to the oxidation of Al to Al(OH)4

−, and peak B in the cathodic sweep is due to the dissolution of
the passivated film of Al(OH)3. The Al anode is more difficult to oxidize when protected by the Al2O3

film, which would result in less hydrogen evolution and reduced corrosion. In addition, the voltage
separation between peaks A and B changes little in the four curves, indicating that the redox behavior
is almost the same.
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In order to understand the effect of the Al2O3 interlayer thickness, the electrochemical impedance
spectroscopy of the Al-air batteries with different thicknesses of Al2O3 interlayers are given in Figure 5.
A typical Nyquist plot of a single-cell practical Al–air battery is composed of two semicircles that
correspond to different battery process, described by an equivalent circuit with five elements [43]
(Figure 5 inset), namely solution resistance (Rs), solid/electrolyte interface (Rint), charge transfer
resistance during electrochemical process (Rct), and two constant phase elements (Ccoat and Cdl). The
fitting parameters of the different components of the samples are summarized in Table 1. The solution
resistance Rs increases with the thickness of Al2O3 interlayer, which indicates that the electrolyte
resistivity increases and the diffusion of ions becomes more and more difficult [43]. Rint is also much
higher than the pure Al anode; this is because the Al2O3 interlayer hinders direct contact between
the electrolyte and the electrode. The Rct is used to indicate the degree of ease of reaction with the
metal when the electrolyte reaches the anode surface. The larger the charge transfer resistance Rct, the
more difficult it is to react. Compared with pure Al, the value of the coating capacitance Ccoat decreases
by more than two orders of magnitude, reaching 2.69 × 10−7 F with 6 µm Al2O3. In addition, the
double layer capacitance Cdl decreases as the thickness of Al2O3 interlayer increases, which is related
to the porosity of the Al2O3 interlayer. Cdl directly corresponds to the exposed surface area of the
electrode [44]. The thicker Al2O3 interlayers have less porosity and better protection for the Al anode.
Similar conclusions have also been obtained in the research of Díaz et al. [45]. It can be seen that Rint
and Rct increase in the following order: pure Al < Al with 2 µm Al2O3 interlayer < Al with 4 µm Al2O3

interlayer < Al with 6 µm Al2O3 interlayer, indicating that the coating of an Al2O3 interlayer on the Al
anode can effectively improve corrosion resistance.
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Table 1. The resistance values of the equivalent circuit elements based on electrochemical impedance
spectroscopy (EIS) measurements of Al–air batteries (The % errors are mentioned with circuit elements).

Element Pure Al 2 µm Al2O3 4 µm Al2O3 6 µm Al2O3

Rs (Ω/cm2) 1.38% ± 0.9% 1.42% ± 1.6% 1.63% ± 3.4% 1.78% ± 1.5%
Rint (Ω/cm2) 0.36% ± 6.5% 0.89% ± 4.3% 1.03% ± 1.7% 2.19% ± 4.2%

Ccoat (F) 4.32% × 10−5% ± 8.7% 8.96% × 10−6% ± 9.7% 1.43% × 10−6% ± 11.3% 2.69% × 10−7% ± 6.9%
n 0.78% ± 2.3% 0.67% ± 1.9% 0.77% ± 1.4% 0.73% ± 7.4%

Rct (Ω/cm2) 1.23% ± 3.8% 1.78% ± 4.5% 2.53% ± 1.5% 3.98% ± 6.8%

Cdl (F) 7.79% × 10−5% ±
15.4% 6.67% × 10−5% ± 9.6% 4.37% × 10−6% ± 7.6% 1.64% × 10−6% ±

10.3%
n 0.88% ± 3.9% 0.89% ± 4.6% 0.82% ± 14.7% 0.86% ± 12.1%

To further confirm the corrosion resistance of the Al2O3 interlayer, Figure 6 and Table 2 indicate
the Tafel curves and the related corrosion parameters of pure Al and the Al anode modified with
different thicknesses of Al2O3 interlayers in the 4 M KOH electrolyte, respectively. Parameter η% is the
protection efficiency and is obtained by the following equation [46]

η% =
Icorr − Icorr(inh)

