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Abstract: Predicting the availability and quality of freshwater resources is a pressing concern in the
Mediterranean area, where a number of agricultural systems depend solely on precipitation. This
study aims at predicting streamflow and nonpoint pollutant loads in a temporary river system in the
Mediterranean basin (Sulcis area, Sardinia, Italy). Monthly discharge, suspended sediment, nitrate
nitrogen, total nitrogen, mineral phosphorus, and dissolved oxygen in-stream monitoring data from
gauge stations were used to calibrate and validate the Soil and Water Assessment Tool model for the
period 1979-2009. A Sequential Uncertainty Fitting procedure was used to auto-calibrate parameter
uncertainties and model evaluation. Monthly simulation during the validation period showed a
positive model performance for streamflow with Nash—Sutcliffe efficiency and percent bias values of
0.7% and 18.7%, respectively. The simulation results at a watershed level indicate that the sediment
load was 1.13 t ha™! year™!, while for total nitrogen and total phosphorus, the simulated values
were 4.8 and 1.18 kg ha™! year™!, respectively. These results were consistent with the values of soil
and nutrient losses observed in the Mediterranean area, although hot-spot areas with high nutrient
loadings were identified. The calibrated model could be used to assess long-term impacts on water
quality associated with the simulated land use scenarios.

Keywords: hot-spot areas; nitrogen; river discharge; sediments; SWAT; water budget

1. Introduction

Freshwater availability and water quality play a critical role in ecosystem processes and related
services worldwide. In the Mediterranean area and south-western Europe, the increasing frequency of
drought events and related hazards and risks could affect the water supply (i.e., precipitation) and
atmospheric water vapor demand (i.e., evapotranspiration) and, in turn, river flow and soil moisture
dynamics [1]. Of particular concern are the direct effects on temporary water resources, characterized
by the recurrent onset and cessation of flow [2]. Apart from the effects on biotic communities, there is a
growing interest in long-term hydrological dynamics in intensive-agriculture watersheds. Extensive
research has shown that environmental processes governed by water flow, such as sediment loads and
nitrogen and phosphorus discharges in these environments, could seriously exacerbate freshwater
and groundwater pollution, salinity, and soil erosion [3-6]. The indirect effects of the modified
freshwater flux and water supply associated with the local climates” uncertainties will induce changes
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in plant growth and the productivity of crops due to drought and heat stress [7]. Again, contrasting
climate-driven land use changes and human pressure might increase the magnitude of land degradation
and associated ecosystem functions and services in the Mediterranean drylands [8,9]. This issue
is particularly pressing for Mediterranean farmers and their ‘adaptive capacity’ to deal with water
scarcity [10], considering that the expected effects of climate change at a regional level could result in
lower farm incomes compared to northern regions [11], in turn resulting in regional imbalances and
economic winners and losers [12]. One of the greatest challenges in these areas is the development
of pragmatic mitigation strategies and sustainable management options for resolving the competing
claims on bioresource availability and water demands [13].

In this sense, some adaptation strategies promote land use scenarios and sustainable landscape
designs integrating biomass and bioenergy production on marginal and underutilized lands into
semi-arid environments [14,15]. These scenarios allocate both bioenergy and food crops across the
landscape with the aim of maximizing ecosystem services and yields, and in the meantime, resolve
land and water use competition. Land suitability evaluation for spatial configuration helps the shift
from “land-sharing” to “land-sparing” strategies [16]. Notwithstanding the importance of a holistic
evaluation of the environmental sustainability with key indicators [17], bioenergy value chain studies in
European countries have tended to focus on economic analyses, the potential biomass yield and quality,
the energy balance, greenhouse gas emissions, and logistics management [15,18,19]. Less attention
has been paid to addressing sustainability aspects linked to the water—Energy nexus with spatially
explicit land use management analyses. However, despite the growing interest in supporting bioenergy
crops promoted by governmental mandates and European policies [20], ongoing and emerging issues
concerning agricultural nonpoint source pollution, water resources and related use efficiency, and
water quality and its sustainable use in a scenario of large-scale bioenergy crop expansion have been
highlighted [21].

