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Abstract: In arid regions, irrigation scheduling optimization is efficient in coping with the shortage
of agricultural water resources. This paper developed a simulation–optimization model for irrigation
scheduling optimization for the main crop in an arid oasis, aiming to maximize crop yield and
minimize crop water consumption. The model integrated the soil water balance simulation model and
the optimization model for crop irrigation scheduling. The simulation model was firstly calibrated and
validated based on field experiment data for maize in 2012 and 2013, respectively. Then, considering
the distribution of soil types and irrigation districts in the study area, the model was used to solve the
optimal irrigation schedules for the scenarios of status quo and typical climate years. The results
indicated that the model is applicable for reflecting the complexities of simulation–optimization
for maize irrigation scheduling. The optimization results showed that the irrigation water-saving
potential of the study area was between 97 mm and 240 mm, and the average annual optimal yield of
maize was over 7.3 t/ha. The simulation–optimization model of irrigation schedule established in
this paper can provide a technical means for the formulation of irrigation schedules to ensure yield
optimization and water productivity or water saving.

Keywords: maize; irrigation scheduling; simulation; optimization; simulation–optimization model

1. Introduction

Agriculture is the biggest consumer of the world’s water resources by far, as irrigated agriculture
uses about 70% of the world’s freshwater withdrawals [1,2]. This amount is already insufficient to
fulfil actual irrigation needs and is expected to decrease in the next few years due to the intensifying
competition with other users, especially in arid and semi-arid regions.

In the arid land of northwest China, agricultural water consumption accounts for approximately
90% of the total water use [3]; however, the average available of water is only 5.8% of the average level
in China. The second largest inland river basin of China, the Heihe River Basin, located in the arid
zones of northwest China, is the main food production zone, producing a quarter of Chinese corn seed.
Agricultural water use in the middle-reaches accounts for 96% of the total water use, with 86% of the
irrigation water coming from Heihe River [4,5]. The amount of water diverted from Heihe River to the
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middle-reaches should be reduced by one third since the year 2001 with the implementation of the
Water Diversion Plan, since severe ecological problems downstream were caused by water scarcity [6].
Thus, effective irrigation water management, such as irrigation scheduling optimization, will be very
helpful in coping with the shortage of agricultural water resources in those regions [7,8].

Generally, the impacts of different irrigation strategies can be understood by using agro-hydrological
simulation models. Simulation models can vividly describe the dynamics of crop growth and soil water
balance under various irrigation schedules and meteorological factors. After proper calibration and validation,
these simulation models can be adopted to do scenario analysis for searching preferable management strategies.
For example, AquaCrop, SWAP, the soil water balance simulation model, Hydrus, etc., are popular simulation
models used to simulate farmland crop growth or water consumption/supply [9–12]. Such simulation
models are good at quantitatively describing the effects of various irrigation water management
strategies on the hydrological processes in farmland. However, they could only be used to answer the
“What if?” question [13]. This means that the better irrigation water management strategy is based on
scenario analysis of several user-defined alternative scenarios. In scenario simulation, a number of
pre-specified water management strategies are firstly evaluated by comparing the simulation results.
Then, the strategy with better results is recommended. The recommended strategy is generally the
best one among the chosen options, but it is unlikely to be the globally optimal one [14]. To get a truly
global optimum, optimization methods must be combined with simulation models to derive optimal
irrigation strategies [13,15].

Aside from simulation modeling, optimization methods are another effective way to solve the
problems of irrigation water management [16]. Optimization methods describe and generalize the
irrigation system by establishing a series of mathematical equations, and using optimization solution
technology to get the optimal solution [17]. Optimization objectives, constraints, and solution methods
are the three basic elements for optimization models. A multitude of optimization models for water
allocation or irrigation scheduling have been developed, using such optimization techniques as linear
programming, non-linear programming, and dynamic programing, etc. [18–22]. However, optimization
models cannot reflect the process of crop growth or water movement as simulation models.

