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Abstract: Cr(VI) detoxification by biotreatment is considered one of the most practical detoxification
methods, especially at low-to-medium concentrations. Although the capabilities of chromium-reducing
bacteria and related enzymes in removing Cr(VI) have been explored, little is known about their
differences in engineering applications. In this study, Ochrobactrum sp. CUST210-1 was isolated
and its chromate reductase identified and separated as biological elements in biosystems developed
for Cr(VI) removal. Results indicate that intracellular Cr(OH)3(s) accounted for 88.01% of Cr(VI)
reduction product, and a possible reduction mechanism was exposed. The chromate reductase in
Ochrobactrum sp. CUST210-1 was ChrR protein, and its crystal structure was revealed. The toxicity of
Cr(VI)-containing wastewater was decreased by 57.8% and 67.0% (at minimum) by the CUST210-1
strain and ChrR, respectively. The Ochrobactrum sp. CUST210-1 biosystem demonstrated good
adaptability to pH (7–9), and the ChrR biosystem exhibited high removal efficiency (>98.2%) at
a wide range of temperatures (25 ◦C–40 ◦C). The outlet Cr(VI) concentration of the CUST210-1
biosystem met the industrial discharge limit of 0.5 mg L−1 when the inlet Cr(VI) concentration in
the actual Cr(VI)-containing wastewater was <430 mg L−1. The stricter water quality standard of
0.05 mg L−1 could be complied with by the immobilized ChrR biosystem when <150 mg L−1 Cr(VI)
concentration was introduced. These developed biosystems can be used in the bioremediation of
various Cr(VI)-contaminated wastewaters. Regarding capital costs, those of the CUST210-1 biosystem
were higher. To our knowledge, this is the first report comparing differences in the economic and
operational characteristics of bacteria and enzyme biosystems for Cr(VI) removal.
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1. Introduction

In the environment, the two most stable oxidation states of chromium are its hexavalent (Cr(VI))
and trivalent (Cr(III)) forms [1]. Cr(III) is considered less toxic than Cr(VI), because it is conventionally
considered an essential micronutrient in animal and human diets. By contrast, Cr(VI) is highly
toxic, mutagenic, carcinogenic, and teratogenic to biological systems and is readily taken up by
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organisms via the sulfate transport system [2]; hence, most regulatory agencies worldwide consider
Cr(VI) a priority pollutant [3,4]. Chromium compounds are used in chromium electroplating,
metal processing, leather tanning, metal corrosion inhibition, papermaking, pigment manufacturing,
and other industrial applications [5]. Cr(VI)-containing industrial effluents without proper treatment
are released, intentionally or accidentally, into environments in developing and underdeveloped
countries [6]; thus, the contamination of surface waters and groundwaters with Cr(VI) is a potential
concern. Concentrations of Cr(VI) in these effluents must be reduced to permissible limits by using the
appropriate technology before the effluents are discharged into the environment. The Environmental
Protection Agency in Taiwan has set the maximum contaminant levels for Cr(VI) in most industrial
effluents at 0.5 mg L−1 and for fisheries water, drinking water, groundwater, and surface water at
0.05 mg L−1.

Many physical and chemical methods have been developed for Cr(VI) removal, such as
precipitation, adsorption, ion exchange, electrochemical treatment, evaporation, and reverse osmosis [5].
Nevertheless, existing methods are inefficient and not economically feasible, especially when Cr(VI)
contamination in wastewater must be reduced to a low level to meet strict environmental standards,
such as 0.5 mg L−1 [7]. Several researchers have reported that the biological detoxification of Cr(VI)
by bacteria and their enzymes is considered one of the most practical removal methods, especially at
low-to-medium concentrations of Cr(VI), due to its ecological compatibility and low cost [4,8].

Bacteria endowed with the capacity to reduce Cr(VI) levels are termed chromium-reducing bacteria
(CRB) [9]. Numerous varieties of CRB reduce Cr(VI) to Cr(III), including Bacillus cereus [10], Ochrobactrum
sp. [11], Paenibacillus ferrarius [12], Exiguobacterium aestuarii [13], Shewanella sp., Desulfovibrio sp.,
Enterobacter sp., Micrococcus sp., Pseudomonas sp. [8], and several other species [5]. Although most of
these CRB have been isolated from various Cr(VI)-contaminated sites, the availability of CRB is an
essential prerequisite to meeting strict environmental standards, regardless of their removal efficiency
or capacity. Thus, the feasibility of chromate reductase in removing Cr(VI) is considered, because
it functions without the requirement of high organics concentration and complicated biochemistry
processes like bacterial cells but possesses a high substrate specificity for Cr(VI) reduction.

Cr(VI) reduction or detoxification by CRB is regarded as an enzyme catalysis reaction attributed
to soluble chromate reductase or cell membrane-bound chromate reductase [14]. Cell immobilization
techniques are typically employed in wastewater treatments, because they result in a solid–liquid
separation that is more stable, and thus, the products are easier to reuse [15]. Similarly, the use
of immobilized enzymes instead of living bacterial cells may overcome the limit of the toxicity of
Cr(VI) to the chromate reductase and produce dilute Cr(VI) residue, in addition to achieving the
aforementioned advantages [16]. Chromate reductase is divided into four categories: (1) cytochrome
C, (2) flavin protein, (3) old yellow enzymes, and (4) hydrogenases [7]. Among chromate reductase
enzymes, soluble chromate reductase such as ChrR, nfsA, and yieF are suitable for development as
biocatalysts for Cr(VI) bioremediation, because they are more amenable to protein engineering to suit
the environmental conditions of contaminated sites [14]. To date, soluble chromate reductase resulting
from Pseudomonas putida, Escherichia coli, Shewanella sp., Gluconacetobacter sp., and Stenotrophomonas
maltophilia have been identified and their basic characteristics enumerated [14].