Against this background, the use of modeling approaches at the watershed scale is fundamental for
enabling decision-makers to address environmental issues related to actual land management practices
or for testing the future implementation of best management practices and alternative scenarios.
Several water quality models have been used worldwide by researchers and government agencies to
investigate a range of ecosystems (e.g., ponds, wetlands, and reservoirs), model processes (e.g., erosion,
evapotranspiration, and nutrient modeling), and scenario analyses (e.g., crop rotation and fertilizer
application) at different geographical scales. Process-based catchment models can simulate water
fluxes and water-quality variables like sediments, nitrogen, phosphorus, pesticide balances, metals,
pH, salts, pathogens, algal biomass, and the dissolved oxygen concentration for rivers and receiving
waterbodies. A recent literature review on water quality and erosion models [22] confirms that the
Soil and Water Assessment Tool (SWAT) [23] is the most commonly-used model at a river-basin scale
due to the robustness and flexibility of the modeling packages incorporated in the software [24]. The
user-friendly geographic information system (GIS) interface and the open access source code library
facilitate the widespread use of this tool for addressing water quality issues and the implementation of
agricultural best management practices [25,26].

One major issue in hydrologic modeling prediction concerns the uncertainty in the result
accuracy, which can lead to misinterpretations and unrealistic conclusions or might limit management
applications. Although recent studies suggest the importance of multi-model set-ups for a more accurate
representation of catchment processes and spatial heterogeneity [27], few empirical investigations
have attempted to investigate long-term calibration and validation modeling errors in drought-prone
environments in Mediterranean regions.

The aim of this study is to develop a SWAT predictability model of the Sulcis area (Sardinia,
Italy) to simulate eco-hydrological variables at multiple spatial locations following robust statistical
evaluation criteria. An improved understanding of the impacts of land use on physical and biological
processes should assist future scenarios at a catchment scale that consider the inclusion of bioenergy
crops, as planned in the study area [28]. The specific objectives of this research were to (i) calibrate and
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validate the SWAT model by assessing the goodness-of-fit objective function values of the hydrological
model parameters using an extensive data set, and (ii) evaluate the impact of the present land use on
the water balance and spatialized water quality parameters at sub-basin and watershed scales.

2. Materials and Methods

2.1. Study Area

The Sulcis catchment is located in the southwest of Sardinia, Italy (WGS84 UTM32N, 39°10" north
latitude, 8°30" West longitude, Figure 1) and drains into the Mediterranean Sea. The catchment covers
an area of 77 km?, with an elevation ranging from 1 to 475 m above the mean sea level, characterized
by a mostly flat and, in some cases gently undulating, terrain [29].
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Figure 1. Geographical location of the Sulcis study area, Sardinia, Italy: (a) elevation, (b) soil type, and
(c) land use.

The area is characterized by a Mediterranean semi-arid climate with a bimodal pattern of rainfall
distribution (i.e., maximum in the autumn and spring). The mean annual rainfall is 600 mm and
the mean annual temperature is 16 °C. The watershed is characterized by an extreme variability
of lithological and relief forms and consequently, highly variable soil types, vegetation cover, and
land use.

With regards to ecopedological characteristics, the northern part of the basin is characterized by
poorly-drained soils with a slow rate of water transmission and high runoff potential. In comparison,
the southern part is mainly dominated by well-drained soils with high infiltration rates and high or
moderate water transmission. As suggested by De Girolamo and Lo Porto [30] for a surrounding
watershed in the south of Sardinia, rainfall patterns exert a strong influence on the hydrological regime,
characterized by high flow in autumn and early spring, with extremely low or zero-flow recorded in a
river section during the summer months. As a result, water erosion, sediment, and nutrient movement
in the soil to the temporary river system towards the watershed outlet follows this seasonal pattern.

2.2. Data Collection and Processing

We used a geospatial dataset available from the Autonomous Region of Sardinia (RAS), including
a Digital Elevation Model (DEM), river network, soil map, and land use map. Climate datasets were
obtained from the National Centers for Environmental Prediction (NCEP) Climate Forecast System
Reanalysis (CFSR) [31]. Furthermore, flow data, sediment, and nutrient parameters were used as
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independent datasets for performing model calibration and validation. Table 1 provides, for each data
type, the scale or resolution, a description, and the data source.

Table 1. Input data sources used for the Soil and Water Assessment Tool (SWAT) model, calibration,
and validation.