To break the limitations of both simulation modeling and optimization methods, they can be
internally or externally linked together [23]. The genetic algorithm (GA) is one of the most famous
artificial intelligence search methods and it has been frequently used to solve optimization problems in
water management. Compared with other traditional optimization methods, GA is more likely to be
used in solving the simulation–optimization model and it has been widely used in irrigation water
allocation [24]. Taking into account the considerations above, the main objective of this study is to
develop a simulation–optimization model of irrigation scheduling optimization for the main crop in
an arid oasis, aiming to maximize crop yield and minimize crop water consumption.

2. Materials and Methods

2.1. Study Area and Data Collection

The area of interest is the middle-reaches of the Heihe River Basin with 17 irrigation districts
and its geographic location is shown in Figure 1. It covers an area of 11,352 km2, 23% of which is
irrigated farmland [25]. The typical crop in this region is maize, which accounts for 48% of the irrigated
land [25]. The study area has a temperate arid climate with the mean annual temperature varying from
273.15 K to 278.15 K. The average annual precipitation is 136.5 mm and the average annual potential
evaporation is 1154 mm [26]. The groundwater level is in the range of 1300 m to 1690 m [26]. Due to
the limited precipitation, irrigation is required during the whole crop growing season (from April to
October) with water diverted from either the Heihe River or pumped from the aquifer [27].

The collected data mainly contains irrigation data, soil characteristics, meteorological data and
field observation data of soil moisture. Soil moisture was sampled at 20 cm intervals down to 110 cm
below ground surface using the gravimetric sampling method every 10 days during the crop growing
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period in 2012 and 2013, with three replicates. The irrigation data for crops in different irrigation districts
were collected from the Zhangye Statistics Yearbook. For details, the irrigation amounts for maize in
different irrigation districts ranged from 360 mm to 1184 mm during 2001 to 2010. The classification
map of soil textural classes was based on our survey in 2014. The sampling units for the data were
about 5 km. The details of the samplings can be found in a previous study [25]. Here, we used the
main soil types in the farmland, and the details are shown in Figure 2 and Table 1. Meteorological
data during 1963 to 2016, (i.e., precipitation, relative humidity, sunshine hours, average temperature,
air temperature, and wind speed at Zhangye weather station (38◦56′ E, 100◦26′ N, 1482.7 m)) were
obtained from the China Meteorological Data Sharing Service System (http://data.cma.cn/).Agronomy 2020, 10, x FOR PEER REVIEW 3 of 16 

 

 
Figure 1. Geographic location of the study area and distribution of maize. 

The collected data mainly contains irrigation data, soil characteristics, meteorological data and 
field observation data of soil moisture. Soil moisture was sampled at 20 cm intervals down to 110 cm 
below ground surface using the gravimetric sampling method every 10 days during the crop growing 
period in 2012 and 2013, with three replicates. The irrigation data for crops in different irrigation 
districts were collected from the Zhangye Statistics Yearbook. For details, the irrigation amounts for 
maize in different irrigation districts ranged from 360 mm to 1184 mm during 2001 to 2010. The 
classification map of soil textural classes was based on our survey in 2014. The sampling units for the 
data were about 5 km. The details of the samplings can be found in a previous study [25]. Here, we 
used the main soil types in the farmland, and the details are shown in Figure 2 and Table 1. 
Meteorological data during 1963 to 2016, (i.e., precipitation, relative humidity, sunshine hours, average 
temperature, air temperature, and wind speed at Zhangye weather station (38°56′ E, 100°26′ N, 1482.7 
m)) were obtained from the China Meteorological Data Sharing Service System (http://data.cma.cn/).  

Figure 1. Geographic location of the study area and distribution of maize.
Agronomy 2020, 10, x FOR PEER REVIEW 4 of 16 

 

 

Figure 2. Distribution of the soil samples and soil types. 

Table 1. The soil types along the soil profile. 

