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Abstract: Astaxanthin (ASX) is a marine-based ketocarotenoid; an accessory pigment in plants in
that it has many different potential functions. ASX is an antioxidant that is notably more potent
than many other antioxidants. Antioxidants have anti-inflammatory and oxidative stress-reducing
properties to potentially reduce the incidence of cancer or inhibit the expansion of tumor cells. In this
study, we tested the hypothesis that ASX would inhibit proliferation and migration of breast cancer
cells in vitro. We found that application of ASX significantly reduced proliferation rates and inhibited
breast cancer cell migration compared to control normal breast epithelial cells. Based on these results,
further investigation of the effects of ASX on not only breast cancer cells, but other forms of tumor
cells, should be carried out.
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1. Introduction

The accessory marine-based plant pigment astaxanthin (ASX) has many different potential
functions [1]. ASX is a ketocarotenoid: carotenoids modulate cancer, reproduction, atherosclerosis,
immunity, and age-related macular degeneration [2]. ASX is also a potent antioxidant, indicating
that it has anti-inflammatory properties and oxidative stress-reducing properties [3]. Since ASX has
anti-inflammatory and oxidative stress-reducing properties, in theory, the supplementation of ASX
could positively affect cancer. Research shows that ASX maintains cell membrane structure while
other carotenoids cause disorder in membranes [4]. ASX has proven to decrease to both oxidative
stress and inflammation in a dose-dependent manner [5,6]. ASX has been able to inhibit inflammatory
responses and oxidative stress via the activation of signaling pathways such as Nrf2-ARE in the
brain [5]. ASX increases brain derived neurotropic factor (BDNF) protein levels, while concurrently
decreasing oxidative stress levels [6]. ASX decreases the amount of inflammatory markers such as
TNF-α, IL-6, and IFN-γ via NFκβ inhibition [7].

ASX is a polar carotenoid that contains two oxygenated ends on each tail of the structure
(Figure 1) [4]. The oxygenated ends are hydroxyl groups, which give the molecule minimal soluble
properties. ASX is a long chain of carbon rings that have double bonds in every ring and double-bonded
oxygen molecules on the end ring structures. The chemical formula for ASX is C40H52O4.
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Figure 1. Chemical structure of the antioxidant astaxanthin.

ASX may be beneficial in reducing cancer due to its inflammation and oxidative stress reducing
properties. Its limited bioavailability may reduce the effectiveness of the supplement. ASX’s limited
bioavailability decreases the ease of integration into the body. Using an emulsification-evaporation
technique, ASX was incorporated into a delivery system, known as nanosystems, to address the
bioavailability problem [8]. These nanosystems improve bioavailability by increasing the dissolution
rate of ASX and the saturation solubility by reducing size and increasing surface area [8]. ASX has also
been encapsulated for delivery via high-pressure homogenization and microchannel emulsification [9].
With this improved bioavailability problem, the ability to test ASX as a supplement in relation to cancer
as well as other diseases is greatly enhanced.

ASX has been tested on different facets of cardiovascular disease and cancer, including oxidative
stress and inflammation. ASX supplements prevent oxidative damage in smokers by activating
antioxidants in the bodies of smokers [10]. ASX has greater effects than both Canthaxanthin and
β-carotene when it comes to preventing and reducing oxidative stress in human dermal fibroblast cells
incited with UVA-stimulation in order to induce oxidative stress [11].

ASX reduces oxidative stress, inflammation, and lipid levels in rats that received high fat diets [12]
and has low toxicity and reduces mammary tumor size in rats that received N-methyl-N-nitroso-urea
(MNU) to induce the mammary tumors [13]. ASX has a better and longer lasting effect when
administered orally as a supplement in cats and dogs instead of being administered intravenously [14].

