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Abstract: Cellular oxidants are primarily managed by the thioredoxin reductase-1 (TrxR1)- and
glutathione reductase (Gsr)-driven antioxidant systems. In mice having hepatocyte-specific co-
disruption of TrxR1 and Gsr (TrxR1/Gsr-null livers), methionine catabolism sustains hepatic levels
of reduced glutathione (GSH). Although most mice with TrxR1/Gsr-null livers exhibit long-term
survival, ~25% die from spontaneous liver failure between 4- and 7-weeks of age. Here we tested
whether liver failure was ameliorated by ascorbate supplementation. Following ascorbate, dehy-
droascorbate, or mock treatment, we assessed survival, liver histology, or hepatic redox markers
including GSH and GSSG, redox enzyme activities, and oxidative damage markers. Unexpectedly,
rather than providing protection, ascorbate (5 mg/mL, drinking water) increased the death-rate to
43%. In adults, ascorbate (4 mg/g × 3 days i.p.) caused hepatocyte necrosis and loss of hepatic
GSH in TrxR1/Gsr-null livers but not in wildtype controls. Dehydroascorbate (0.3 mg/g i.p.) also
depleted hepatic GSH in TrxR1/Gsr-null livers, whereas GSH levels were not significantly affected by
either treatment in wildtype livers. Curiously, however, despite depleting GSH, ascorbate treatment
diminished basal DNA damage and oxidative stress markers in TrxR1/Gsr-null livers. This suggests
that, although ascorbate supplementation can prevent oxidative damage, it also can deplete GSH
and compromise already stressed livers.
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1. Introduction

Oxidative stress is defined as a substantial deviation from normal cellular redox steady
state [1]. Cells generate reactive oxygen species (ROS) as a byproduct of cellular respiration
and metabolism or in response to external factors such as xenobiotic exposure, radiation,
or environmental pollution [2]. Inflammation also exposes surrounding cells and tissues to
high levels of ROS. Hydrogen peroxide (H2O2), the major cellular oxidant, is generated
from superoxide (O2

•−) both spontaneously and catalytically by superoxide dismutases [3].
Superoxide is produced primarily by the mitochondria as a byproduct of cellular respiration
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and by other metabolic activities [4]. Some cytosolic and membrane-associated enzymes,
including cytochrome p450s and NADPH-oxidases, also generate superoxide under certain
conditions [5–7]. Other oxidants, including hypochlorous acid (HOCl), nitric oxide (•NO),
hydroxyl radical (•OH), and singlet oxygen, can also be generated within cells or can
accumulate in their environment [8]. These ROS have the ability to damage proteins, lipids,
and nucleic acids. Oxidative damage has been implicated as contributing to numerous
disease states including neurodegeneration, heart disease, and cancer [2].

Cells have potent endogenous antioxidant systems that play critical roles in both
defense against ROS and repair of oxidative damage. Predominant among these are the
two cytosolic disulfide reductase systems: one driven by thioredoxin reductase-1 (TrxR1)
and one driven by glutathione reductase (Gsr) [9]. In the former system, reducing power
(electron pairs) extracted from reduced nicotinamide adenine dinucleotide phosphate
(NADPH) by the flavin-containing TrxR1 are used to reduce an active site disulfide bond
in oxidized thioredoxin-1 (Trx1), generating reduced (dithiol) Trx1. In the later system,
electron-pairs from NADPH are extracted by the flavin-containing Gsr and used to reduce
glutathione-disulfide (GSSG) into two molecules of the thiol-containing tripeptide glu-
tathione (GSH) [10]. Fueled by reducing power from the Trx1 and GSH systems, abundant
cytosolic peroxiredoxins (Prx) and glutathione peroxidases (Gpx) rapidly reduce H2O2 and
other hydroperoxides [11,12]. Ribonucleotide reductase uses this reducing power to gener-
ate DNA precursors for replication, genome repair, and mitochondrial replenishment [13].
Protein disulfides arising from ROS exposure are repaired back to thiols by Trx1, GSH, and
the GSH-dependent glutaredoxins (Grx). Similarly, methionine (Met)-sulfoxides arising
from ROS exposure are repaired by Trx1- or GSH/Grx-dependent Met-sulfoxide reductases
(Msr) [14–16].

Combatting severe oxidative stress can consume considerable NADPH. To sustain an
adequate supply, several regulatory systems, including direct oxidant-inhibition of a key
glycolytic enzyme, glyceraldehyde phosphate dehydrogenase (GAPDH) and metabolic
realignments by oxidant-responsive transcription factor (Nrf2) and signaling (5′ AMP-
activated protein kinase, AMPK) pathways coordinately (1) re-prioritize glucose metabolism
to favor NADPH production from NADP + over glycolysis; (2) suppress competing an-
abolic consumption of NADPH; and (3) induce NADPH-generating pathways [17]. In
addition, since ROS generation is often a secondary consequence of exposure to elec-
trophilic toxins, the oxidant-response pathways also activate drug metabolism “phase-2”
conjugases, which glutathionylate, glucuronidate, or sulfate these toxins, as well as phase-3
transporters, which then export the conjugated toxins out of the cell [18–20].

In yeast or bacteria, genetic co-disruption of TrxR1 and Gsr is lethal [21,22]. Most mice
with hepatic deletion of both TrxR1 and Gsr (TrxR1/Gsr-null), however, are long-term
viable and exhibit relatively normal liver function. TrxR1/Gsr-null livers sustain redox
homeostasis by an NADPH-independent system that uses catabolism of dietary methionine
(Met), via the Met cycle and transsulfuration pathway, to generate Cys, which is then used
for de novo GSH synthesis [9,23]. This GSH supports critical reduction reactions, generating
GSSG, which is subsequently excreted from the cells [23]. Although this pathway is able to
support survival, export of the oxidized GSSG makes this highly inefficient, and resting
TrxR1/Gsr-null livers accumulate extensive protein and DNA damage [23,24]. Moreover,
mice with TrxR1/Gsr-null livers experience a “crisis period” between 4- and 7-weeks of
age, during which a subset of animals of both sexes die from acute liver failure [23]. The
high levels of damage to liver macromolecules and the high frequencies of acute liver
failure in these mice suggest that the balance between redox homeostasis and cell death is
at the threshold at this critical period and is easily tipped toward failure.