Soil Type Soil Texture 
0–80 cm 80–140 cm 

T1 Silt loam Silt loam 
T2 Silt loam Sandy loam 
T3 Silt loam Loam 
T4 Loam Loam 

2.2. Soil Water Balance Simulation Model 

Maize land is divided into various maize units according to different soil types and irrigation 
districts. The items of water balance in the root zone of each maize unit include the water input, output, 
and changes of soil water storage. The water balance equation can be described by Equation (1) [11]: 

+Δ = − = + − −t t t t t stW W W P I ET Q1  (1)

where ΔW is the change of water storage in the root zone at the tth day (mm) (positive means increase), 
Wt+1 and Wt are the soil water storage at the beginning of the (t + 1)th and tth day (mm), Pt, It, ETt,, and 
Qst are precipitation, irrigation depth, evapotranspiration, and water flux at the bottom of the root zone 
at the tth day (mm). Qst can be calculated by Equation (2) [28], with positive values referring to deep 
percolation from the root zone to the lower zone and negative values indicating upward recharge from 
the lower zone to the root zone: 

( )=
b

t
st t c

f

WQ a W W
W

 
⋅ ⋅ −  
 

 (2)

where Wf = θf∙L is the field water capacity (mm), θf is soil moisture at field capacity (m3/m3), L is the 
depth of root zone (mm), Wc= θc∙L is the critical value of water storage corresponding to zero flux at the 
bottom of the root zone (mm), θc is the critical rate of water storage (m3/m3), and a and b are empirical 
coefficients (dimensionless). Values of θf, θc, a, and b are obtained through model calibration. 

The evapotranspiration ETt can be calculated by Equation (3) [29]: 

Figure 2. Distribution of the soil samples and soil types.

http://data.cma.cn/


Agronomy 2020, 10, 935 4 of 15

Table 1. The soil types along the soil profile.

Soil Type Soil Texture
0–80 cm 80–140 cm

T1 Silt loam Silt loam
T2 Silt loam Sandy loam
T3 Silt loam Loam
T4 Loam Loam

2.2. Soil Water Balance Simulation Model

Maize land is divided into various maize units according to different soil types and irrigation
districts. The items of water balance in the root zone of each maize unit include the water input, output,
and changes of soil water storage. The water balance equation can be described by Equation (1) [11]:

∆W = Wt+1 −Wt = Pt + It − ETt −Qst (1)

where ∆W is the change of water storage in the root zone at the tth day (mm) (positive means increase),
Wt+1 and Wt are the soil water storage at the beginning of the (t + 1)th and tth day (mm), Pt, It, ETt,
and Qst are precipitation, irrigation depth, evapotranspiration, and water flux at the bottom of the root
zone at the tth day (mm). Qst can be calculated by Equation (2) [28], with positive values referring to
deep percolation from the root zone to the lower zone and negative values indicating upward recharge
from the lower zone to the root zone:

Qst = a ·
(

Wt

W f

)b

· (Wt −Wc) (2)

where Wf = θf·L is the field water capacity (mm), θf is soil moisture at field capacity (m3/m3), L is the
depth of root zone (mm), Wc= θc·L is the critical value of water storage corresponding to zero flux
at the bottom of the root zone (mm), θc is the critical rate of water storage (m3/m3), and a and b are
empirical coefficients (dimensionless). Values of θf, θc, a, and b are obtained through model calibration.

The evapotranspiration ETt can be calculated by Equation (3) [29]:

ETt = Kst ·Kct · ET0t (3)

where ET0t is the reference evapotranspiration at the tth day (mm) and can be calculated by
Penman–Monteith equation, recommended in Allen et al. [29]. Kct is the crop coefficient at the tth
day (dimensionless), which varies with specific crop characteristics and growing stages, and is normally
obtained through field experiments. The values of Kct for maize in this study are obtained according
to previous research in the same study area [30]. Kst is the soil water stress coefficient at the tth day
(dimensionless) and can be described by Equation (4) [31]: Kst =

ln(Awt+1)
ln 101

Awt =
θt−θw
θ f−θw

(4)

where θt is the average soil moisture (m3/m3), and θw is the wilting soil moisture (m3/m3).
In this study, normalized root mean square error (NRMSE) and the coefficient of determination (R2)

were used to evaluate the performance of the simulation model. These indexes can be calculated as:

NRMSE =
100

Mave

√√√
1
N

N∑
n=1

(Mn − Sn)
2 (5)
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R2 =

[
N∑

n=1
(Mn −Mave)(Sn − Save)

]2

N∑
n=1

(Mn −Mave)
2 N∑

n=1
(Sn − Save)

2
(6)

where N is the number of the measurement points, Sn is the simulated value, Mn is the measured value,
Mave and Save are the average of the measured values and the simulated values, respectively.

The performance of the simulation model was firstly calibrated based on the field experiment
data for maize under various soil types in the Yingke Irrigation District in the Heihe River Basin in
2012, and then validated using the data in 2013.

2.3. Optimization Model for Irrigation Scheduling

In the optimization model for irrigation scheduling, crop yield is targeted to be maximized and
crop water consumption to be minimized, with constraints of irrigation data and irrigation amount.
The objective functions and constraint functions are as follows:

Objectives :

 maxY = max
(
αET2 + βET + C

)
minET

(7)

Subject to :
{

di < di+1 (i ≤ n− 1, i ∈ N∗)
Imin ≤ Ii ≤ Imax (i ≤ n, i ∈ N∗)

(8)

where Y is the crop yield (t/ha), which is calculated by the water production function (αET + βET + C).
α, β, and C are the empirical parameters obtained from the previous research [32] in the same study
area. For details, α = −0.0148, β = 16.99, C = 2468.67. ET is crop water consumption simulated by
the soil water balance simulation model (mm). d is a vector composed by irrigation data di listed in
sequence. n is the total irrigation times during the crop growing season. Ii is the irrigation depth of the
ith irrigation (mm). Imin and Imax are the minimum and maximum irrigation depths (mm); minimal
irrigation depth is set to be zero and maximal irrigation depth is the irrigation amount obtained from
the Zhangye Statistics Yearbook for each irrigation district.

The optimal model for irrigation scheduling is solved by the improved non-dominated sorting genetic
algorithm (NSGA-II) [33]. There are six steps in NSGA-II (i.e., population initialization, non-dominated
sorting, crowding distance calculation, selection, crossover and mutation, and recombination and
selection). In this study, the initial irrigation scheduling is generated randomly, and then the irrigation
dates are sequenced to generate the initial solution with normal irrigation sequence. By using the initial
solution for genetic operations, such as crossover and variation, the Pareto optimal solution set is finally
obtained. In total, 50 individuals were used for 200 generations of genetic optimization in this study.

2.4. Framework of Simulation–Optimization Model

The framework of the simulation–optimization model for irrigation scheduling contains two parts
(i.e., the simulation part and the optimization part), as shown in Figure 3. In the first part, the soil water
balance simulation model was calibrated and validated with the experimental data of soil moisture.
Then, the simulation model was combined with water production functions to simulate the items of
soil water balance and calculate the crop yield for the optimization part. Finally, the optimal irrigation
scheduling was solved by NSGA-II under different scenarios.

2.5. Scenario Designs

In this study, two types of scenarios (status quo and scenarios of different typical climate years)
were set to find out the optimal irrigation scheduling to maximize crop yield and minimize crop water
consumption. In status quo, the meteorological data during 2001 to 2010 were used to get the optimal
irrigation scheduling. Typical climate years, including wet, normal, and dry years, were determined
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according to 25%, 50%, and 75% precipitation assurance by the optimum curve-fitting method based
on the historical meteorological data (1963–2016) at Zhangye Weather Station. The daily precipitation
and reference evapotranspiration in different scenarios are shown in Figure 4.
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3. Results and Discussion