ASX has affected tumor growth in multiple different types of cancers. The antioxidant has
notably resensitized pancreatic cells to the chemotherapy drug Gemcitabine [15]. The antioxidant
had demonstrated anti-inflammatory properties in the ability to reduce prostate tumor growth as
well as gastric inflammation [16,17]. The combination of ASX with vitamin C has been effective in
the prevention and reduction of gastric inflammation [18,19]. ASX negatively affects breast cancer
cell viability [20]. These inhibitory characteristics are related to the apoptotic and autophagic effects
exhibited by the antioxidant. Targeted apoptosis and autophagy allow the antioxidant to kill the cancer
cells without significantly affecting normal cells [21].

Breast cancer accounts for approximately one of every three cancers in women and is one of
the most common diagnoses [22]. There are different types of breast cancer based on pathological
examination: estrogen receptor (ER)+, human epidermal growth factor receptor 2 (HER2)+ and triple
negative breast cancer (TNBC) (the absence of ER, HER2, and progesterone receptor (PR) expression).

In this set of experiments, we examined the effects on proliferation, migration, and gene expression
on ER+ breast cancer cells and TNBC cells. We found significant differences induced by ASX in the
cancer cells compared to normal breast epithelial cells.

2. Materials/Methods

2.1. Cell Lines

All cell lines were obtained from ATCC (Manassas, VA, USA). MCF7 and MDA-MB-231 cells
were maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Life Technologies, Grand Island,
NY, USA) supplemented with 10% fetal bovine serum (FBS) (Atlanta Biologicals, Atlanta, GA,
USA) and 1% antibiotic/antimycotic (Life Technologies). MCF10A cells were grown in DMEM
supplemented with the MEGM bulletkit containing epidermal growth factor, insulin, bovine pituitary
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extract, and gentamicin (Lonza, Walkersville, MD, USA) with 10% fetal bovine serum and 1%
antibiotic/antimycotic. All cells were grown at 37 ◦C with 5% CO2.

2.2. Astaxanthin

Valensa International (Eustis, FL, USA) provided 10% Astaxanthin (ASX) oleoresin. This oleoresin
was dissolved in 10 mL aliquots of DMEM growth media in order to create concentrations of 0 µM,
10 µM, 25 µM, and 50 µM.

2.3. Migration Assays

Cell lines were each seeded into wells of 12-well plates (at 200,000 cells per well) and grown for
24 h. At that point, a 200-µL pipette tip was used to scratch a vertical line through the confluent cells at
a perpendicular angle so that the central gap was consistently equidistant apart. After scratching the
surface, an image was taken to serve as the before image. The cells were administered the dosage of
media, media+dimethyl sulfoxide (DMSO; Life Technologies, Grand Island, NY, USA), 10 µM, 25 µM,
or 50 µM of ASX. The cells were left to grow for 24 h; subsequently an after image was taken. Using the
before and after images, the distance that the cells migrated into the gap was calculated and recorded.
There were 30 distance measurements taken for each image pair in order to have a sufficient sample
size and each experiment was repeated three times.

2.4. Proliferation Assays

The cells were grown and treated as described above. After 24 h the remaining cells were collected
by trypsinization and counted using the hemocytometer. Each cell line had three replications.

2.5. RT-PCR

Following the aforementioned treatments, RNA was isolated using Trizol (Sigma, St. Louis, MO,
USA) according to the manufacturer’s guidelines. Once RNA was isolated, cDNA was synthesized
using a ThermoFischer Scientific cDNA synthesis kit (ThermoFisher, Waltham, MA, USA). RT-PCR
was performed using BAX and BCL-2 oligo primers as well as GAPDH for a control (Table 1). The
PCR products were separated on a 1.5% agarose gel, using ethidium bromide as the indicating agent.
Gels were imaged using a FluorChemM (Cell Biosciences, Palo Alto, CA, USA). Band intensities were
calculated using FluorChem software. BAX and BCL-2 intensities were normalized to GAPDH.

Table 1. Primer sequences used for RT-PCR.