A diverse group of dietary supplements are categorized as antioxidants. These nu-
trients have the potential to support or synergize with endogenous antioxidant systems,
thereby bolstering the maintenance of cellular redox homeostasis. Mechanisms of antioxi-
dant action are similarly broad. Some, like GSH, are true reductants that can provide the
electrons to support the elimination of H2O2 or otherwise reduce oxidants or oxidized cel-
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lular molecules. Conversely, others, such as sulforaphane, are themselves non-hazardous
electrophiles that induce cells to elicit robust cytoprotective gene expression responses [25].
Vitamin E (α-tocopherol) stably traps free radicals, thereby quenching free radical chain
propagation [26,27]. N-acetylcysteine (NAC) is a potent antioxidant that can function in
thiol-disulfide exchanges to liberate other thiols [28], provide a source of the limiting sulfur
amino acid cysteine (Cys) for GSH biosynthesis during severe glutathionylation-induced
GSH-depletion, or provide a source of intracellular hydrogen sulfide (H2S) which, in turn,
can protect cellular thiols from overoxidation [29] or directly quench H2O2 [26]. Still others,
including many complex natural products, might provide antioxidant support through
mechanisms that remain unresolved [30]. One of the most potent antioxidants is ascorbate
(Vitamin C), which is a true reductant, a potent free radical trap, and an essential cofac-
tor for the generation of hydroxyproline by hydroxyl prolase [30–34]. Although nearly
all plants and animals can synthesize ascorbate, humans cannot, making Vitamin C an
essential nutrient for humans [33].

Importantly, all redox-active antioxidants are also pro-oxidants. Whereas their reduced
state will have antioxidant activity, the utilization of this reducing power will generate
the oxidized form of the compound, which will be a pro-oxidant. Examples include most
thiol-containing antioxidants, such as GSH or Cys, which form disulfides during oxidation.
These disulfides must, in turn, be reduced to dithiols by the cellular disulfide reductase
systems, thereby consuming NADPH and disulfide reducing power. Another example
is ascorbate, which oxidizes to dehydroascorbate (DHA). DHA, itself, is not active as an
enzymatic cofactor, a free radical trap, or an antioxidant. DHA is also actively taken-up
by hepatocytes and is thereafter reduced to ascorbate by GSH, Grxs, GSH-S-transferases
(GST), or TrxR1 [33]. In this context, however, DHA is a pro-oxidant that requires the
consumption of cellular NADPH for the subsequent reduction of GSSG to GSH or recycling
of oxidized TrxR1 [35]. Importantly, since most extracellular fluids are oxidizing, many
dietary antioxidants, such as GSH or ascorbate, will spontaneously oxidize into their
pro-oxidant forms in circulation before they can enter cells, and therefore will require
the consumption of NADPH and cytosolic disulfide reducing power before antioxidant
benefits can be realized.

It remains unclear how well supplemental ascorbate can substitute for insufficiencies
in the endogenous disulfide reductase systems. In one study, ascorbate supplementation in
newborn rats was shown to compensate for GSH depletion caused by buthionine sulfox-
imine (BSO), which inhibits glutamate-cysteine ligase (Gcl), the first committed step in GSH
biosynthesis. In that study, ascorbate supplementation resulted in both an increase in GSH
levels and a decrease in mortality [36]. Additionally, in a child with a genetic deficiency in
glutathione synthase (GS, the last step in GSH biosynthesis), administration of ascorbate
resulted in increased plasma GSH levels [37]. The mechanisms underlying the ability of
ascorbate to increase GSH levels in either of these reports, however, remain uncertain.
Neither GSH nor GSSG can directly enter cells, and GSH, itself, cannot be synthesized
without having both Gcl and GS activity [38]. This suggests that ascorbate could not have
increased synthesis of GSH in these studies, but rather might have been able to re-prioritize
residual GSH. In the current study, we tested whether ascorbate supplementation could
decrease levels of hepatic oxidative stress and rates of acute liver failure in mice with
TrxR1/Gsr-null livers. Results showed that, although ascorbate treatment did diminish
DNA damage and levels of some oxidative stress markers, rather than either protecting
these livers or favorably re-prioritizing hepatic GSH, ascorbate or DHA treatment caused
hepatic GSH depletion, hepatocyte necrosis and increased spontaneous acute liver failure.
These results highlight the ability of ascorbate supplements to have deleterious activities in
some situations. In the absence of robust NADPH-dependent disulfide reductase systems,
such as might occur during severe oxidative stress or exposure to metallic or organic
electrophilic toxins or drugs, supplemental ascorbate might be a liability for liver health.



Antioxidants 2021, 10, 359 4 of 17

2. Materials and Methods
2.1. Mice, Supplementations and Harvests

Animal procedures were approved by the Montana State University (protocol numbers
2015-05, 2018-01, and 2021-118-01) or McLaughlin Research Institute (number 2017-ES/MK-
23) Institutional Animal Care and Use Committees (IACUC). All mice used in this study
were on a C57Bl/6J background. The Gsrnull allele used in this study is a chemical mutagen-
induced deletion that disrupts all protein-coding functions of the allele. Mice homozygous
for this mutation (“Gsr-null”) are phenotypically normal and have been reported previ-
ously [39]. The Txnrd1cond allele is a targeted Cre-dependent conditional-null allele that
encodes normal TrxR1 in the Cre-naïve state but is null in the Cre-recombined state, which
has been described previously [40] and is available through Jackson Labs (Bar Harbor, ME,
USA, JAX Stock #028283). Mice with TrxR1/Gsr-double-null livers are also whole body
Gsr-null, but TrxR1-normal in all cell types except hepatocytes. These mice are overtly
healthy as adults and are fertile in both sexes, although their livers show extensive chronic
cell death, accumulation of oxidative damage, hepatomegaly, and hyperproliferation, as
described previously [23,24,41]. All analyses shown used adult mice (60–90 days of age) of
both sexes except as specified in the text or figure legends. Animals were maintained on a
14:10 h light:dark cycle with unrestricted access to feed and sterilized acidified water (pH
2.9–3.1, adjusted with HCl by a Hawkins automated doser, Hawkins, Roseville, MN, USA).
Except as indicated otherwise, all harvests were performed between 9:00 and 11:30 a.m.
For dietary supplementation, ascorbate was added to the acidified drinking water to a final
concentration of 0.5% and this was replaced weekly; control animals received acidified
drinking water without ascorbate. Importantly, the low pH of the acidified drinking water
deters spontaneous oxidation of ascorbate to DHA [42].