3.1. Model Calibration and Validation

The soil water balance simulation model was calibrated by the field observations of averaged soil
moisture in 0–110 cm depths in 2012, and further calibrated by observation data in 2013. The comparisons
of simulated and measured soil moistures under different soil types for model calibration and validation
are shown in Figure 5, and the calibrated parameters are presented in Table 2. The results show that
the simulated values were in accordance with the observations, with the sharp increase in soil moisture
responding to water input through irrigation/precipitation, followed by a gradual decrease due to
continuous evapotranspiration. The values of NRMSE were all less than 6.5% and R2 were all above 0.76,
which indicated a good performance of this model, which was capable of being used for predicting the
soil moisture and water balance of maize during the crop growth season in the study area.

Table 2. Calculated parameters of soil water balance simulation model.

Soil Type θf (m3/m3) θc (m3/m3) θw (m3/m3) a b

T1 0.35 0.31 0.10 0.11 4.97
T2 0.35 0.31 0.15 0.12 4.77
T3 0.34 0.31 0.07 0.12 4.97
T4 0.34 0.31 0.09 0.14 4.51
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3.2. Optimal Irrigation Schedulings under Status Quo

3.2.1. Optimal Irrigation Scheduling for Different Maize Units

The simulation–optimization model was used to optimize the irrigation schedules for maize under
different soil types in different irrigation districts from 2001 to 2010 with the objective of maximum
crop yield and minimum crop water consumption. The results of optimal irrigation schedules under
the same soil types in different irrigation districts were similar. In this section, the results of maize
units in the Daman Irrigation District were chosen as an example to be listed and discussed. Figure 6
shows Pareto solution curves between maximal crop yield and the minimal crop water consumption of
maize under different crop types during 2001 to 2010.

It can be seen from Figure 6 that the Pareto solution curves showed a trend of inclining to the top
right, indicating the obvious conflict relationship between the two objectives. This means that, with the
improvement of the crop water consumption target (decrease in water consumption), the crop yield
target deteriorated (decrease in production). In other words, with the increase in water consumption,
the optimal crop yield would show a gradual increase trend. However, the optimal crop yield would
not increase but would decrease slightly with the increase in crop water consumption, when the
crop water consumption increased to a certain extent (564 mm in T1, 552 mm in T2, 570 mm in T3,
and 594 mm in T4). The Pareto solution curves in different years almost coincided. The reason was
that the yield model (water production function) is a quadratic water production function, and the
shape of the Pareto curves would be similar to those of water production curves. For different years,
the meteorological data (precipitation and reference evapotranspiration) and the maximum irrigation
depths of different irrigation districts were different. If the irrigation depths for constrains of the
optimization model were appropriate, the maximum crop yield (the highest point of the Pareto curve)
would be obtained. Pareto curves under different soil types showed that all the curves had the same
shapes and different curvatures. Different curvatures of the Pareto curves were mainly caused by the
differences in soil water transformation in various soil types under the same irrigation conditions.
The recommended irrigation schedule for different soil types was the schedule at the highest point of
the Pareto curve, (i.e., the irrigation schedule with the highest crop yield). Table 3 lists the results of
the irrigation schedule recommendation in 2010.
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Table 3. Optimal irrigation schedules under different soil types in Danman Irrigation District in 2010.

Soil Type T1 T2 T3 T4

Irrigation Schedule Date
(DAP 1)

Depth
(mm)

Date
(DAP 1)

Depth
(mm)

Date
(DAP 1)

Depth
(mm)

Date
(DAP 1)

Depth
(mm)

First irrigation 30 62 20 47 14 88 9 15
Second irrigation 46 51 45 50 44 66 28 14
Third irrigation 70 81 66 57 65 87 54 82

Fourth irrigation 97 80 88 85 95 62 84 65
1 DAP means “days after planting”.