Although the basic capabilities of CRB and related enzymes in removing Cr(VI) have been
examined, little is known about their differences in engineering applications, such as operating
conditions, operating guidelines, applicable targets, and cost analysis. In this study, immobilized
Ochrobactrum sp. CUST210-1 and immobilized enzyme biosystems were applied to remove Cr(VI) from
actual wastewater to compare their operational characteristics in a continuous-flow mode. The results
can provide insight into strategies for removing Cr(VI) from various environments.



Appl. Sci. 2020, 10, 5934 3 of 17

2. Materials and Methods

2.1. Materials

The Ochrobactrum sp. CUST210-1 was isolated from soil in the vicinity of an electroplating factory
(Changhua County, Taiwan) using the spread plate method and then cultivated in Luria–Bertani
(LB) broth supplemented with Na2Cr2O7 (Li-Hsin chemical company, Hsinchu City, Taiwan)
((final concentration: 300 mg L−1 Cr(VI)) in 300-mL Erlenmeyer flasks on a rotary shaker (Sunway
scientific company, Taipei City, Taiwan) (250 rpm) at 35 ◦C under aerobic conditions. To identify the
Cr(VI)-reducing bacterium, the cells were lysed, and the DNA was extracted. The 16S rRNA gene
sequence of the isolate was compared with the NCBI database using BLASTN, and the closest match to
the bacterial isolate was retrieved.

To evaluate the toxicity of Cr(VI)-containing wastewater before and after treatment, a Microtox
toxicity assay system (Model 500; Azur Environmental, Newark, DE, USA) comprising Vibrio fischeri
and a fish poison test using Pseudorasbora parva obtained from a lake in New Taipei City, Taiwan were
used [17,18]. The synthetic wastewater used for toxicity evaluation contained 1/1000 LB supplemented
with a final Cr(VI) concentration of 300 mg L−1. All analytic chemicals used in the experiment were of
an analytical grade.

2.2. Distribution of Chromium (VI) Reduction Products

The Ochrobactrum sp. CUST210-1 was cultivated in LB supplemented with 300-mg L−1 Cr(VI) at
35 ◦C under aerobic conditions. The shaking velocity and the pH of the culture were set at 150 rpm
and 7.0, respectively. The pH of the culture was adjusted by the addition of 0.1-N HCl or NaOH to
the culture. After 24 h of cultivation, 200 mL of culture solution containing the CUST210-1 strain was
centrifuged at 6000 rpm for 10 min, and the bacterial pellets were obtained. The sequential extraction
procedure was then used to analyze the distribution of Cr(VI) reduction products [19,20]. The bacterial
pellets were sequentially extracted with 1-M MgCl2; 0.5-M KF; 1-M NaAc; and a mixture of 0.02-M
HNO3, 30% H2O2, and 3.2-M NH4Ac to fractionate the Cr(III) compounds into exchangeable/loosely,
adsorbed, carbonate, and organically bound forms, respectively. Finally, the residue was acidified with
16-M HNO3 until the dark color disappeared. After centrifugation, Cr(OH)3 was obtained. To assess
the intracellular Cr(OH)3, the bacterial pellets were placed in 20-mM phosphate buffer (PB), vibrated
at 4 ◦C by an ultrasonic processor (UP-100, ChromTech, Apple Valley, MN, USA), and centrifuged
at 12,000 rpm for 20 min at 4 ◦C. The precipitate was acidified with 16-M HNO3 until the dark
color disappeared.

2.3. Separation and Purification of Chromate Reductase

After incubating the CUST210-1 strain at 35 ◦C for 24 h, the cells were collected by centrifugation
at 8000 rpm for 15 min. The bacterial pellets were washed with 20-mM PB, and the suspension was
placed in PB solution for vibration at 4 ◦C by the ultrasonic processor (20 kHz, 130 watt). Then, the
suspension was centrifuged at 12,000 rpm for 20 min at 4 ◦C, and the supernatant was collected for
further enzyme purification. To purify the chromate reductase, the supernatant was mixed with 20-mM
PB; the active components were separated using a HiPrep Q XL 16/10 column (16 mm × 100 mm,
20-mM PB, 2 mL min−1) (GE Healthcare, Piscataway, NJ, USA), and raw chromate reductase was
collected using a HiTrap Phenyl Sepharose column (7 mm × 25 mm, 50-mM sodium phosphate and
1.0-M ammonium sulphate, 1 mL min−1) (GE Healthcare) and then purified using a Mono Q HR 5/5
column (5 mm × 50 mm, 20-mM Bis-Tris, 0.5 mL min−1) (GE Healthcare).

To analyze the molecular weight of the chromate reductase, SDS-PAGE was performed on 10%
gels, as described by Laemmli [21]. To determine the crystal structure of the chromate reductase,
the purified protein was dissolved in Tris-HCl and NaCl (10 and 150 mM, respectively, pH 8.0) and
crystallized using the sitting drop vapor diffusion method, with a PEG8000 (10%), NaCl (50 mM),
and calcium acetate (100 mM) solution as the precipitant. X-ray diffraction data of the crystals were
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collected at a resolution of 2.2 Å (Instrumentation Center, National Taiwan University, Taiwan), and the
structure was solved through the molecular replacement method [22]. Homology searches were
performed using BLASTP.