2.2. Glutathione Assays

To measure GSH and GSSG levels from the same sample, snap-frozen liver pieces
(~0.3 g) were homogenized in 0.8 mL of 10 mM HCl and proteins were removed by adding
5-sulfosalicylic acid to 1% (w/v) followed by centrifugation. Reaction mixes contained
120 mM NaH2PO4, pH 7.4, 5.3 mM EDTA, 0.75 mM DTNB (5,5′-dithiobis-2-nitrobenzoic
acid; Sigma-Aldrich D8130, St. Louis, MO, USA), 0.24 mM NADPH and 1.2 IU/mL yeast
Gsr (Sigma-Aldrich G9297), and 5 µL of a 1/20 dilution of clarified lysate, and were as-
sayed at room temperature by absorbance at 412 nm in a Versamax plate reader (Molecular
Devices, San Jose, CA, USA) [23,43]. Standard curves contained dilutions ranging from
0 to 1600 pmole GSH. To measure GSSG, 25 uL of the deproteinized lysate was added
to 465 µL 120 mM NaH2PO4, pH 7.4, 5.3 mM EDTA and 10 µL 1 M 2-vinylpyridine in
ethanol was immediately added. Samples were incubated at room temperature for 1–3 h
in darkness to block free thiols. Assays used 20 µL of the blocked lysate in 120 mM
NaH2PO4, pH 7.4, 5.3 mM EDTA, 0.75 mM DTNB, 0.24 mM NADPH and 1.2 IU/mL
recombinant yeast Gsr (Sigma-Aldrich G9297). Standard curves contained 0–500 pmole
GSSG and 20 mM 2-vinylpyridine. GSH concentrations were calculated by subtraction
of GSSG concentration from total glutathione concentrations. Protein content was deter-
mined by the bicinchoninic acid (BCA) method following the manufacturer’s protocols
(Sigma-Aldrich BCA1). In vivo redox probe imaging technologies have revealed that total
glutathione pools in live cell cytosol are exceptionally reduced (GSH:GSSG ratios in cytosol
of living cells ~104) [44]. However, in biochemical assays, homogenization releases abun-
dant GSSG from the endoplasmic reticulum (ER) [45], releases ROS from compartments
including ER and peroxisomes, and exposes samples to environmental oxidants. As such,
measured GSSG levels in biochemical analyses are typically orders of magnitude higher
than the actual cytosolic level that was present in the pre-homogenized living cells or
tissue (GSH:GSSG ratios typically 101–102). To assess how much GSSG in our samples
arose from post-homogenization oxidation of GSH as opposed to release of compartmen-
talized GSSG, a separate GSSG assay was carried out wherein fresh-harvested liquid
nitrogen-snap-frozen liver pieces and frozen buffer (containing 50 mM Tris pH 7.5, 150 mM
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NaCl, 1% NP-40, 50 mM N-ethylmaleimide, 30 mM iodoacetimide, 0.6% sulfosalicylic acid
and 5% metaphosphoric acid) were co-pulverized into a fine homogeneous powder at
−80 ◦C using a custom-fabricated ultra-low temperature Teflon/tungsten-carbide bead
homogenizer (Imperium Engineering, Butte, MT, USA) driven by a B. Braun Melsungen
Mikro-Dismembrator-II powerhead (Melsungen, Germany). The frozen powder was then
thawed and incubated at room temperature to alkylate the GSH, followed by deproteina-
tion and dilution into the GSSG assay as described above. This procedure is not compatible
with GSH measurements, so it was only used for GSSG validation. The results, shown in
Supplementary Figure S3 had 2- to 3-fold less GSSG than did the non-alkylated samples
(Figures 3–5 and Figure S1), yet also confirmed that total glutathione dynamics measured
in this study were associated with loss of GSH and not substantial changes in the redox
status of the glutathione pool.

2.3. Enzyme Activity Assays

Enzyme activities were determined for hepatic catalase (Cayman Assay Kit #707002,
Cayman Scientific, Ann Arbor, MI, USA), superoxide dismutase (Cayman Assay Kit
#706002), glutathione S-transferase (Cayman Assay Kit #703302) and glutathione per-
oxidase (Cayman Assay Kit #703102) following the instructions provided. TBARS (Cayman
Assay Kit #10009055) were determined following manufacturer’s instructions.

2.4. Histological and Immunohistochemical Evaluation

Immunohistochemistry of control and 4-day Asc treated livers used the following
antibodies and dilutions: rabbit polyclonal anti-pγH2A.X, 1:250 (Cell Signaling #9718, Cell
Signaling Technologies, Danvers, MA, USA); rabbit polyclonal anti-4-hydroxynonenal
(4-HNE), 1:500 [46]. Heat-induced antigen retrieval was performed in citrate buffer, pH
7.0, using a Biocare Decloaking System (Biocare Medical, Pacheco, CA, USA). Following
overnight incubation with primary antibodies, slides were washed three times 5 min in
tris-buffered saline + 1% tween and incubated in anti-rabbit-horse radish peroxidase (HRP)-
conjugated secondary antibody for 30 min (Vector Labs, #MP-7401, Burlingame, CA, USA).
The peroxidase substrate used was IMMPACT-DAB (Vector Labs, #SK-4105). Histologic
images were captured on an Olympus BX51 microscope (Olympus-USA, Center Valley, PA,
USA) equipped with a four-megapixel Macrofire digital camera (Optronics, Muskogee, OK,
USA) using the PictureFrame Application 2.3 (Optronics). All pathology scoring was done
on deidentified slides, such that the analysis was blinded to genotype, sex, and treatment
conditions. For γ-H2aX scoring, hepatocytes with stained nuclei were counted on four to
six images each from two to four slides from each animal captured at 200X magnification
and an average score per frame was obtained. Values were divided by the average number
of hepatocytes per 200X frame for each genotype, as indicated in the figure legend. Due
to the universally weaker and non-nuclear nature of the 4-HNE staining in this study,
seven frames shot at 100X magnification were imported into SlideBook (Intelligent Imaging
Innovations, Denver, CO, USA) and the positive staining (pixels)/image was quantified.