3.2.2. Water Balance under Optimal Irrigation Scheduling

Figure 7 shows the terms of water balance and crop yields before and after irrigation scheduling
optimization under different soil types in the Daman Irrigation District from 2001 to 2010. The results
show that the amount of irrigation water in each year would be significantly reduced with the amount
of reduction in soil water storage, and the amount of evapotranspiration would not change much
after the optimization of irrigation scheduling. This indicates that soil water storage in farmland
would be fully utilized and finally converted into evapotranspiration, and then the irrigation water
resources could be saved after irrigation scheduling optimization. The optimal irrigation depth
ranged from 147 mm to 341 mm with the highest irrigation water saving potential being 281 mm
after optimization, which was under the T4 soil type in 2003. The highest crop yield after irrigation
scheduling optimization was about 7.32 t/ha. The results of the crop yields showed that the effect of
irrigation optimization on crop yield was little under the T1 and T2 soil types. While, under the T3
and T4 soil types, the crop yields obviously increased after irrigation scheduling optimization from
2003 to 2005. Crop yield was calculated by the water production functions in this paper. If there were
little differences in evapotranspiration before and after irrigation scheduling optimization, the final
crop yield would not change much. From 2003 to 2005, the evapotranspiration before irrigation
optimization was relatively low under the T3 and T4 soil types, so the crop yields were relatively small
before optimization. The crop yields were also nearly 7.28 t/ha under this condition, so the increase in
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the space of the crop yield is relatively small, and the improvement of crop yield was not obvious.
However, the main significance of this work is to save irrigation water resources and to ensure crop
yields by irrigation scheduling optimization.Agronomy 2020, 10, x FOR PEER REVIEW 10 of 16 
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Figure 7. Mean values of soil water consumption and supply (positive means supply, negative means
consumption, ET means evapotranspiration, Q means deep percolation, ∆W means changes of water
storage, Pre and Aft mean before and after optimization) during 2001 to 2010.
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3.2.3. Spatial Distribution of Soil Water Consumption, Supply and Crop Yield

Figure 8 shows the distributions of average values of annual evapotranspiration (ET), deep
percolation, irrigation depths, and the crop yields during the crop growth seasons from 2001 to 2020,
before and after irrigation scheduling optimization. It can be seen that the spatial distribution of ET
was more uniform after optimization than before optimization, ranging from 558 mm to 617 mm before
optimization and 541 mm to 575 mm after optimization. The deep percolation was less after irrigation
scheduling optimization than that before optimization (i.e., the amount of water exchange between the
root zone and the subsoil was 99 mm upward recharge and 147 mm deep percolation); while after
irrigation scheduling optimization, it was 70 mm upward recharge and 110 mm deep percolation,
indicating that the inefficient water consumption of deep percolation would be reduced in the process
of maize growth after irrigation scheduling optimization. The irrigation depths obviously changed
after irrigation scheduling optimization. For details, irrigation depth would decrease to 218–337 mm
after optimization from 315–625 mm before irrigation scheduling optimization. The crop yield was
both above 7.3 t/ha before and after irrigation scheduling optimization, but after optimization the
spatial distribution of the crop yield was more uniform. The crop yield in the northwest was slightly
lower than it in other places before and after optimization, because the irrigation quota was relatively
lower than it in other places. Under the lower irrigation quota, the final optimization solution of the
Pareto curve would not reach the highest yield point, resulting in the lowest optimization yield.
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Figure 9 shows the average values of annual evapotranspiration (ET), deep percolation, irrigation
depths, and the crop yields of different irrigation districts during the crop growth seasons from 2001 to
2020 before and after irrigation scheduling optimization. The results show that the spatial distribution of
water consumption and yield for the irrigation district was highly variable, which was caused by greatly
differing maize planting areas of different irrigation districts. The total crop water consumption of each
irrigation district ranged from 2.91 × 105 m3 to 1.65 × 108 m3 before irrigation scheduling optimization,
and from 2.71 × 105 m3 to 1.57 × 108 m3 after optimization. The total yield of each irrigation district was
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between 300 tons and 310,000 tons before and after optimization, which indicated that the irrigation
scheduling optimization in this study mainly contributed to decreasing crop water consumption.