2.4. Analysis of Genes Involved in the Cr(VI) Reduction

To identify the functional genes involved in the Cr(VI) reduction, known chromate reductase genes
were used as a reference. The genes included apcA, nfsA, nfsB, yieF, azr, crS, mreG, hydC, mtrC, omcA, and
chrR [8]. Their primer pairs were used (Table 1), and gene amplification was performed to synthesize
corresponding chromate reductase genes from the strain by using a Bio Rad C1000 thermocycler (Bio
Rad, Hercules, CA, USA), as previously described [22–30]. The operating conditions for polymerase
chain reactions and 454 pyrosequencing followed those of De Silva et al. [31]. The synthesized
genes from the CUST210-1 strain were sequenced and their sequences compared with other chromate
reductase genes in GenBank.

Table 1. Oligonucleotide primer pairs used to amplify the chromate reductase gene.

Targeted Gene Sequence Primers (5′–3′)

apcA F ATGAGTATCGTCACTAAATCCATCG
R TACTGCATTGCACCGACAAC

nfsA F ATCGAATTCAGACTGAAGGCTCACTTTGC
R ATCGCGGATCCACGTAACGCTTTGTCGGT

nfsB F GTAGGATCCGATATCATTTCTGTCGC
R ACTGAATTCTTACACTTCGGTTAAGGTG

yieF F AGCTCATTTAATGGCATGG
R ATCAAGGGAATGTCGGCAA

azr F AATACGGTAAGCGCAGCG
R ATTATGTAAACCTATTTG

crS
F CATATGGCCTTGCTCTTCACCCCCCTGGAACTC
R GAATTCCTAAAACCCCCT
TTGGTACTGGGGGGGTAC

mreG F ATCACTTCGGAACTGGGTGT
R TACCCCGCAACACACTGTAA

hydC F CCTCTTTATCTTTAACAAAGGGTGCAGGGE
R GGGTGCAGGGTTCAGCGAGCCTCTTTTTGGG

mtrC F AGATCTGTTGGCGCTAGAGCATAG
R GCGGCCGCTAATAGGCTTCCCAATTTGT

omcA F AGCCGTATGATAGTGGGCTG
R TCACTGAGACGAATACGGCG

chrR F ATGTCTGATACGTTGAAAGTTGTTA
R CAGGCCTTCACCCGCTTA

2.5. Toxicity Evaluation of Cr(VI) Reduction Products in Batch Treatment

To evaluate the change in its toxicity after treatment, 300-mg L−1 Cr(VI)-containing wastewater
was treated by the CUST210-1 strain or chromate reductase in batch mode. The initial concentrations
of the CUST210-1 strain and the enzymatic activity were 3 × 107 cfu mL−1 and 10.8 U mg-protein−1,
respectively. The treatment time for the CUST210-1 strain and chromate reductase was set for 2 h and
0.5 h, respectively. Toxicity was evaluated using V. fischeri and P. parva, and toxicity units are expressed
as EC50 and LC50. The analysis data were evaluated using a Probit analysis in IBM SPSS, version 20
(IBM Corp, Armonk, NY, USA).
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2.6. Apparatus for Continuous Cr(VI) Removal

A cylindrical packed-bed bioreactor (CPB; length 25 cm, id 16 cm) was constructed from acrylic
materials for the immobilized Ochrobactrum sp. CUST210-1 biosystem (Figure 1A). Three sampling
pores were constructed at the top of the biosystem through which the pH value, dissolved oxygen
(DO) content, and Cr(VI) concentration in the wastewater could be measured. Plastic Raschig rings
(rosette type, id 2 cm) were used as packing material. The inflow solution, which contained 1/1000
LB supplemented with 300 mg L−1 Cr(VI) and the CUST210-1 strain (3 × 107 cfu mL−1) stored in the
reservoir, was continuously recirculated with the flow directed upward from the inlet at the bottom of
the reactor. The liquid retention time (LRT) of the inflow solution was controlled at 12 h. When the
outlet Cr(VI) concentration was less than 0.5 mg L−1, the cell immobilization procedure was regarded
as completed.
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Figure 1. Schematic of (A) immobilized Ochrobactrum sp. CUST210-1 biosystem and (B) immobilized
enzyme biosystem: (1) peristaltic pump, (2) flow meter, (3) bioreactor, (4) sampling port, (5) pH
electrode, (6) Dissolved oxygen (DO) electrode, and (7) digital pH/DO meter.

Calcium alginate beads are made through external gel formation [32]. Three percent (w/v) sodium
alginate in 50-mM sodium PB (pH 7.0) was mixed with 5% chromate reductase solution at the ratio
of 1:1. The mixture was taken into a syringe and dripped directly into a gently stirred 1.5% CaCl2
solution from a height of approximately 2 cm; this resulted in the formation of spherical beads of
enzyme-entrapped calcium alginate. The beads were left in the CaCl2 solution for 30 min, recovered
by filtration, and thoroughly washed with distilled water thrice. Toxicity evaluation of the Cr(VI)
reduction products was conducted using the immobilized chromate reductase beads in batch mode.
The beads were packed into a cylindrical column bioreactor (CCB) until the immobilized enzyme
biosystem was used for continuous Cr(VI) removal. The CCB (length 32 cm, id 8 cm) was constructed
from acrylic materials, with sampling pores installed as in the Ochrobactrum sp. CUST210-1 biosystem
(Figure 1B).

2.7. Effects of Operating Parameters on Continuous Cr(VI) Removal by Immobilized Ochrobactrum sp.
CUST210-1 Biosystem

When the Ochrobactrum sp. CUST210-1 biosystem completed immobilization, synthetic wastewater
was continuously introduced to the CPB. The effects of different operating parameters, including LRT
(1–6 h), pH (7–9), operating temperature (25 ◦C–45 ◦C), and Cr(VI) concentration (50–400 mg L−1),
on continuous Cr(VI) removal were assessed, and the synthetic wastewater (1/1000 LB supplemented
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with Cr(VI)) was used in this study. The designed LB concentration simulated organic concentrations
in tannery wastewater after treatment by chemical precipitation. Generally, the inflow Cr(VI)
concentration, pH, LRT, and operating temperature were set as 200 mg L−1, 7.0, 4 h, and 35 ◦C,
respectively. Each operating parameter was continuously operated for at least 6 h, with the results
expressed as the average for each parameter.