2.5. Statistical Analyses

Statistical analyses were performed on Microsoft Excel 14.7 or Graphpad Prism 8.1
software. Bar graphs show means and SEM. Significance was determined by one-way
ANOVA and post-ANOVA pairwise two-group comparisons with Tukey–Kramer method.
Significance was assigned at p < 0.05. The significance of survival curves was calculated
using log rank analysis.

3. Results
3.1. Ascorbate Supplementation Exacerbates Acute Liver Failure Frequencies in Mice with
TrxR1/Gsr-Null Livers

Mice with TrxR1/Gsr-null livers are born at expected Mendelian frequencies; a portion
of the animals of both sexes die of spontaneous acute liver failure between postnatal
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days 28–49 (P28–49), and animals surviving to P50 thereafter exhibit survival curves past
P200 not differing substantially from those of matched WT mice [23]. Adult TrxR1/Gsr-
null livers exhibit accumulation of damaged protein and DNA, high hepatocyte death
indexes, and hyperproliferation [23,24]. Although it is not yet clear why liver failure is
restricted to the three-week window of age from P28–49, the association with oxidative
damage led us to hypothesize that liver failure results when individuals exceed a threshold
of hepatocyte oxidative stress-induced cell death that becomes incompatible with liver
survival and function. Therefore, we tested whether supplemental ascorbate could decrease
the frequency of acute liver failure by ameliorating hepatic oxidative stress in these mice.
Cages of pups having either TrxR1/Gsr-null (experimental mice) or WT (control) livers
were placed on drinking water containing either 0% or 0.5% ascorbate at weaning (~P19)
and maintained under these conditions until P63. Whereas the survival rate of animals
with wildtype (WT) livers was 100% for mice on water with or without ascorbate, mice with
TrxR1/Gsr-null livers exhibited ~25% lethality on water without ascorbate and, contrary to
our expectations, this increased to 43% lethality with ascorbate supplementation (Figure 1).
Pathological analyses of representative animals revealed that lethality was associated with
extensive hepatocyte necrosis [23].
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Figure 1. Impact of supplemental ascorbate on survival. Mice with WT or TrxR1/Gsr-null livers were
raised on plain acidified drinking water (control) or acidified drinking water containing 5 mg/mL
ascorbate (Asc-water) from weaning (P19, green arrow) until P63 (red arrow). The number and sex of
animals represented is indicated; sexes did not differ significantly (p > 0.05) in any of the six groups
(not shown). Brackets and asterisks, p ≤ 0.05, by log rank analysis.

3.2. Ascorbate Causes Severe Pathology in TrxR1/Gsr-Null Livers

To test whether ascorbate, itself, was compromising the TrxR1/Gsr-null livers, we ad-
ministered ascorbate to resting adult mice (P60–90) via daily intraperitoneal (i.p.) injections
at 0 (control) or 4 mg/g body weight in sterile saline. This is half the daily dose that had
previously been shown under chronic administration to inhibit growth of oncogene-driven
tumors without adversely affecting the mice, themselves [47]. Mice were sacrificed 3 h after
the third daily inoculation and liver histology was examined. The histology of WT livers of
either the control- or the ascorbate-treated mice showed no notable pathology (Figure 2a,c).
By contrast, the livers of ascorbate-treated TrxR1/Gsr-null mice showed dramatic pathol-
ogy (Figure 2d), which was substantially more severe than the basal pathology in untreated
control TrxR1/Gsr-null livers (Figure 2b), as we had previously reported [23,24,41]. In
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many regions, hepatocytes in ascrbate-treated TrxR1/Gsr-null livers were necrotic, showed
loss of cellularity, and had pyknotic nuclei (e.g., Figure 2d).
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3.3. Ascorbate Treatment Depletes Glutathione in TrxR1/Gsr-Null but Not in WT Livers

The pathology induced by treatment of mice having TrxR1/Gsr-null livers with
ascorbate suggested that ascorbate, itself, might be hepatotoxic in these severely reductase-
compromised livers. Since these livers are highly sensitive to treatments that either block
GSH biosynthesis or deplete glutathione stores [23], we investigated whether the ascorbate
was impacting hepatic glutathione levels. As above, mice were given daily i.p. ascorbate
injections and after day-4, livers were harvested and total glutathione (GSH + GSSG) or
oxidized GSSG levels were measured in the liver lysates. Results indicated that daily
ascorbate did not lower hepatic GSH + GSSG or GSSG in WT or Gsr-null livers; however,
it significantly lowered GSH in TrxR1/Gsr-null livers (Figure 3). To determine whether
loss of hepatic glutathione in ascorbate-treated TrxR1/Gsr-null livers occurred on a shorter
timescale, mice were given a single dose of ascorbate in sterile saline (4 mg/g body weight)
and were sacrificed 60 or 180 min later. No significant differences in glutathione were
measured in WT livers 60 min after treatment with ascorbate (Figure 4). The TrxR1/Gsr-
null livers had half as much total glutathione as untreated controls at 60 min, whereas the
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WT livers were unaffected. GSH depletion persisted at 180 min after injection in TrxR1/Gsr-
null livers, yet WT GSH levels remained unaffected. Results indicated that administration
of ascorbate led to hepatic glutathione depletion in livers lacking both NADPH-dependent
disulfide reductases. Notably, the manifestation of this depletion (30% of initial levels
after 4 d) was more modest than the rapid kinetics and large magnitude of the loss of
hepatic glutathione we had previously measured upon administration of either BSO or
acetaminophen to mice [23,24,48], in which nearly all glutathione was lost within 1 h of
treatment. This suggests a distinct mechanism is driving glutathione depletion in response
to ascorbate than those active in response to either BSO or acetaminophen (see below).