Data Type Scale/Resolution Data Description Source

DEM 10m Elevation and slope elements [32]

Geographical representation and
Soil data 1:50,000 description of soil units and [33] 1
soil properties

High resolution geometry structure of

River network 1:10,000 [32]
stream reaches
. Spatial information on different types
Land use map 1:25,000 of physical coverage of the watershed 321
4 stations, ~38 km Rainfall, temperature, wind speed,
Weather data Years 1979-2009 solar radiation, and relative humidity 311

River discharge as a volume of water
flowing through a gauge station. Rio [34]
Flumentepido gauge station

Monthly (m3s71)

River discharge Years 1979-1992

Suspended sediment, nitrate-nitrogen,
Monthly (mg L) total nitrogen, mineral phosphorus,

Water quality data Years 2002-2009 and dissolved oxygen. Paringianu (331
and Is Achenzas gauge stations
Agriculture management Country level kg ha™! Application rate for fertilizers [36]

practices

! Unpublished data from an original survey of Hydroter scarl, provided by the Agricultural Research Agency of
Sardinia (AGRIS).

2.2.1. DEM and River Network

A DEM 10 m resolution [32] was used to derive the elevation and slope and delineate watershed
and sub-basin division. A detailed examination of the impact of the DEM on SWAT modeling showed
that fine resolution data would provide more accurate simulated surface runoff, sediment, and nutrient
load at a watershed level [37]. Furthermore, a predefined stream network shapefile was overlaid onto
the DEM to improve the extracted geomorphometric terrain characteristics, such as the river network
and channel loadings of the associated sub-basin, sub-basin outlets, and other water bodies as ponds
or wetlands.

2.2.2. Soil Data

The soil map [33] at a scale of 1:50,000 had 32 map units representing the main soil types of
the watershed. According to the United States Department of Agriculture (USDA) Soil Taxonomy
Classification [38], Cenozoic soil types characterized by acid effusive rocks (i.e., Typic, Vertic, and Lithic
Xerochrepts—Typic and Lithic Xerorthents) dominate the north-central part of the area. Pleistocene
soil types characterized by alluvial deposits and eolian sandstones (i.e., Typic, Aquic, and Ultic
Palexeralfs—Typic and Calcic Haploreralfs) dominate the central and southern part of the basin,
while landscapes on alluvial deposits and conglomerates, eolian deposits, and calcareous crusts of
the Holocene (Typic, Vertic, and Aquic Xerofluvents—Typic Xeropsamments) are predominant in the
western border or occur as stripes along the main streams (Figure 1b).

Associated soil survey profiles of this dataset were used for deriving information about the physical
characteristics of the soil, such as the hydrologic group (i.e., infiltration characteristics); organic carbon
content; and silt, sand, and clay contents of soil layers required to parametrize the associated table
in the model. Unavailable soil properties, such as the bulk density, saturated hydraulic conductivity,
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and available water capacity, were estimated with pedotransfer functions in the Soil-Plant-Air-Water
model (SPAW) [39] using the soil water tension equations proposed by Saxton and Rawls [40].

2.2.3. Land Use and Agronomic Practices

A land use map at the scale of 1:25,000, with a minimum mapping unit of 0.75 ha and updated
in 2008, was used [32]. The dataset was reclassified following the 4th level Corine Land Cover
nomenclature [41] in a lookup table with 21 map units. In the northern part, although there is the
presence of rainfed farming for the production of durum wheat, rangelands, and pastures, land use is
predominantly natural and semi-natural. In contrast, the southern part is predominantly agricultural,
with the major crops being horticultural crops in the irrigated district (Figure 1c). Overall, the main
land use area includes cereal crops (20%), irrigated crops (26%), rangelands and pasture (19%), and to
a lesser extent, vineyards (3.6%) and forest (9%). Detailed agronomic management practices for the
main crops were collected to reflect the real application rate of fertilizers and standard crop removal
of nutrients in the study area [36]. Cereals are fertilized with 75 kg N ha~! and 40 kg P ha~!, while
vineyards are fertilized with 50 kg N ha™! and 40 kg P ha™!.