Agronomy 2020, 10, x FOR PEER REVIEW 12 of 16 

 

 

Figure 9. Annual evapotranspiration and crop yields of maize for different irrigation districts during 
2001 to 2010 before and after irrigation optimization conditions. 

3.3. Optimal Irrigation Schedulings under Different Climate Years 

3.3.1. Water Balance under Optimal Irrigation Scheduling 

Figure 10 shows the soil water balance and crop yield of different soil types in the Daman 
Irrigation District after irrigation scheduling optimization under different climate years. It can be seen 
that there was only one term of water consumption during wet year (i.e., evapotranspiration). Under 
wet conditions, precipitation, irrigation and soil water in both the root zone and soil below the root 
zone were all used for evapotranspiration. Under the normal year, evapotranspiration was the main 
consumption item of soil water balance. Under the T2, T3, and T4 soil types, there would be a small 
amount of deep percolation under normal conditions. There would also be a small amount of deep 
percolation in the T2 soil during the dry year, while in the other soil types there would be only 
evapotranspiration as water consumption under dry conditions. The results of irrigation scheduling 
optimization show that the optimization could help in making full use of water resources and 
ensuring crop yield. Table 4 shows the specific irrigation schedules for maize of different soil types. 
It can be seen from the table that the optimal irrigation schedules for different soil types were quite 
different, which was caused by the solution algorithm of this optimization model. In the process of 
solving the optimization model, the genetic algorithm was constantly searching out the solution set 
that meets the conditions, so there would be a large difference in the solution under the same 
situation. However, the simulation–optimization model for irrigation scheduling developed in this 
paper was aimed at providing a means to solve the optimal irrigation schedule in different situations. 
When solving practical problems in the future, this model can be used to solve the optimization of 
irrigation schedules according to the actual meteorological conditions and irrigation demands. 

 

Figure 9. Annual evapotranspiration and crop yields of maize for different irrigation districts during
2001 to 2010 before and after irrigation optimization conditions.

3.3. Optimal Irrigation Schedulings under Different Climate Years

3.3.1. Water Balance under Optimal Irrigation Scheduling

Figure 10 shows the soil water balance and crop yield of different soil types in the Daman
Irrigation District after irrigation scheduling optimization under different climate years. It can be
seen that there was only one term of water consumption during wet year (i.e., evapotranspiration).
Under wet conditions, precipitation, irrigation and soil water in both the root zone and soil below the
root zone were all used for evapotranspiration. Under the normal year, evapotranspiration was the
main consumption item of soil water balance. Under the T2, T3, and T4 soil types, there would be a
small amount of deep percolation under normal conditions. There would also be a small amount of
deep percolation in the T2 soil during the dry year, while in the other soil types there would be only
evapotranspiration as water consumption under dry conditions. The results of irrigation scheduling
optimization show that the optimization could help in making full use of water resources and ensuring
crop yield. Table 4 shows the specific irrigation schedules for maize of different soil types. It can be
seen from the table that the optimal irrigation schedules for different soil types were quite different,
which was caused by the solution algorithm of this optimization model. In the process of solving the
optimization model, the genetic algorithm was constantly searching out the solution set that meets the
conditions, so there would be a large difference in the solution under the same situation. However,
the simulation–optimization model for irrigation scheduling developed in this paper was aimed at
providing a means to solve the optimal irrigation schedule in different situations. When solving
practical problems in the future, this model can be used to solve the optimization of irrigation schedules
according to the actual meteorological conditions and irrigation demands.