Antioxidants 2021, 10, x 8 of 18 
 

loss of hepatic glutathione in ascorbate-treated TrxR1/Gsr-null livers occurred on a shorter 
timescale, mice were given a single dose of ascorbate in sterile saline (4 mg/g body weight) 
and were sacrificed 60 or 180 min later. No significant differences in glutathione were 
measured in WT livers 60 min after treatment with ascorbate (Figure 4). The TrxR1/Gsr-
null livers had half as much total glutathione as untreated controls at 60 min, whereas the 
WT livers were unaffected. GSH depletion persisted at 180 min after injection in 
TrxR1/Gsr-null livers, yet WT GSH levels remained unaffected. Results indicated that ad-
ministration of ascorbate led to hepatic glutathione depletion in livers lacking both 
NADPH-dependent disulfide reductases. Notably, the manifestation of this depletion 
(30% of initial levels after 4 d) was more modest than the rapid kinetics and large magni-
tude of the loss of hepatic glutathione we had previously measured upon administration 
of either BSO or acetaminophen to mice [23,24,48], in which nearly all glutathione was lost 
within 1 h of treatment. This suggests a distinct mechanism is driving glutathione deple-
tion in response to ascorbate than those active in response to either BSO or acetaminophen 
(see below). 

 
Figure 3. Hepatic levels of GSH and GSSG following 4-day ascorbate treatment. Mice received 0 (control) or 4 mg/g/day 
ascorbate × 4 days i.p. (Asc) and were harvested 3 h after the final inoculation. n > 5 animals for each condition. Blue/white 
denotes GSH; black denotes corresponding GSSG in the same sample. Bars, mean ± s.e.m.; *, p < 0.05 versus untreated 
control of same genotype; #, p < 0.05 versus WT under same treatment using one-way ANOVA and Tukey–Kramer post 
hoc, pair-wise comparison. 

3.4. DHA Treatment Depletes Glutathione in Gsr, and TrxR1/Gsr-Null Livers 
The relatively modest impact of a single dose of ascorbate on hepatic glutathione 

levels (Figure 4) suggested that the observed glutathione depletion might have resulted 
from hepatic GSH-dependent reduction of DHA that was generated by spontaneous oxi-
dation of the administered ascorbate after administration to the mice in the relatively ox-
idizing environment of the blood plasma and other extracellular fluids. To explore this 
possibility, mice were treated with DHA at 1/12th the dose (0.3 mg/g body weight) that 
we had used for ascorbate and were harvested at 0, 20, 60, and 180 min after inoculation. 
Results showed that DHA caused significant depletion of hepatic GSH in TrxR1/Gsr-null 
livers as early as 20 min post inoculation and, at 60 and 180 min, hepatic GSH levels were 

0

100

200

WT TrxR1/Gsr-null

G
SH

 +
 G

SS
G

(n
m

ol
e 

/ m
g 

pr
ot

ei
n)

0

5 0

1 00

1 50

2 00

2 50

GSSG

GSH
total

glutathione

#

#
significance,

total
glutathione

significance,
GSSG

key

Control (no Asc)
4 day Asc

#
*

Figure 3. Hepatic levels of GSH and GSSG following 4-day ascorbate treatment. Mice received 0 (control) or 4 mg/g/day
ascorbate× 4 days i.p. (Asc) and were harvested 3 h after the final inoculation. n≥ 5 animals for each condition. Blue/white
denotes GSH; black denotes corresponding GSSG in the same sample. Bars, mean ± s.e.m.; *, p ≤ 0.05 versus untreated
control of same genotype; #, p ≤ 0.05 versus WT under same treatment using one-way ANOVA and Tukey–Kramer post
hoc, pair-wise comparison.

3.4. DHA Treatment Depletes Glutathione in Gsr, and TrxR1/Gsr-Null Livers

The relatively modest impact of a single dose of ascorbate on hepatic glutathione
levels (Figure 4) suggested that the observed glutathione depletion might have resulted
from hepatic GSH-dependent reduction of DHA that was generated by spontaneous
oxidation of the administered ascorbate after administration to the mice in the relatively
oxidizing environment of the blood plasma and other extracellular fluids. To explore this
possibility, mice were treated with DHA at 1/12th the dose (0.3 mg/g body weight) that
we had used for ascorbate and were harvested at 0, 20, 60, and 180 min after inoculation.
Results showed that DHA caused significant depletion of hepatic GSH in TrxR1/Gsr-null
livers as early as 20 min post inoculation and, at 60 and 180 min, hepatic GSH levels
were only 20% of the initial level (Figure 5). WT livers experienced no significant loss in
hepatic GSH or increase of GSSG after DHA administration under the conditions used
here. The possibility of a sex-specific difference in depletion of hepatic glutathione was
investigated; however, no significant differences were measured between male and female
mice (Supplementary Figure S1).
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Figure 4. Hepatic levels of GSH and GSSG following short-term ascorbate treatment. Mice received
a single dose of 4 mg/g ascorbate and were harvested at the indicated times thereafter (0 min
mice received no ascorbate). n ≥ 5 animals for each condition. Green denotes GSH; black denotes
corresponding GSSG in the same sample. Bars mean ± s.e.m.; *, p ≤ 0.05 versus untreated control
of the same genotype; #, p ≤ 0.05 versus WT under same treatment using one-way ANOVA and
Tukey–Kramer post hoc, pair-wise comparison.
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Figure 5. Hepatic levels of GSH and GSSG following short-term DHA treatment. Mice received a
single dose of 0.3 mg/g DHA and were harvested at the indicated times thereafter (0 min mice re-
ceived no DHA). n ≥ 5 animals for each condition. Green denotes GSH; black denotes corresponding
GSSG in the same sample. Bars, mean ± s.e.m.; *, p ≤ 0.05 versus untreated control of same genotype;
#, p ≤ 0.05 versus WT under same treatment using one-way ANOVA and Tukey–Kramer post hoc,
pair-wise comparison.