Furthermore, the effects of the actual Cr(VI)-containing wastewater, which was collected from the
effluent of tannery wastewater after treatment by chemical precipitation (New Taipei City, Taiwan),
on Cr(VI) removal were evaluated by continuously feeding the water into the biosystem for 196 days.
In the case of this actual wastewater, the LRT, operating temperature, and pH were controlled at 4 h,
35 ◦C, and 7.0.

2.8. Effects of Operating Parameters on Continuous Cr(VI) Removal by Immobilized Enzyme Biosystem

The effects of various operating parameters, including the LRT (0.5–3 h), operating temperature
(25 ◦C–45 ◦C), Cr(VI) concentration (25–150 mg L−1), and life cycle of the immobilized bead,
on continuous Cr(VI) removal by the immobilized enzyme biosystem were assessed with regard to the
synthetic wastewater (1/10,000 LB supplemented with Cr(VI)). The designed LB concentration simulated
the organic concentration in electroplating wastewater after treatment by chemical precipitation.
The initial enzyme activity, inflow Cr(VI) concentration, LRT, pH, and operating temperature were
10.2 U mg-protein−1, 100 mg L−1, 1 h, 7, and 35 ◦C, respectively, unless otherwise stated. Each parameter
was continuously operated for at least 6 h, with results expressed as the average for each. Furthermore,
the effects of actual Cr(VI)-containing wastewater, derived from the effluent of electroplating wastewater
after treatment by chemical precipitation (Changhua County, Taiwan), on continuous Cr(VI) removal
were evaluated by feeding the water into the biosystem for 196 days. In this case, the LRT, operating
temperature, and pH were controlled at 1 h, 35 ◦C, and 7.0, respectively. The influent pH was adjusted
to the desired working pH level by the addition of 1-N HCl or NaOH.

2.9. Analysis

Na2Cr2O7 of special-grade chemicals was dried at 200 ◦C for 1 h and left in a desiccator.
Subsequently, 100.8 mg of Na2Cr2O7 was weighed, dissolved in water, and diluted to 100 mL.
The diluted solution was used as a standard stock solution of 400-mg L−1 Cr(VI). The colorimetric
method (1,5-diphenylcarbazide method) for Cr(VI) measurement was used as described previously [11].
The concentrations of collected extracts for various forms of Cr species and total Cr were analyzed
using an atomic absorption spectrophotometer (Hitachi, Tokyo, Japan). DO and pH values were
continuously determined by an online DO and pH meter (Hanna Instruments, Woonsocket, RI,
USA). For Biochemical oxygen demand (BOD) analysis, the standard method 5210B was adopted.
Chemical oxygen demand (COD) was analyzed using a Hach DR2800 portable spectrophotometer
(Hach, Loveland, CO, USA). For toxicity evaluation, the inhibition reaction of bioluminescence of
V. fischeri exposed to tested solutions for 15 min was analyzed, and the acute toxic reaction of P. parva
exposed to the solutions for 96 h was analyzed.

3. Results and Discussion

3.1. Distribution of Cr(VI) Reduction Products and Possible Cr(VI) Reduction Mechanism

Knowledge of the state, form, and location of Cr(VI) treated by Ochrobactrum sp. CUST210-1, such
as adsorption state, complex formation, or precipitate form, is essential for the development of a suitable
remediation process. In addition, the characterization of the product is helpful for understanding the
reduction mechanism of Cr(VI) by Ochrobactrum sp. CUST210-1. Table 2 lists the distribution of various
chromium species inside and outside the cells after the batch treatment. A small amount (3.05%) of
CrO4

2− or Cr2O7
2− was adsorbed on the positively charged functional group of the cell wall, 8.49% as

the Cr(III) form was coordinated with negatively charged functional groups such as carbonyl or amide
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groups, and 3.12% as the Cr(III) form existed in the solution as a free form; however, most of the Cr(VI)
was deposited, inside or outside of the cells, as the Cr(OH)3 form during the Cr(VI) reduction due to
Cr(III) tending to form precipitates at pH > 5 [4]. Table 3 lists the Cr(III) distribution in Cr(III) species
of Cr(VI) reduction products after the batch treatment. The results indicate that the exchangeable form
of Cr(III), adsorbed Cr(III), organically bound Cr(III), and carbonate-bound Cr(III) on the cell surface
accounted for 0.21%, 2.90%, 5.53%, and 0.13%, respectively. Cr(OH)3 precipitate accounted for 88.01%.
In brief, Cr(VI) compounds were usually adsorbed by the cell surface, and Cr(III) may exist in the form
of organic-Cr(III) complexes or in the precipitate form of Cr(OH)3(s). We speculate that few complex
salts occurred in the form of Cr(OH)4

−, Cr2O2(OH)4
2−, or Cr3O4(OH)4

3− in the solution. Moreover,
most Cr(OH)3(s) was located inside cells, which was similar to results reported for Cr(VI) reduction
by Bacillus amyloliquefaciens, Synechocystis sp., Cellulosimicrobium funkei, and P. aeruginosa [33–36] but
different from studies identifying extracellular deposits by Ochrobactrum anthropi, Vigribacillus sp., and
Shewanella oneidensis [37–39].

Table 2. Distribution of chromium (VI) reduction products.