BAX Reverse primer (3′ antisense) 5′-CAT CTT CTT CCA GAT GGT GA-3′

BAX Forward primer (5′ sense) 5′-GTT TCA TCC AGG ATC GAG CAG-3′

BCL-2 Reverse primer (3′ antisense) 5′-GAG ACA GCC AGG AGA AAT CA-3′

BCL-2 Forward primer (5′ sense) 5′-CCT GTG GAT GAC TGA GTA CC-3′

GAPDH Reverse primer (3′ antisense) 5′-ACATCGCTCAGACCCATG-3′

GAPDH Forward primer (5′ sense) 5′-TGTAGTTGAGGTCAATGAAGGG-3′

2.6. Statistical Analyses

Analyses were based on population means of the untreated cells with z-scores and p-values
calculated. Standard deviations and standard error of the means were determined using Microsoft
Excel. p values and z score were determined using https://www.socscistatistics.com/pvalues/
normaldistribution.aspx and https://www.socscistatistics.com/tests/ztest/zscorecalculator.aspx,
respectively. p values < 0.05 were considered significant.

https://www.socscistatistics.com/pvalues/normaldistribution.aspx
https://www.socscistatistics.com/pvalues/normaldistribution.aspx
https://www.socscistatistics.com/tests/ztest/zscorecalculator.aspx
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3. Results

ASX Inhibits Breast Cancer Cell Migration

Most cancer deaths are caused by metastases where tumor cells migrate. These three different
cell lines encompass two breast cancer lines and one normal line to act as the experimental control.
Figure 2 shows the migration assay results for each individual cell line. As shown in Figure 2A,B,
the cells grow normally when cultured in media and DMSO settings. When the cells are exposed to
ASX at increasing concentrations, the distance that the cells migrated declined until the cells started to
recede at the 25 and 50 µM concentrations. MCF-7 ER+ breast cancer cells show an immediate decline
in cell migration when ASX is administered. As the concentration increases from 10 µM to 25 µM and
50 µM, the results become significant to p < 0.01. Similar results were seen with the MDA-MB-231
TNBC cell line (Figure 2B). The two breast cancer cell lines both showed an immediate decrease in
distance migrated as soon as ASX is administered. This decrease in distance traveled continued until
the highest concentration (50 µM). The MCF-10A cell line is a control normal breast epithelial cell
line. The distance migrated by the MCF10A cells did not decrease immediately with the addition of
ASX, nor did it decrease when the concentration was increased to 25 µM (Figure 2C). The noticeable
decrease in distance migrated only happened at the highest concentration of ASX suggesting 50 µM
ASX is toxic to all cells used in these studies.
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Figure 2. ASX inhibits cell migration. (A) Images of MCF7 cells prior to, immediately after, and 24 h
post-scratch with indicated ASX concentrations; (B) MDA-MB-231 cells prior to, immediately after, and
24 h post-scratch with indicated ASX concentrations; (C) MCF10A cells prior to, immediately after, and
24 h post-scratch with indicated ASX concentrations. Scale bars = 50 µm; (D) Quantification of (A);
(E) Quantification of (B); (F) Quantification of (C). * p < 0.05, ** p < 0.01.

The observation that the higher concentrations of ASX was promoting an increase in gap distance
in the migration studies displayed in Figure 2 suggests that the higher levels of ASX were killing
the cells. To address this, cell counts were made following ASX treatments of 24 h for all three cell
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lines. After 24 h the number of ER+ MCF7 breast cancer cells was significantly reduced following ASX
exposure at all concentrations (Figure 3A) as well as the numbers of the TNBC MDA-MB-231 breast
cancer cells (Figure 3B). The reduction in cell numbers was concentration dependent. Conversely,
the normal breast epithelial cells MCF10A showed no significant reduction in cell number following
ASX exposure, even at the highest ASX concentration (Figure 3C). The number of MCF10A cells was
reduced but not significantly.
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Figure 3. Astaxanthin (ASX) affects cell numbers. (A) MCF7 cells treated with ASX at concentrations
indicated for 24 h; (B) quantification of (A); (C) MDA-MB-231 cells treated with ASX; (D) quantification
of (C); and (E) MCF10A cells treated with ASX at concentrations indicated for 24 h and quantified in (F).
(T0-time zero, C-untreated, D-DMSO, 10 µM, 25 µM, 50 µM). Scale bars = 100 µm. * p < 0.05, ** p < 0.01.