Icorr
× 100% (1)

where Icorr and Icorr(inh) are the corrosion current densities without and with the Al2O3 interlayer in
KOH solution. Compared to the pure Al anode, after the modification of the Al2O3 interlayer, the
Tafel slopes of the cathode and anode both decreased. The results showed that the Al2O3 interlayer
improved the anticorrosion performance of the Al anode. As can be seen in Figure 6, the variation in
the self-corrosion potential was little, indicating that the performance of anticorrosion works by the
geometrical coverage effect [47]. In addition, after modifying the anode with an Al2O3 interlayer, the
polarization curves of the anode and cathode were almost parallel, suggesting that the modification of
the Al2O3 interlayer did not change the reaction mechanism. The protection efficiency increased with
the Al2O3 interlayer thickness. The Icorr of the Al with 6 µm Al2O3 interlayer (61.3 µA/cm2) is much
more smaller than that of pure Al (427.5 µA/cm2), and η% reached 85.66%.
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Figure 6. Potentiodynamic polarization curves of the Al anode modified by Al2O3 interlayers of
different thickness.

Table 2. Corrosion parameters from polarization curves (the % errors are mentioned with the
corrosion parameters).

Sample −Ecoor (V) Icoor (µA/cm2) η%

Pure Al 1.48% ± 2.8% 427.5% ± 6.5% —
2 µm Al2O3 1.48% ± 7.3% 203.2% ± 10.5% 52.47% ± 6.9%
4 µm Al2O3 1.48% ± 4.8% 115.7% ± 8.5% 72.94% ± 6.4%
6 µm Al2O3 1.49% ± 9.7% 61.3% ± 6.4% 85.66% ± 7.6%

The electrochemical performance of the Al–air battery was investigated by recording polarization
and power density curves with different thickness Al2O3 interlayers, as shown in Figure 7a,b. The
Al–air battery with an Al2O3 interlayer (2 and 4 µm) behaves similarly to the pure Al at a low current
region (0.1–5 mA/cm2). However, the power density and the voltage decreased significantly compared
with the batteries using a pure Al anode at a high current region, indicating a significant hydroxyl
shortage. This is because the Al2O3 interlayer effectively inhibits the direct contact between the
electrolyte and the anode. The thin interlayer hinders the transport of hydroxide ions, leading to a
decrease in conductivity of the electrolyte compared to the free electrolyte without the Al2O3 interlayer.
It is worth noting that the Al–air battery with a 4 µm Al2O3 interlayer has a current reverse at a high
current region. This phenomenon is much more obvious in the case of the 6 µm Al2O3 interlayer.
When increasing the thickness of the Al2O3 interlayer, the battery performance gradually decreases,
which is mainly due to the reduced electrolyte conductivity. The mass transport loss is also gradually
aggravated, indicating that hydroxide ion concentration plays an important role in supporting a high
discharge current density. The battery encounters a server mass transport loss at a high current density,
but the corrosion of the Al anode is inhibited at the same time. The Al–air battery with an Al2O3

interlayer suppresses Al corrosion by sacrificing its high current density output in this manner. The
Al2O3 interlayer thickness could affect the battery performance by two aspects. On the one hand, a
thicker Al2O3 interlayer could better suppress anode corrosion, but it is unable to provide enough
hydroxide ions. On the other hand, a thinner Al2O3 interlayer could lead to a lower ionic resistance,
but the effect of inhibiting corrosion may be limited. In order to explore the effect of Al2O3 interlayer
thicknesses on the battery characteristics, we have studied a single-cell anode and cathode polarization
curves, as shown in Figure 7c. It can be seen that the cathode curves remained identical, while there
were significant differences in the anode curves. The two polarization curves for 2 and 4 µm Al2O3

interlayers are likely the same at the low current region. This is because a lower concentration of
hydroxide ions can meet the need of discharge. However, a 6 µm Al2O3 interlayer seriously affects
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the charge transfer, even at a low current region. At a high current density region, the phenomenon
of hydroxyl starvation becomes more and more obvious as the thickness of the Al2O3 interlayer
increases. This illustrates that the Al–air battery with Al2O3 interlayer is more suitable for a low current
density discharge.
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Figure 8 shows the discharge behavior of the Al–air battery with different thicknesses of Al2O3