3.5. Ascorbate Treatment Lowers the Incidence of DNA Damage in TrxR1/Gsr-Null Livers

Unlike WT or TrxR1-null, or Gsr-null livers, in which no evidence of basal oxidative
damage is detected, TrxR1/Gsr-null livers exhibit dramatic oxidative damage [24,41,49].
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The incidence of DNA damage is inferred by the presence of the phosphorylated form of
histone protein H2AX (γ-H2AX), which is a chromatin modification that marks sites of
double strand break repair. Immunostaining for γ-H2AX indicated that resting TrxR1/Gsr-
null livers have a 50-fold higher incidence of γ-H2AX-positive hepatocytes than do WT
livers (Figure 6). Interestingly, ascorbate supplementation (4 mg/g daily for 4 days i.p.)
significantly lowered the γH2AX-staining index in TrxR1/Gsr-null livers (Figure 6c–e). This
suggested that ascorbate was, indeed, functioning in an antioxidant capacity to diminish
DNA damage (see Discussion).
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Figure 6. Impact of ascorbate treatment on basal levels of DNA damage. Mice received 0 (control)
(a,c) or 4 mg/g/day ascorbate × 4 days i.p. (Asc) (b,d) and were harvested 3 h after the final
inoculation. n = 3–5 animals for each condition; representative data shown. Liver sections were
immunostained for γ-H2AX. Red and yellow arrows indicate representative strong- or weak-staining
hepatocyte nuclei, respectively, all of which would have contributed to positive counts in the γ-
H2AX index. CV and PT, central veins or portal triads, respectively. Scale bars 100 µm. Due to the
previously reported genotype-specific cell size differences, photomicrographs at 200× magnification
showed ~420 or ~285 hepatocytes per field of view for WT and TrxR1/Gsr-null livers, respectively.
(e) Quantification of γ-H2AX staining index. Bars mean ± s.e.m.; *, p ≤ 0.05 versus untreated
no-ascorbate control of same genotype; #, p ≤ 0.05 versus WT under same treatment using one-way
ANOVA and Tukey–Kramer post hoc, pair-wise comparison.

3.6. Ascorbate did not Elevate Markers of Oxidative Stress in Liver

It was noteworthy that, in mice with Trxr1/Gsr-null livers, ascorbate treatment: (i) in-
creased death-rates from acute liver failure (Figure 1); (ii) increased hepatic histopathology
and the abundance of necrotic hepatocytes (Figure 2); (iii) decreased levels of hepatic GSH
(Figures 3 and 4); and yet (iv) also apparently protected the livers from DNA damage as
compared to untreated mice with TrxR1/Gsr-null livers (Figure 6). Our anticipation would
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have been that the increased acute liver failure, histopathology, and hepatocyte necrosis
were all directly caused by ascorbate treatment-induced oxidative damage that, in turn,
resulted from the loss of GSH in the already disulfide reductase-deficient hepatocytes.
However, the significant decrease in the γ-H2AX staining index was inconsistent with this
and, instead, suggested that ascorbate treatment instead diminished oxidative damage in
these livers. This, in turn, suggested that the pathology, necrosis, and acute liver failure in
these animals were perhaps not driven by oxidative damage in the hepatocytes.

To further investigate the redox status of the control and ascorbate-treated livers, we
assessed other markers of hepatic oxidative stress. Measurements of lipid peroxide levels
by the thiobarbituric acid-reactive species (TBARS) assay or of protein oxidative damage
by immunostaining for either 4-hydroxynonenal or protein-glutathionylation revealed no
significant differences between livers of any of the genotypes (Supplementary Figure S2
and reference [49]), indicating that the physiological outcomes do not include substantial
lipid peroxidation or dramatic changes in protein damage. Next, we assessed levels of
catalase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase
enzyme activities in the livers (Figure 7). WT livers treated with ascorbate for 4 days
showed a roughly 3-fold decrease in catalase activity. Decreases in catalase activity were
also measured in TrxR1/Gsr-null livers following ascorbate treatment; however, this only
reached significance in the WT and TrxR1/Gsr-null livers (Figure 7a). Superoxide dismutase
activity was roughly 4-fold lower in untreated TrxR1/Gsr-null livers, respectively, versus
untreated WT livers; ascorbate significantly lowered superoxide dismutase activity in
Gsr-null livers, but not in either WT or TrxR1/Gsr-null livers (Figure 7b). In contrast to
superoxide dismutase, GST activity was dramatically elevated in TrxR1/Gsr-null livers,
which is consistent with our previous reports showing an Nrf2-driven increase in GST
mRNA, protein, and enzyme activity levels in these livers [41,48,49]; ascorbate treatment
did not further increase GST activity in any genotypes and, instead, subtly but significantly
decreased GST activity in TrxR1/Gsr-null livers (Figure 7c). Finally, although Gpx activity
was subtly but significantly lower in untreated TrxR1/Gsr-null as compared to untreated
WT livers, ascorbate treatment had no effect on Gpx activity in TrxR1/Gsr-null livers and
caused a modest but significant decrease in Gpx activity in WT livers (Figure 7d).

Antioxidants 2021, 10, x 12 of 18 
 

liver failure in these animals were perhaps not driven by oxidative damage in the hepato-
cytes. 

To further investigate the redox status of the control and ascorbate-treated livers, we 
assessed other markers of hepatic oxidative stress. Measurements of lipid peroxide levels 
by the thiobarbituric acid-reactive species (TBARS) assay or of protein oxidative damage 
by immunostaining for either 4-hydroxynonenal or protein-glutathionylation revealed no 
significant differences between livers of any of the genotypes (Supplementary Figure S2 
and reference [49]), indicating that the physiological outcomes do not include substantial 
lipid peroxidation or dramatic changes in protein damage. Next, we assessed levels of 
catalase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase en-
zyme activities in the livers (Figure 7). WT livers treated with ascorbate for 4 days showed 
a roughly 3-fold decrease in catalase activity. Decreases in catalase activity were also 
measured in TrxR1/Gsr-null livers following ascorbate treatment; however, this only 
reached significance in the WT and TrxR1/Gsr-null livers (Figure 7a). Superoxide dis-
mutase activity was roughly 4-fold lower in untreated TrxR1/Gsr-null livers, respectively, 
versus untreated WT livers; ascorbate significantly lowered superoxide dismutase activity 
in Gsr-null livers, but not in either WT or TrxR1/Gsr-null livers (Figure 7b). In contrast to 
superoxide dismutase, GST activity was dramatically elevated in TrxR1/Gsr-null livers, 
which is consistent with our previous reports showing an Nrf2-driven increase in GST 
mRNA, protein, and enzyme activity levels in these livers [41,48,49]; ascorbate treatment 
did not further increase GST activity in any genotypes and, instead, subtly but signifi-
cantly decreased GST activity in TrxR1/Gsr-null livers (Figure 7c). Finally, although Gpx 
activity was subtly but significantly lower in untreated TrxR1/Gsr-null as compared to 
untreated WT livers, ascorbate treatment had no effect on Gpx activity in TrxR1/Gsr-null 
livers and caused a modest but significant decrease in Gpx activity in WT livers (Figure 
7d). 