3.3.2. Spatial Distribution of Soil Water Consumption, Supply, and Crop Yield

Figure 11 shows the distributions of evapotranspiration (ET) and yield under different climate
years after irrigation scheduling optimization. The results show that the spatial variability of ET in the
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dry year was the largest, ranging from 527 mm to 578 mm, followed by the normal year ranging from
559 mm to 585 mm, and the smallest was the wet year, ranging from 563 mm to 575 mm. The maximal
irrigation quota of the maize in the same irrigation district was the same, and the input data of
meteorological factors in the same meteorological year were the same, so the ET difference was mainly
caused by soil types. After irrigation scheduling optimization, the maximal yield was similar under
different climate years, ranging from 7.3 t/ha to 7.34 t/ha. This indicated that the highest crop yield can
be obtained if irrigation scheduling is optimized.Agronomy 2020, 10, x FOR PEER REVIEW 13 of 16 
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Figure 10. Soil water consumption and supply (positive means supply, negative means consumption,
ET means evapotranspiration, Q means deep percolation, ∆W means changes in water storage) under
different climate changes.
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Table 4. Optimal irrigation schedules under different soil types in Danman Irrigation District under
different climate changes.

Climate
Years

Soil Type T1 T2 T3 T4

Irrigation Schedule Date
(DAP 1)

Depth
(mm)

Date
(DAP 1)

Depth
(mm)

Date
(DAP 1)

Depth
(mm)

Date
(DAP 1)

Depth
(mm)

Wet

First irrigation 25 96 19 72 29 68 22 73
Second irrigation 50 90 48 91 51 46 37 18
Third irrigation 80 49 78 97 81 91 57 59

Fourth irrigation 91 91 91 50 106 54 83 64

Normal

First irrigation 24 15 24 85 27 66 21 58
Second irrigation 53 75 49 72 47 96 37 99
Third irrigation 76 98 75 98 71 58 61 32

Fourth irrigation 86 26 81 48 93 68 75 87

Dry

First irrigation 28 57 30 65 29 99 30 56
Second irrigation 49 14 44 79 50 76 47 37
Third irrigation 71 99 56 97 79 72 63 96

Fourth irrigation 94 96 74 99 95 83 72 48
1 DAP means “days after planting”.

The simulation–optimization model built in this study was coupled by the soil water balance
simulation model and optimization model. The crop yield was calculated by water production function,
which was related with the parameters. When other researchers use the model to solve problems in
other study areas, the parameters in water production function should be selected carefully or obtained
based on field experiments.

4. Conclusions

To optimize the irrigation scheduling for maize in an arid oasis, we established an irrigation
scheduling optimization model based on simulation and optimization. The simulation part is the
soil water balance simulation model and it was calibrated and validated by the monitoring data of
soil water in maize land of the Yingke Irrigation District from 2012 to 2013. The empirical water
production function is jointed to the optimization model, with the maximum crop yield and the
minimum water consumption as the objectives, and the maximum irrigation quotas of the maize fields
in the study area as the constraints. NSGA-II was used to solve the optimization model, with the
optimal irrigation schedules of the maize in different soil types of different irrigation districts under
historical meteorological years (2001–2010) and different typical climate years (wet year, normal year,
dry year). The main conclusions are as follows:

(1) The simulation model can reflect the soil water movement of maize filed during the crop growth
period in the study area well, with NRMSE less than 6.5% and R2 more than 0.76.

(2) The Pareto solution curve after irrigation scheduling optimization showed a trend of inclining to
the upper right, which shows that the yield objective is deteriorating (yield reduction) with the
improvement of the water consumption objective (water consumption reduction). The irrigation
schedule with the highest point of the Pareto curve (when the yield is the highest) can be selected
as the recommended optimal irrigation schedule.

(3) From 2001 to 2010, the irrigation water-saving potential of the study area was between 97 mm
and 240 mm, and the average annual optimal yield of maize was over 7.3 t/ha, which indicated
that the yield of maize could be obtained after reasonable irrigation scheduling optimization.

(4) The optimal irrigation schedules varied greatly in different typical meteorological years, but the
crop yield can be guaranteed between 7.3t/ha and 7.34t/ha. The simulation–optimization model
of irrigation schedule established in this paper can provide a technical means for the formulation
of irrigation schedules to ensure crop yield and save irrigation water consumption.
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