Cr
Distribution

Cr(VI) by Surface
Adsorption

Cr(III) by Surface
Adsorption

Cr(III) in
Solution

Cr(VI) in
Solution

Cr(OH)3(s)
Outside Cell

Cr(VI)
Inside Cell

Cr(OH)3(s)
Inside Cell

Relative
amount (%) 3.05% 8.49% 3.12% 0% 26.70% 0% 58.64%

Table 3. Distribution of Cr(III) species in Cr(VI) reduction products.

Cr(III) in
Solution

Cr(III)
Exchangeable Form

Cr(III)
Adsorbed Form

Cr(III)
Organically Bound

Cr(III)
Carbonate Form

Cr(OH)3(s)
Outside Cell

Cr(OH)3(s)
Inside Cell

Relative amount
of Cr(III)

species (%)
3.22% 0.21% 2.90% 5.53% 0.13% 27.53% 60.48%

On the basis of the product analysis results, the following Cr(VI) reduction mechanism or Cr(VI)
resistance-tolerance mechanism of Ochrobactrum sp. CUST210-1 may be inferred. (1) Partial Cr(VI)
directly binds via electrostatic attraction to positively charged functional groups on the surface of the
CUST210-1 strain (3.05%), or partial Cr(VI) is reduced to Cr(III) via membrane-associated chromate
reductase or soluble chromate reductase (i.e., ChrR) and binds to negatively charged functional groups
on the surface of the CUST210-1 strain (8.49%), (2) a portion of Cr(VI) is reduced to Cr(III) by ChrR and
(i) remains in the solution as the Cr(OH)4

− form or even as the multinuclear polymers Cr2O2(OH)4
2−

or Cr3O4(OH)4
3− (3.12%) or (ii) is mainly formed as Cr(OH)3(s) outside the cell (26.70%), and (3) most

Cr(VI) species enter the cell via the SO4
2− channels then are reduced to Cr(III) via intracellular ChrR

and deposited inside the cell as Cr(OH)3(s) (58.64%). An analogous mechanism has been discovered in
other bacteria, such as P. aeruginosa and S. maltophilia [14,36].

3.2. Enzyme and Genes Involved in the Cr(VI) Reduction

According to the literature, chromate reductase is divided into the following categories:
(1) Cytochrome C: cyt c7, mtrC, and omcA have been identified in Desulfuromonas and Shewanella.
(2) Flavin protein: ChrR, nfsA, and yieF have been found in E. coli, Pseudomonas, Gluconacetobacter,
Shewanella, and Bacillus. (3) Old yellow enzymes: CrS has been discovered in Thermus scotoductus.
(4) Hydrogenases: mreG and hydC have been found in Desulfovibrio [7]. The chromate reductase of
Ochrobactrum sp. CUST210-1 was found at approximately 25 kDa on the SDS-PAGE gel, suggesting
that the chromate reductase was the ChrR protein; similar results were reported for S. maltophilia
and Alishewanella sp. induced in the presence of Cr(VI) [14,40]. To confirm this speculation, the 11
primer pairs of known chromate reductase genes were used to synthesize corresponding genes
involved in Cr(VI) reduction by the CUST210-1 strain [8]. Results indicate that the chrR gene was
successfully synthesized. The BLASTN analysis of the sequence indicated 99.2%, 97.2%, 96.8%, 94.8%,
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and 92.6% similarity with the ChrR sequences from E. coli, P. putida, Shewanella sp., Gluconacetobacter
sp., and S. maltophilia, respectively.

Theoretical ChrR protein sequences derived from the nucleotide sequence revealed an identical
amino acid sequence for Ochrobactrum sp. CUST210-1. Figure 2 displays the crystal structure of ChrR in
Ochrobactrum sp. CUST210-1. The ChrR includes three β-sheets, 14 α-helices, and five loops; BLASTP
analysis revealed 98.5%, 96.8%, 95.2%, 91.5%, and 86.8% homology to the ChrR of E. coli, P. putida,
Shewanella sp., Gluconacetobacter sp., and S. maltophilia.
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3.3. Toxicity Evaluation of Cr(VI) Reduction Products in Batch Treatment

When 300-mg L−1 Cr(VI)-containing wastewater was treated by Ochrobactrum sp. CUST210-1
and ChrR in batch, Cr(VI) removal efficiencies achieved 62.5% and 48.5%, respectively. The residual
Cr(VI) concentrations were 112.5 mg L−1 with the CUST210-1 treatment and 154.2 mg L−1 with the
ChrR treatment, respectively. Before treatment, Microtox toxicity (EC50) and P. parva (LC50) were
18.2–18.5 mg L−1 and 40.5–40.8 mg L−1, respectively. After treatment by the CUST210-1 strain, the
toxicities of Microtox and P. parva were decreased to 62.4 mg L−1 and 95.8 mg L−1. After treatment
by ChrR, the toxicities of Microtox and P. parva were decreased to 86.2 mg L−1 and 123.5 mg L−1,
respectively. For Ochrobactrum sp. CUST210-1 and ChrR, respectively, 57.8–70.3% and 67.0–78.9%
detoxification efficiencies were achieved. Thus, the ChrR had higher detoxification efficiency than the
bacterial cells. Notably, although the removal efficiency of the CUST210-1 strain was higher than that
of ChrR protein, the reverse was true for detoxification efficiency. This may be attributed to the Cr(VI)
product from the ChrR treatment being relatively simpler than that of the bacteria [5]. It also indicates
the advantage and potential of the Cr(VI) treatment by ChrR.