  
Figure 7 Enzymatic markers of oxidative stress. Enzyme activities of catalase (a, CAT), superoxide 
dismutase (b, SOD), GSH-S-Transferase (c, GST), and GSH-peroxidase (d, Gpx) were measured. 
Mice received 0 (control) or 4 mg/g/day ascorbate x 4 days i.p. (Asc) and were harvested 3 h after 
the final inoculation. n = 3–5 animals for each condition. Bars, mean ± s.e.m.; *, p < 0.05 versus un-
treated no-ascorbate control of same genotype; #, p < 0.05 versus WT using one-way ANOVA and 
Tukey–Kramer post hoc, pair-wise comparison. 

4. Discussion 
The rationale for people to use antioxidant supplements is to help support or bolster 

their endogenous antioxidant systems during oxidative stress. The efficacy of antioxidants 
has been demonstrated in diverse situations in cell culture models, animal models, and 

0

20

40

60

WT

0

100

200

WTTrxR1/Gsr-null

TrxR1/Gsr-null

*

*

#

*
#

b

d

G
px

ac
tiv

ity
nm

ol
/m

in
/m

g 
pr

ot
ei

n
SO

D
 a

ct
iv

ity
U

/m
l

TrxR1/Gsr-null

TrxR1/Gsr-null

# #

#

0

50

100

WT

0

10

20

30

WT

*

a

c

G
ST

 a
ct

iv
ity

nm
ol

/m
in

/m
g 

pr
ot

ei
n

C
AT

 a
ct

iv
ity

nm
ol

/m
in

/m
g 

pr
ot

ei
n

0

10

20

30
control
Asc

CAT SOD

GST Gpx
(c) (d)

(a) (b)

Figure 7. Enzymatic markers of oxidative stress. Enzyme activities of catalase (a, CAT), superoxide
dismutase (b, SOD), GSH-S-Transferase (c, GST), and GSH-peroxidase (d, Gpx) were measured.
Mice received 0 (control) or 4 mg/g/day ascorbate × 4 days i.p. (Asc) and were harvested 3 h after
the final inoculation. n = 3–5 animals for each condition. Bars, mean ± s.e.m.; *, p ≤ 0.05 versus
untreated no-ascorbate control of same genotype; #, p ≤ 0.05 versus WT using one-way ANOVA and
Tukey–Kramer post hoc, pair-wise comparison.
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4. Discussion

The rationale for people to use antioxidant supplements is to help support or bolster
their endogenous antioxidant systems during oxidative stress. The efficacy of antioxidants
has been demonstrated in diverse situations in cell culture models, animal models, and
the clinic. Perhaps most dramatically, treatment of patients following exposure to hepato-
toxic levels of acetaminophen with NAC prevents acute liver failure in ~70% of affected
patients [50,51]. However, even in this well-studied situation, the exact mechanisms by
which NAC promotes survival remain unclear, but clearly involve abrogation of hepato-
toxic activities other than, or in addition to, oxidative stress. NAC, a simple N-acetylated
version of Cys, undergoes complex and in many ways still mysterious extracellular and
intracellular chemistry and metabolism following administration. The relative importance
of its roles as a true reductant, a Cys-donor, a driver of thiol-disulfide exchange, or an H2S
donor is not yet fully elucidated [28].

Vitamin C is perhaps the most commonly used antioxidant supplement. Its require-
ment as an essential micronutrient, its potency as a free radical trap, and its natural
occurrence in many foods indicate it is safe and likely efficacious. As the non-enzymatic
reaction of ascorbate with H2O2 is slow, and because mammals lack ascorbate peroxidase,
ascorbate supplementation will not directly eliminate H2O2 [52,53]. Nonetheless, through
its other activities, ascorbate is expected to support redox homeostasis in mammalian cells.
The original goal of this project was to determine if dietary ascorbate supplementation
could ameliorate the oxidative damage and risk of acute liver failure in the severely ox-
idatively stressed TrxR1/Gsr-null livers. Importantly, these livers are thought to model
the effects of coincidental inhibition of TrxR1 and Gsr by strong electrophilic toxins [54],
and as such might have value for testing therapeutic interventions for such conditions. As
might be the case for many people considering ascorbate supplementation, we predicted
that this supplement likely would be beneficial; we did not anticipate that it could possibly
cause harm. The increased frequency of acute liver failure experienced with ascorbate was
not expected.

We used i.p. inoculation of ascorbate to test whether the increased frequency of
acute liver failure was, indeed, due to the ascorbate. We had previously shown that
TrxR1/Gsr-null livers are exquisitely sensitive to treatments that deplete GSH [23,41,48], so
we hypothesized that the hepatotoxic effects of ascorbate in these livers might result from
GSH depletion. However, the modest and sluggish impacts that ascorbate inoculation had
on GSH and GSSG levels in TrxR1/Gsr-null livers (Figures 3 and 4) suggested the effect
might be indirect and involve in vivo oxidation of the ascorbate to DHA. This prediction
is consistent with the precipitous loss of GSH that occurred in livers of mice inoculated,
instead, with a 12-fold lower dose of DHA (Figure 5).