2.2.4. Climate Data

A daily climate dataset at a 0.3125 degrees (~38 km x 38 km) spatial resolution for four weather
stations, including the precipitation (mm), minimum and maximum air temperature (°C), solar
radiation (MJ] m~2), relative humidity (fraction), and wind speed (m s71), was provided by CFSR due
to the inconsistency of local meteorological stations within the study area. The gridded dataset was
designed and implemented as a global, high resolution, coupled atmosphere-ocean-land surface-sea
ice system, to provide the best estimate of the state of these coupled domains over a given period. The
database was completed over the 36-year period from 1979 through 2014 and is available for download
for a given location using the interactive web map application [31].

2.2.5. River Discharge Data

Stream river discharge records (m? s7!) at monthly time steps (period of 1 January 1978 to 31
December 1992) [34] for the Flumentepido gauge station located on the Rio Flumentepido stream
(Figure 1a) were used. This gauge station was closed after 1992 and other stream measurements are
unavailable for the watershed. As mentioned earlier, the seasonal hydrological records for this gauge
confirmed the intermitted regime of the river, with zero-flow recorded during the summer months and
an evident rapid rise of peaks in winter months.

2.2.6. Water Quality Data

Grab sample concentrations for the period March 2002-December 2009 were available for two
gauging stations, located on the “Rio Flumentepido” stream (namely “Paringianu” gauge) and on
the “Rio Palmas” stream (namely “Is Achenzas” gauge) (see Figure 1a). The first one is located
downstream of the discharge gauge station, representative of complex topographic areas characterized
by undulating terrain. Land use contributing to this gauge is 80% natural and semi-natural areas,
with extensive agricultural areas, mainly non-irrigated. The second one is representative of areas
characterized by flat terrain with intensive irrigated crop farming. Water quality parameters, reported
as mg L7}, include suspended sediments (SS), nitrate-nitrogen (NO3-N), total nitrogen (TN), mineral
phosphorus (P,,;,), and dissolved oxygen (DO), for a total of 70 and 87 samples for Paringianu and Is
Achenzas gauges, respectively. This dataset is put together and maintained by the RAS Environmental
Protection Agency service (ARPAS) [35] at a monthly time step. Laboratory analyses were performed
according to the standard methods proposed by Capri et al. [42] for the examination of water and
wastewater, ensuring quality control and assurance procedures of the dataset.
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2.3. The SWAT Model

SWAT is a continuous-time, spatially-distributed model used to assess the impact of land use
management on the hydrological cycle and material transfer (soil, nutrient, and organic chemical
transport and fate) at the watershed scale. SWAT delineated streams, basins, and sub-basins based
on DEM. The model divided each basin into hydrological response units (HRU) [43]. Multiple land
use-soil-slope options were considered for defining the HRU distribution in each sub-basin, as follows:
10% threshold for land use, 10% for soil, and 10% for slope. Three slope classes were determined, as
follows: 0-3%, 3-5%, and >5%. SWAT simulated the hydrologic cycle based on the water balance
equation (Equation (1)):

SWii=SWop i+ Z‘ 521(Rday i~ qurf i—Ea— Wseep i ng i)/ (1)

where SW;; is the final soil water content (mm) on day i, SWy ; is the initial soil water content on day i
(mm), t is the time (days), R4ay ; is the amount of precipitation on day i (mm), Qy,f; is the amount of
surface runoff on day i (mm), E,; is the amount of evapotranspiration on day i (mm), Wi ; is the
amount of water entering the vadose zone from the soil profile on day i (mm), and Qg ; is the amount
of return flow on day i (mm). The model routed the runoff flows generated by each HRU through
the channel network, thereby simulating the watershed. The daily total flow (Q;,; ; mm) through the
channel network was generated by the daily surface flow (Qsy,r; mm), lateral flow (Qjafior, i Mm),
and Qg ;- In this study, the Soil Conservation Service (SCS) curve number method [44] was used to
estimate Qg,¢;. The curve number method considered the soil infiltration rate, the land cover, the
vegetative season, and the antecedent soil moisture condition [45]. The soil erosion was simulated in
SWAT with the Modified Universal Soil Loss Equation (MUSLE) [46], while water quality components
were simulated with the QUAL2E model [47].