3.4. Effects of Operating Parameters on Continuous Cr(VI) Removal by Immobilized Ochrobactrum sp.
CUST210-1 Biosystem

Figure 3A presents the effect of LRT on the continuous treatment of synthetic Cr(VI)-containing
wastewater by the immobilized Ochrobactrum sp. CUST210-1 biosystem. The results indicate that
the removal efficiency for Cr(VI) gradually increased, but the removal capacity for Cr(VI) gradually
decreased as the LRT increased. When the LRT was 4 h, the removal efficiency achieved 100%,
and the removal capacity achieved an acceptable level of 1.71 ± 0.2 × 10−9 mg-Cr(VI) (cfu-h)−1. Thus,
the operating LRT of the experiment was set at 4 h. Temperature and pH play a key role in the
growth of bacterial strains; hence, their effects on the removal characteristics for Cr(VI) were evaluated.
Figure 3B represents the effect of pH on the continuous treatment of synthetic Cr(VI)-containing
wastewater. A pH of 7–8.5 had a nonsignificant effect (p > 0.05) on the removal efficiency for Cr(VI),
and the removal efficiency achieved >99.2% ± 0.1%. Moreover, a pH of 7–9 had a nonsignificant
effect (p > 0.05) on the removal capacity for Cr(VI), and the removal capacity was maintained in
the range of 1.60 ± 0.05 to 1.67 ± 0.01 × 10−9 mg-Cr(VI) (cfu-h)−1. To consider the characteristics of
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Cr(VI)-containing wastewater and the operational performance of the biosystem, the pH value of the
experiment was controlled at 7.0. An optimal Cr(VI) reduction at pH 7.0 was determined for Bacillus
sp., P. aeruginosa, and S. maltophilia [14,36,41]. The decrease in Cr(VI) reduction efficiency at pH 9.0
was mainly attributed to the possibility that deviation from appropriate pH values may affect the
degree of ionization of ChrR [36]. These results indicate the Ochrobactrum sp. CUST210-1 biosystem
had good adaptability to pH changes. Figure 3C displays the effect of the operating temperature
on the continuous treatment of synthetic Cr(VI)-containing wastewater. An operating temperature
between 30 ◦C and 40 ◦C had a nonsignificant effect (p > 0.05) on the removal efficiency, and an
efficiency >99.5% was achieved. By contrast, Cr(VI) reduction by Serratia rubidaea and C. funkei was
greatly influenced by temperature in a similar temperature range [35,42]. These results indicate the
Ochrobactrum sp. CUST210-1 had a high adaptability to temperature changes compared with other
bacterial strains. Although the removal efficiency of the biosystem achieved 99.6% ± 0.08% at 40 ◦C,
the outlet Cr(VI) concentration in the effluent was 0.8 ± 0.16 mg L−1—meeting the current industrial
discharge standards for Cr(VI) was difficult. With a further increase of the operating temperature,
Cr(VI) removal was decreased to 96.2% ± 0.15%, presumably due to the loss of viability or metabolic
activity of the CUST210-1 strain. Thus, the operating temperature of the following experiment was
controlled at 35 ◦C. Figure 3D represents the effect of the inlet Cr(VI) concentration on the continuous
treatment of synthetic Cr(VI)-containing wastewater. The removal capacity increased linearly with the
inlet Cr(VI) concentration, indicating that the system processed a higher removal capacity, with no
chromium toxicity to the CUST210-1 biosystem [36]. Moreover, the removal efficiency maintained
a high efficiency until 350 mg L−1. Vigribacillus sp. was reported to completely reduce Cr(VI) at
150 mg L−1 after 100 h in a batch operation [38]. Acinetobacter junii reduced 54-mg L−1 Cr(VI) with
99.95% removal efficiency after 2 h in a batch operation [43]. C. funkei removed 250-mg L−1 Cr(VI) with
80.43% removal efficiency after 120 h of exposure in a batch operation [35], whereas S. maltophilia could
treat 500-mg L−1 Cr(VI) with 92% removal efficiency after 120 h of exposure in a batch operation [14].
By comparison, Ochrobactrum sp. CUST210-1 achieved a competitive efficiency in removing Cr(VI)
in a continuous operation. Although the efficiency was high at 99.5% ± 0.13% when feeding with
350-mg Cr(VI) L−1, the outlet Cr(VI) concentration was 1.75 ± 0.46 mg L−1, exceeding the current
discharge limit of 0.5 mg L−1. To extend the treatment range of the Cr(VI) concentration, more details
(e.g., DO control and turbidity pretreatment) for better performance were investigated by feeding with
actual wastewater.

3.5. Effects of Operating Parameters on Continuous Cr(VI) Removal by Immobilized ChrR Biosystem

Figure 4A depicts the effect of the LRT on the continuous treatment of synthetic Cr(VI)-containing
wastewater by the immobilized enzyme biosystem. The removal efficiency increased with the LRT,
and the removal capacity decreased as the LRT increased. Optimal LRT occurred at 1 h—at which
point, the removal efficiency and capacity of the biosystem achieved 100% and 100 ± 1.2 mg-Cr(VI)
L−1 h−1, respectively. Thus, the operating LRT of the experiment was 1 h. Figure 4B portrays
the effect of the operating temperature on the continuous treatment of synthetic Cr(VI)-containing
wastewater. The ChrR biosystem exhibited a high removal efficiency (>98.20% ± 0.2%) over a wide
range of temperatures (25 ◦C–40 ◦C), indicating the immobilized ChrR had high stability in a wide
temperature range. Although the efficiency of 99.65% ± 0.07% at 25 ◦C seemed satisfactory, the
outlet Cr(VI) concentration of 0.35 ± 0.07 mg L−1 exceeded the maximum contaminant level of
0.05 mg L−1 for fisheries, drinking, ground, and surface waters. A higher temperature (e.g., 45 ◦C)
could impair the function of ChrR and dramatically reduce the Cr(VI) removal efficiency [44]. Thus, the
operating temperature of the experiment with the immobilized ChrR biosystem was controlled at 35 ◦C.
Figure 4C presents the effect of the inlet Cr(VI) concentration on the continuous treatment of synthetic
Cr(VI)-containing wastewater. The removal efficiency was excellent (>99.96%) at 25–150 mg L−1.
The maximum outlet Cr(VI) concentration was only 0.045 mg L−1, even at 150-mg L−1 Cr(VI) feeding,
which meets industry effluent standards and maximum contaminant levels. Figure 4D displays the
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effect of the operating time on the continuous treatment of the synthetic wastewater. The removal
efficiency initially maintained a high level but gradually decreased with the increased operating
time. After 35 days of operation, the efficiency curve exhibited an obvious turn. On day 42,
the outlet Cr(VI) concentration was 3.68 ± 0.4 mg L−1, exceeding maximum contaminant levels. Thus,
regular replacement (or frequency of use) during a 35-day cycle of immobilized ChrR beads should be
considered to maintain high removal capabilities in a long-term operation. To our knowledge, this is
first report of an immobilized ChrR biosystem applied to continuous Cr(VI) removal.
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3.6. Continuous Treatment of Actual Cr(VI)-Containing Wastewater by Immobilized Ochrobactrum sp.
CUST210-1 Biosystem and Immobilized ChrR Biosystem