Next, we wanted to determine if the reduction in cell number due to ASX exposure was due
to apoptosis or another mechanism of cell death. Gene expression of two mediators of apoptosis,
BAX and BCL-2, was investigated. In the MCF7 breast cancer cell line there was an increase in BAX,
a proapoptotic marker, as the ASX concentration increased up to 25 µM (Figure 4, left). Expression of
BCL-2 was highest after exposure to 25 µM ASX. Very little BAX or BCL-2 was found in cultures of
MCF7 cells after exposure to the highest concentration of ASX, 50 µM. This may be due to reduced
cell numbers due to increased ASX-induced cell death. In the triple-negative cell line MDA-MB-231
both BAX and BCL-2 mRNA levels were reduced following ASX treatments (Figure 4, middle). In the
normal MCF10A cell line, the level of BCL-2 is consistent throughout the varying ASX concentrations
(Figure 4, right), while BAX levels were elevated following treatment with 50 µM ASX.
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Figure 4. Gene expression of apoptotic mediators following ASX treatment. MCF7, MDA-MB-231,
and MCF10A cells were treated with ASX for 24 h at the concentrations indicated. RT-PCR results are
presented and the corresponding expression levels of the indicated gene normalized to GAPDH in
arbitrary units. C-untreated, D-DMSO, 10 µM, 25 µM, and 50 µM.

4. Discussion

Research into the anticancer properties of natural compounds is a rapidly growing area of science.
Many different classes of natural compounds have demonstrated anticancer properties including many
plant-based and marine-based extracts [23–27]. ASX is a marine-based ketocarotenoid that has potent
antioxidant characteristics [3]. Our data demonstrates that ASX significantly inhibits breast cancer
cellular migration (Figure 2), significantly reduces breast cancer cell numbers (Figure 3), and induces
apoptosis in breast cancer cells (Figure 4) compared to normal breast epithelial cells.

The goal of many cancer therapies, including radiation therapy and chemotherapy, is to halt the
cellular division of the tumor cells. ASX blocks the proliferation and reduces cell numbers in the breast
cancer cells investigated (Figure 3A,B). There are many side effects associated with both radiation
therapy and chemotherapy [28–30]. Incorporation of ASX into anticancer therapy will help control
tumor growth and potentially reduce the impact of radiation therapy and chemotherapy associated
side effects.

Metastasis is the main cause of death in cancer patients [31]. Blocking metastasis would have a
significant positive impact on cancer patient survival rates. One of the main cellular characteristics
of metastasis is the migration of cancer cells from the initial tumors into the circulatory or lymphatic
systems. Inhibiting this migration would reduce the number of metastases formed. ASX inhibits
migration in the TNBC and ER+ breast cancer cells examined in these experiments. The MDA-MB-231
TNBC line is highly metastatic [32] but its migratory capacity is attenuated by ASX treatment.

No significant impacts on the migration, cell numbers, or change in apoptotic gene expression of
the normal breast epithelial cell line MCF10A were observed following ASX treatments. The lack of
effect of ASX on the normal breast cells is significant in that normal cells would still possess the capacity
to migrate and proliferate in response to ASX cancer treatments meaning that the normal cells could
continue to function normally and migrate into voids lefts by dying tumor cells in a healing process.

5. Conclusions

According to the collected data presented here, astaxanthin treatment is an effective method of
reducing the proliferation and migration of breast cancer cells. Astaxanthin has shown demonstrated
a consistent ability to reduce multiple types of cancer. These findings have the potential to incite many
different types of medical research that could affect modern-day cancer treatment.
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