2.3.1. Model Set-Up

The model set-up was implemented using the ArcSWAT 2012 (version 10.21), an ArcGIS-ArcView
extension and graphical user interface for SWAT. First, the watershed was delineated and subdivided
into 98 sub-basins using the DEM and stream network presented in Table 1. At this stage, two sub-basin
outlets were manually added alongside the water quality gauging stations to ensure the comparability
of observed and simulated data. Second, multiple HRUs were defined using a threshold of 10-10-10
for the land use, soil, and slope, as optimal criteria to determine the number and type of HRUs in
each sub-basin. Third, weather data was inserted in order to generate data tables and create a built-in
database required for model configuration and to simulate soil, weather, plant cover, management
operations, and urban activities. Fourth, a default plant growth input table was edited to update the
application rate for fertilizers. Using dialog boxes, users can edit and personalize the model calibration
process with more precise information of the catchment or for a single HRU. Finally, the starting and
ending set-up date from January 1979 to December 2009 was defined for running the SWAT simulation
procedure. The SWAT auto-irrigation option was adopted for all sub-basins. For more details regarding
model theory and set-up, readers are referred to the documentation provided by Arnold et al. [48].
Considering that the SWAT channel output file is expressed as metric tons or kilograms during the
time step (i.e., daily, monthly, and annual), the LOAD ESTimator (LOADEST) software developed
by the United States Geological Survey [49] was used to generate comparable mean water quality
parameters expressed as kilograms per day.

2.3.2. Model Calibration and Validation

Calibration and validation were performed to improve and verify the predictive performances of
the model in reproducing the soil-water-atmosphere processes simulated. The model’s evaluation
performance was analysed according to the guidelines for carrying out the validation of hydrological
models proposed by Biondi et al. [50]. Available records were split into two segments: one was used
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for calibration (training samples) and the other for validation (test samples). Calibration and validation
were carried out at three gauge stations using time series of river discharge and multiple water quality
variables measured in the field, in order to capture the spatio-temporal variability within the catchment.
Graphical methods were used, including a comparison of the time series, scatter-plots, and spatial
maps. Four well-established quantitative statistics [51,52] were computed, namely, the Nash—Sutcliffe
Efficiency (NSE), the ratio of the root mean square error (RMSE) to the standard deviation (STDEV)
of observed data (RSR), the percent of model bias (PBIAS), and the Kling—Gupta Efficiency (KGE),
shown as

2
NSE — 1- | 2=t 5 =0 @)
Y, (0-0)2
RMSE Y105 - 8:)
RSR = STDEV e b )
ovs A
i, (0i- 0)
n
L (Si— 0O;) x 100
PBIAS =1 [ZE2_ — ()
i=1 O;

\/ o 2 g 2
KGE — 1 - (r—1)2+[(—5)—1] + [(7)—1], 5)
0o (@)

where S, is the simulated data, O; is the observed data, O is the observed mean value, 7 is the linear
correlation coefficient between the simulated and observed variable, ¢ is the standard deviation
(simulated and observed), § is the simulated mean value, and n equals the number of observations.
KGE is a modified version of NSE created to improve the components representing the bias and flow
variability [51].

NSE and KGE range from oo to 1, with a value closer to 1 producing the most accurate model,
while RSR ranges from 0 to large positive values, with a value closer to 0 producing a more accurate
model fit [53]. PBIAS values close to 0 produce the most accurate model, while a range +25% is
considered good, with positive values indicating overestimation and negative values indicating model
underestimation [54]. Moreover, the 95% prediction uncertainty (95PPU) of the model output variables
was calculated to quantify uncertainty ranges [55]. Performance evaluation criteria are based on the
rating values proposed by Moriasi et al. [52,53] for watershed-scale models, as follows: very good,
good, satisfactory, and not satisfactory model results. Based on the literature, a streamflow simulation
is considered satisfactory if NSE > 0.5, RSR < 0.70, and PBIAS < + 15%; a sediment simulation is
considered satisfactory if NSE > 0.45, RSR < 0.70, and PBIAS < + 20%; and a nutrient simulation is
considered satisfactory if NSE > 0.35, RSR < 0.70, and PBIAS < + 30%. Considering that the KGE
metric is mathematically different from NSE and the threshold cannot be simply compared [56], we
used this metric as an informative and multi-criterion diagnostic evaluation of the whole model.