interlayers at low current densities (1, 3 and 5 mA/cm2). From the polarization curves in Figure 7a, the
Al–air battery with 6 µm Al2O3 interlayer could only achieve a lower voltage even at a low current
density. Therefore, the discharge performance in the case of 6 µm Al2O3 interlayer is not considered
in the test. As shown in Figure 8a–c, the Al–air battery with an Al2O3 interlayer showed a longer
discharge time than pure Al. The improved sustainability of the Al anode is due to the suppression
of corrosion. The Al–air battery with a 4 µm Al2O3 interlayer has the longest discharge time. Only
0.016 g Al with a 4 µm Al2O3 interlayer as an anode could sustain a current density of 1 mA/cm2 for
10.6 h, 3 mA/cm2 for 5.75 h, and 5 mA/cm2 for 4.16 h. The discharge voltage changes little compared
to pure Al anode and is better sustained at all three current densities, indicating that the hydroxyl
ions are enough to support such current densities. The battery finally encounters an instant drop
in voltage because the amount of Al is exhausted at the end of the discharge process. In order to
investigate stability during the discharge process, the rate discharge performance of Al–air batteries
with different thicknesses of Al2O3 interlayers at different current densities are compared in Figure 8d.
The Al–air battery with an Al2O3 interlayer exhibits significantly stable output voltage within current
densities ranging from 1 to 5 mA/cm2. Within the range, the discharge voltage plateaus of Al–air
batteries with 2 and 4 µm Al2O3 interlayers vary little compared with the Al–air battery at the same
current density. The stable discharge performance can be attributed to that fact that the hydroxide
ions provided by the electrolyte are sufficient for the anodic reaction, even if some of the hydroxide
ions have been blocked by the Al2O3 interlayer. By increasing the current density to 10 mA/cm2, the
discharge voltage of Al-air batteries with Al2O3 interlayer decreases significantly, especially for the
case of the 4 µm Al2O3 interlayer, indicating that the hydroxide ions are not enough to meet such a
large current discharge. This further illustrates that the Al–air batteries with an Al2O3 interlayer are
more suitable for a low-current discharge.
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thicknesses at (a) 1, (b) 3, (c) 5 mA/cm2 and (d) rate discharge.

Furthermore, Figure 9a,b summarize the corresponding discharge time and capacities of the Al-air
batteries. It is apparent that the solid Al–air battery with a 4 µm Al2O3 interlayer is more appropriate
to work at low current densities in order to achieve better utilization of the Al anode. The highest
specific capacity of 1255 mAh/g is achieved with a 4 µm Al2O3 interlayer at 5 mA/cm2. This value is
still better than those of a conventional Al–air battery with a high-purity Al anode in both gelled [13]
and liquid electrolyte [48]. Due to the limited contact of electrolyte and anode, together with the porous
structure of Al2O3 interlayer, the amount of hydroxide ions and their diffusion to the Al anode is
greatly suppressed. The high utilization of the Al anode is due to the special transfer of hydroxide ions.
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4. Conclusions

The present study aims to examine the impact of an Al2O3 interlayer on anodic corrosion in a
solid Al–air battery. The Al2O3 interlayer was fabricated through electrospinning on the surface of
the Al anode. SEM and XRD measurements confirmed the porous structure and composition of the
electrospun interlayer. Electrochemical tests were performed to investigate the efficiency of the Al2O3

interlayer and battery performance. It was established that the Al2O3 interlayer had a significant
effect on Al corrosion. The results showed that the Al–air battery with an Al2O3 interlayer is more
suitable for low current density discharges. The batteries could be applied for mini-watt devices with
a low current requirement, such as portable electronics and biosensors. It achieves the purpose of
suppressing anode corrosion by sacrificing high current output. In addition, the effect of the Al2O3

interlayer thickness on corrosion resistance. As the Al2O3 interlayer thickness increases, the corrosion
resistance increases, but the transport of hydroxide ions is also suppressed. Discharge experiments
showed that an Al–air battery with a Al2O3 interlayer provided an excellent stability and a significantly
high capacity. The specific capacities of the Al-air battery with 2 and 4 µm Al2O3 interlayers are 816
± 24 and 1255 ± 33 mAh/g at 5 mA/cm2, which is much more than pure Al anode (416 ± 35 mAh/g).
Generally, the addition of an Al2O3 interlayer on the surface of an anode can suppress the anodic
corrosion, thus improving the capacity of the Al–air battery. The electrospun Al2O3 interlayer for a
solid Al–air battery is very promising for the mini-watt electronics.
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