In liver, DHA is reduced to ascorbate by GSH, Grxs, GSTs, and TrxR1 [33,55]. TrxR1 is
reported to account for > 75% of the DHA reduction in rat liver cytosol [56]; however, since
they lack TrxR1, TrxR1/Gsr-null livers must utilize GSH for all DHA reduction. Since these
livers also lack Gsr, the resultant GSSG cannot be reduced. GSH/GSSG ratios are tightly
regulated in the absence of Gsr by GSSG export [57], most likely by members of the ATP-
dependent multidrug-resistance family of exporters (MDR or ABC proteins). Consistent
with this, within the resolution that can be afforded by biochemical analyses, TrxR1/Gsr-
null livers showed no increase in GSSG concentrations after ascorbate supplementation. It
is also noteworthy in this regard that the TrxR1/Gsr-null livers exhibit very strong chronic
activation of the Nrf2 pathway [41], and assessment of expression of several Nrf2 target
genes suggests that ascorbate treatment has no substantial impact on the Nrf2 pathway in
either WT or TrxR1/Gsr-null livers (Supplementary Figure S4). As TrxR1/Gsr-null livers
are critically dependent on de novo synthesized GSH [23], the export of GSSG arising from
GSH-dependent reduction of the supplement-generated DHA could lead to depletion of
glutathione, as seen in this study. Nonetheless, the kinetics of depletion in the current
study were slow and the magnitude was small compared to the precipitous crash seen in
these livers following complete disruption of GSH biosynthesis with BSO or GST-mediated
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conjugation and export of GSH following high-dose acetaminophen challenge [23,58,59].
This suggests that GSSG export in the ascorbate-treated livers less drastically exceeded
GSH biosynthesis capacity in this situation.

Like NAC, ascorbate undergoes complex chemistry and metabolism both extra- and
intra-cellularly. In our survival study (Figure 1), the ascorbate was added to acidified
drinking water (see Methods) to prevent its spontaneous oxidation [42] and this was
refreshed weekly. However, even if oxidation was negligible in the water bottle, it could
have been substantial after ingestion, in both the gut and the blood plasma. Similarly,
when we administered ascorbate by i.p. inoculation, we minimized the likelihood of pre-
administration oxidation to DHA, but not of in vivo oxidation. Indeed, we suspect that the
slow and modest hepatic glutathione depletion caused by i.p. ascorbate (Figure 4) might,
in part, reflect the rate of oxidation of the ascorbate to DHA in these animals and their
consequential oxidation of hepatic GSH to restore the DHA to ascorbate. However, the short
half-life of DHA in solution (~100 min) prevented a follow-up experiment supplementing
DHA directly into the drinking water [60]. This instability also made direct analysis of
DHA in animal samples impractical here.

At least two explanations might account for our observation that ascorbate treatment
increased pathology and decreased GSH levels in the TrxR1/Gsr-null livers, yet also de-
creased evidence of DNA damage and other markers of oxidative stress. First, it is possible
that the ascorbate, itself, interfered with the accuracy of some oxidative stress measure-
ments. γ-H2AX staining is an indirect measure of DNA damage that might not be reliable
during ascorbate treatment [61]. Additionally, ascorbate can interfere with catalase activity
in vitro, likely through the required heme cofactor [62,63], although the timing (3 h post
i.p. administration of ascorbate) and processing (perfusion before homogenization) in our
protocol should leave little residual ascorbate. An alternative possibility, however, is that
the pathology in the TrxR1/Gsr-null livers, both with and without ascorbate treatment,
does not result from oxidative damage. Whereas oxidative damage is frequently cited as
the ‘cause’ of cell death or disease in many situations, rarely is evidence shown to support
causality over a correlative relationship. Recently, we showed that adult mouse livers
coincidentally lacking TrxR1, Gsr, and Trx1 exhibit roughly an order of magnitude higher
levels of γ-H2AX staining than do TrxR1/Gsr-null livers, as were used in the current study.
This is matched with corresponding increases in other oxidative damage markers, yet
the TrxR1/Gsr/Trx1-null livers remain functional and the mice with these livers exhibit
long-term viability [41]. Such observations make us question whether oxidative damage,
per se, is causing the pathology in many of the diseases that it correlates with. Rather
than pathology via oxidative damage, we suspect that pathology results from a more
general disruption to homeostasis. In the current study, the TrxR1/Gsr-null livers are
already deficient in disulfide reducing power; the disulfide reducing power they obtain
through catabolism of methionine is associated with re-prioritization of sulfur-, amino
acid-, and energy-metabolism [9,23,64,65]. Ascorbate supplementation, even though mea-
surably decreasing oxidative stress markers in these livers, collaterally consumes critical
GSH, further stressing these metabolic pathways. The cause of necrosis or liver failure
in these mice, therefore, might be hepatic amino acid or energy imbalances that disrupt
translation, transcription, or other basal processes [65]. Ongoing studies are examining
such mechanisms in the context of these genetically modified mouse liver models.

The important question arises: when is the administration of ascorbate safe and
effective as an antioxidant, and when might it be dangerous? Clearly ascorbate, likely
through in vivo oxidation to DHA, can consume hepatic GSH and disulfide reducing
power. However, the ability of mice with TrxR1/Gsr-null livers to survive at all emphasizes
that, in normal hepatocytes, the NADPH-fueled disulfide reductase systems can generate
far more reducing power than is needed for survival [23]. We expect that cells in which
these systems are robust will not be adversely affected by ascorbate supplementation, as
noted for the control mice in the current study. Therefore, for combatting exposures that
do not inhibit TrxR1 and Gsr, ascorbate supplementation could be beneficial. By contrast
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however, the current study shows that, when TrxR1 and Gsr are disrupted, as might occur
with many electrophilic organic or metallic toxins or drugs [54], ascorbate supplemen-
tation could be detrimental. Consistent with this, the electrophilic metalloid arsenite is
known to be a potent inhibitor of TrxR1 and likely also of Gsr [50,55,56]. Ascorbate sup-
plementation was shown to increase lipid oxidation in cells challenged with arsenite [66].
Similarly, the reactive hepatic metabolite of acetaminophen, N-acetyl-p-benzoquinone
imine (NAPQI), directly and potently inhibits TrxR1 and disrupts the GSH pathway [48].
Although acetaminophen overdose is associated with physiological responses in the liver
that include oxidative damage [51], it might be prudent to caution against including ascor-
bate supplementation in therapeutic regimes to treat this condition. As in the mouse
models presented here, ascorbate supplementation might contribute to GSH depletion in
the NAPQI-challenged livers, and in the context of the metabolic stresses that these livers
are already under, this could be harmful.
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S3, GSSG levels measured under alkylating homogenization conditions. Figure S4, Effect of ascorbate
treatment on Nrf2-response gene expression in liver.
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