Actual Cr(VI)-containing wastewater derived from tannery or electroplating wastewater was
continuously treated by our biosystems for 196 days. Average S2− concentration, suspended solid (SS),
BOD, and COD in the tannery wastewater were 2.5 ± 0.6 mg L−1, 303 ± 23 mg L−1, 158 ± 8 mg L−1, and
261± 15 mg L−1, respectively. According to the previous results, the inlet pH of 9.2± 0.6 was adjusted to
pH 7.0 ± 0.5 by a pH adjustment system. Figure 5A depicts the continuous treatment of actual tannery
wastewater by the immobilized Ochrobactrum sp. CUST210-1 biosystem. The inlet Cr(VI) concentration
varied from 284 to 471 mg L−1 during the 196-day treatment period. The change of luminescent V.
fischeri toxicity (luminescence inhibition) in response to the water quality and the dynamic of the
outlet Cr(VI) concentration were similar. This suggested that the residual Cr(VI) concentration was
associated with the toxicity of the wastewater. The outlet Cr(VI) concentration exceeded the discharge
limit of 0.5 mg L−1 on day 14, day 56, day 63, day 91, day 154, day 189, and day 196. Although the inlet
concentration was only 295 ± 1.7 mg L−1 (below the ideal treatment concentration, 300 mg L−1) on day
91, the removal efficiency dropped to 98.52% ± 0.04%, with an outlet concentration of 4.37 ± 0.09 mg L−1

due to turbidity problems. When a filter device was installed, even with an inlet concentration as
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high as 425 ± 10 mg L−1 (on day 133), the removal efficiency achieved 99.91% ± 0.04%, with an
outlet concentration of 0.38 ± 0.17 mg L−1. When 408 ± 3.75-mg L−1 Cr(VI) was introduced to the
biosystem on day 154, the removal efficiency dropped to 97.86% ± 0.27%, with an outlet concentration
of 8.73 ± 1.16 mg L−1 because of an insufficient DO supply (3.6 ± 0.4 mg L−1). Thus, an aeration device
and a DO sensor were installed (DO would be controlled at >4.0 mg L−1), and the removal efficiency
gradually rose and stabilized. With the filter device, aeration device, and DO sensor, the outlet Cr(VI)
concentration would meet the industry discharge limit of 0.5 mg L−1 if the inlet Cr(VI) concentration
was below 430 mg L−1.
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Figure 5B represents the continuous treatment of actual electroplating wastewater by the
immobilized ChrR biosystem. The average Ni+ concentration, Na+ concentration, SO4

2− concentration,
Cl− concentration, SS, BOD, and COD in the wastewater were 13.5 ± 0.6 mg L−1, 4.2 ± 0.8 mg L−1,
6.5 ± 0.7 mg L−1, 4.8 ± 0.3 mg L−1, 24 ± 2.3 mg L−1, 42 ± 5.6 mg L−1, and 68 ± 2.7 mg L−1, respectively.
According to the previous results, a pH adjustment system was installed to adjust the pH of the water
from 5.1 ± 0.8 to 7.0 ± 0.5. The inlet Cr(VI) concentration varied from 52 to 158 mg L−1 during the
196-day treatment period. The trend between the changes in the luminescent bacteria toxicity for
water quality and the dynamics of the outlet Cr(VI) concentration was consistent. To evaluate the
adaptability of the biosystem, the immobilized enzyme replacement was deliberately neglected on the
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70th day, because the replacement frequency was set to a 35-day cycle. The outlet Cr(VI) concentration
exceeded the maximum contaminant level of 0.05 mg L−1 on days 77–98. On day 105, the immobilized
ChrR beads were replaced, and the removal efficiency gradually stabilized to >99.97%. Moreover, the
outlet concentration was less than 0.05 mg L−1. When 143 ± 0.65-mg L−1 Cr(VI) was fed on day 133,
the removal efficiency dropped to 98.52% ± 0.05%, with an outlet concentration of 2.11 ± 0.08 mg L−1

because of an insufficient DO supply (2.8 ± 0.6 mg L−1). Thus, an aeration device and a DO sensor
were installed, and DO in the wastewater was controlled at >3.0 mg L−1. The removal efficiency of the
immobilized ChrR biosystem gradually stabilized at 99.98–100%, and the outlet Cr(VI) concentration
conformed to the maximum contaminant level of 0.05 mg L−1. Although the maximum contaminant
standards for waterbody and wastewater discharges differ at present, developing effective technology
to meet future, more stringent standards is worthwhile.