The SWAT-CUP 2012 software was used following the protocol suggested by Abbaspour et al. [57]
for successful calibration and uncertainty analysis, by implementing the Sequential Uncertainty Fitting
procedure (SUFI-2). SUFI-2 is an iterative and optimization algorithm employed to fit a set of best
parameter ranges and compute a threshold assigned to different objective functions available in
the software.

For river discharge at Flumentepido gauge, the starting and ending date was constrained by the
common period of the dataset available for the watershed. Therefore, the period “1982-1985" was
set for model calibration, the period “1986-1992” was set for validation, and the period “1979-1981"
was set for the initial SWAT model warm-up. Firstly, the selected model parameters affecting the
discharge simulation process were inserted within SWAT-CUP calibration. Published studies of
similar catchments were identified to establish initial range values plausible for the study area and
Mediterranean climate conditions [2,4,58,59]. As indicated by De Girolamo and Lo Porto [30], we
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assumed a transposition of the groundwater parameters, soil parameters, and management parameters
for the same combination of input data. Secondly, a sensitivity analysis and manual trial-and-error
procedure was performed to identify the most relevant parameters to be optimized, deleting the
non-sensitive ones. Thirdly, the model ran the first iteration with at least 500 simulations, updating
new parameter ranges after each iteration and executing up to five iterations until attaining reasonable
objective function results. Finally, discharge validation was performed by inserting test samples and
updating the time-lap. Once the streamflow calibration was completed for the whole basin, the focus
turned to sediment and nutrient representation. For the water quality at gauge stations, calibration was
set to the period “2002-2005", while validation was performed for the period “2006-2009”, following
the same procedure explained above. For more details regarding SUFI-2 software capabilities and
details of method implementation, readers are referred to literature on the subject [57,60].

3. Results and Discussion

3.1. Calibration and Validation

Descriptive statistics of performance measures for streamflow and water quality at the monitoring
stations during calibration and validation are reported in Table 2. Graphs of long-term evolution
and scatter-plots showing the relationship between observed and simulated data are depicted in the
following figures.

Table 2. Goodness-of-fit objective function values of model calibration and validation.

Calibration Validation

NSE RSR PBIAS KGE NSE RSR PBIAS KGE

Gauge Station

Flumentepido (Rio Flumentepido)

discharge 0.50 0.71 2.2% 0.69 0.70 0.55 18.7% 0.60
Paringianu (Rio Flumentepido)

sediments 0.81 0.43 7.4% 0.84 0.78 0.47 4.5% 0.87
nitrate-nitrogen 0.71 0.54 -1.7% 0.73 0.60 0.63 -12.1% 0.69
total nitrogen 0.44 0.75 16.6% 0.62 0.74 0.51 13.2% 0.79
mineral phosphorus 0.68 0.57 31.6% 0.66 0.76 0.49 32.2% 0.66
dissolved oxygen 0.76 0.49 2.6% 0.87 0.53 0.68 15.4% 0.73
Is Achenzas (Rio Palmas)

sediments 0.42 0.76 8.3% 0.71 0.55 0.67 19% 0.61
nitrate-nitrogen 0.47 0.73 19.2% 0.68 0.67 0.57 11.3% 0.74
total nitrogen 0.48 0.72 36.4% 0.52 0.58 0.65 39.7 0.55
mineral phosphorus 0.42 0.76 42.9% 0.53 0.77 0.48 38.5% 0.59
dissolved oxygen 1 0.50 0.71 22.8% 0.67 0.55 0.67 - 0.42

! Dissolved oxygen validation data was calculated using a spreadsheet.