In the literature, limited studies have focused on the treatment of actual Cr(VI)-containing
wastewater by a continuous biosystem. Rida et al. (2012) utilized an immobilized O. intermedium
batch system to remove 268-mg L−1 Cr(VI) from artificial and industrial sewage waters and achieved
65% and 91.2% removal efficiencies, respectively, within 72 h [45]. Chen et al. (2016) applied a microbial
fuel cell to remove 300-mg L−1 Cr(VI) from synthetic wastewater under anaerobic conditions and
achieved a 96.5% removal efficiency [11]. Jin et al. (2017) utilized a sequencing batch reactor to remove
80-mg L−1 Cr(VI) from synthetic wastewater and achieved an 81.3% removal efficiency [4]. Our
immobilized Ochrobactrum sp. CUST210-1 and immobilized ChrR biosystems substantially reduced
the Cr(VI) concentrations of <425 mg L−1 and <150 mg L−1, respectively, in actual Cr(VI)-containing
wastewater, suggesting that these developed biosystems can be used in the bioremediation of various
Cr(VI)-contaminated wastewaters.

3.7. Characteristics and Economic Analysis of the Biosystems

In designing a feasible biosystem, the main goal is to meet a performance level and minimize
capital and operating costs. Table 4 offers a comparison of economic and operational characteristics
of the biological system and the enzyme system. The basis of the evaluation was to scale up the
infrastructure of the reactor system by 10 for field applications. The treatment cost was estimated per
one-year cost, and related infrastructures, including the reactor itself, piping, filter device, and aeration
device, were calculated based on 10-year life amortizations. The electricity cost was calculated at
$25 per month. The results indicate the total costs of the immobilized Ochrobactrum sp. CUST210-1
biosystem ($6750 y−1) were higher than those of the immobilized ChrR biosystem ($6050 y−1). This is
due in part to the CUST210-1 biosystem’s requirement of a filter device to remove suspended solids
from tannery wastewater. The biological treatment system can be applied to treat wastewater with
high concentrations of Cr(VI) (~425 mg L−1), and the effluent can comply with industrial wastewater
discharge standards (<0.5 mg L−1). The biological treatment system required a long LRT, and thus, the
allowable inflow rate was low (Table 5). In addition, a filter device and DO monitoring were required to
improve the removal performance during the operating period. By contrast, the immobilized enzyme
system was suitable for treating diluted Cr(VI)-containing wastewater (~150 mg L−1), and the effluent
could comply with strict water quality standards and meet the standards for fisheries and drinking
water (<0.05 mg L−1). The ChrR biosystem also operated at a short LRT, and thus, the allowable inflow
rate was high. However, DO monitoring and regular replacement of ChrR beads were required to
improve performance during the operating period. To date, this is the first report to compare the
economic and operational characteristics of biosystems for Cr(VI) removal.



Appl. Sci. 2020, 10, 5934 14 of 17

Table 4. Comparison of economic and operational characteristics between the immobilized Ochrobactrum
sp. CUST210-1 biosystem and immobilized ChrR biosystem. BOD: Biochemical oxygen demand.

Bacterial Culture
(USD/y)

Enzyme Extraction &
Immobilization (USD/y)

Reactor Installation
(USD/y)

Operational Costs
1 (USD/y) Application Scope

CUST210-1 350 - 6000 2 400

(1) BOD > 150 mg L−1

(2) Inlet Cr(VI) conc:
250–425 mg L−1

(3) Outlet Cr(VI) conc:
<0.5 mg L−1

ChrR 350 350 3 5000 350

(1) BOD <50 mg L−1

(2) Inlet Cr(VI) conc:
50–150 mg L−1

(3) Outlet Cr(VI) conc:
<0.05 mg L−1

1 Operating costs include electricity consumption, pH adjustment, filter material, and other miscellaneous costs. 2

Includes filter device. 3 Bead replacement (10 times y−1).

Table 5. Comparison of economic and operational characteristics between the immobilized Ochrobactrum
sp. CUST210-1 biosystem and immobilized ChrR biosystem. DO: dissolved oxygen.

Manpower Requirement &
Ease of Operation

Frequency of Sludge
Treatment (time y−1)

Characteristics

CUST210-1 Relatively low 1

(1) Suitable for treating high Cr(VI) conc. and
complying with wastewater discharge standard
(2) Suitable for low influent flow rate
(3) Requires filter device and DO monitor

ChrR Relatively high 10

(1) Suitable for treating low Cr(VI) conc. and
complying with stricter environmental standards
(2) Allows high influent flow rate
(3) Requires DO monitor and regular replacement
of enzyme beads

4. Conclusions

The results clearly demonstrate the application potential of an immobilized Ochrobactrum sp.
CUST210-1 biosystem and an immobilized ChrR biosystem. The Ochrobactrum sp. CUST210-1
biosystem demonstrated good adaptability to pH variation and was able to operate at a long LRT
with relatively concentrated Cr(VI), but it had a relatively high cost. The chrR gene was identified in
Ochrobactrum sp. CUST210-1; thus, the ChrR protein is responsible for Cr(VI) reduction and results
in large amounts of Cr(OH)3(s). The ChrR biosystem exhibited good adaptability to the operating
temperature and was able to operate at a short LRT with relatively diluted concentrations, and it was
relatively cheap. The Ochrobactrum sp. CUST210-1 biosystem is recommended for tannery wastewater
treatment, especially for a posttreatment system. The immobilized ChrR biosystem is recommended
for electroplating wastewater treatment as a posttreatment system or in preparation for meeting stricter
water quality standards in the future. Through economic analysis and a comparison of operation
characteristics, we provided insight into strategies for removing Cr(VI) from various environments.
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