3.1.1. Streamflow Calibration and Validation

The goodness-of-fit objective function results of model calibration and validation for river
streamflow at Flumentepido gauge suggest that the model can adequately reproduce the hydrological
processes in the watershed (Table 2). For the calibration period, the NSE was 0.5 (satisfactory), the RSR
was 0.71 (unsatisfactory), the PBIAS was 2.2% (very good), and the KGE was 0.69. For the validation
period, the NSE was 0.70 (satisfactory), the RSR was 0.55 (good), the PBIAS was 18.7% (unsatisfactory),
and the KGE was 0.6. Overall, the performance measures suggest that the model configuration better
performs river discharge during validation than calibration, with higher NSE and RSR performance
statistics. The increase of PBIAS and slight decrease of KGE metrics indicate a weakness of the model
in terms of correctly simulating some peak flows and low flows, although the PBIAS value is <+30%,
which is the maximum acceptable model performance for streamflow [52]. Underestimations can be
seen in Figure 2, when moderate rainfall events occurred (e.g., February 1987 and 1991), while intense
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rainfall events (e.g., January—February 1986) corresponded to a well-plotted peak between observed

and simulated lines.
4

35

- 31
2
-
Es
) S e | | v >
Qo0 . . .0 ah
& - calibration validation
L
Q
2
T 15 {< warm-up period >
b
[
2
rxl_
0.5 1 \
v
\,
0 ”
mmooaﬁmmmme§mm®mr\l\ww
RRDDw P 9o B D H D Wy
53 §353535353538§355358358S:3

95PPU  mmmmmm Precipitation  =—#=— Discharge obs

Jan-89

Jul-89

o
@
c

Jul-90
Jan-91

== == == Discharge sim

Jul-91
Jan-92
Jul-92

50

r 100

F 200

F 250

F 300

F 350

r 400

+ 450

Precipitation (mm)

Figure 2. Observed and simulated long-term monthly average flow from the Flumentepido gauge,

Sulcis watershed.

The analysis of residuals errors (Figure 3) calculated as differences between the measured
and simulated values confirmed that there are seasonality effects for peak flows. Streamflow is
underestimated by the model, as indicated by the predominance of positive residuals during winter
months, while it is less frequently overestimated or quite well-estimated during the summer. The
underestimation of major peak flow events was reported in the literature for arid and semi-arid
watersheds and ephemeral streams [61,62] and could be explained by bias in the meteorological data
not spatially well-distributed, or more general errors in data inputs [63]. Nevertheless, uncertainties
associated with river streamflow can be seen in Figure 2 when looking at the 95PPU range that generally
well-bracketed the simulation line and confirming the model performance, as well as the quite large

uncertainty interval in terms of some peak flow.
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Figure 3. Box-plot showing the lower and upper quartile residual errors for river streamflow calculated
as differences between the measured and simulated values. The solid line represents the median, tails
represent the upper and lowest extremes, and markers represent the outliers.

3.1.2. Water Quality Calibration and Validation

The simulation results for Paringianu and Is Achenzas gauging stations suggest that the model can
adequately reproduce water quality parameters and their spatio-temporal evolution in the watershed.
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At Paringianu gauge (Table 2), the statistical goodness-of-fit objective function NSE for SS was 0.81
(very good) for calibration and 0.78 (good) for validation. Interestingly, the RSR and PBIAS values for
SS during calibration and validation corresponded to “very good” performance evaluation criteria,
<+10%, while KGE was 0.87 during validation. The NSE values for NO3-N were 0.71 (very good)
during calibration and 0.60 (good) during validation, and the RSR and PBIAS values corresponded to
“satisfactory” and “very good” ratings during validation, while the final KGE value was 0.69. The
model results for TN showed a performance rating of “very good” for NSE during validation, with
a value of 0.74; a PBIAS value of 13.2%, and a KGE value that reached 0.79. Similarly, P,,;, model
performance ratings were “very good”, with an NSE value of 0.76 and RSR value of 0.49, but with
an unexpected “not satisfactory” PBIAS value of 32.2%. The NSE, RSR, and PBIAS values for DO
were “very good” during calibration, while the model’s performance during validation was “good”
for NSE and PBIAS and “satisfactory” for RSR, and the KGE was 0.73. The temporal results for
monthly observed and simulated water quality loads at Paringianu gauge during calibration and
validation are shown in Figure 4. The graphical evaluation of SS concentrations reveals a good trend
between observed and simulated lines and consequently, the model’s ability to predict peaks and
recession curves.
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Figure 4.

Comparison of observed and simulated monthly

water quality concentrations for

(a) suspended sediment, (b) nitrate, (c) total nitrogen, (d) mineral phosphorus and (e) dissolved

oxygen at Paringianu gauge station.
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Uncertainties associated with SS plotted as the 95PPU range envelop most of the observations with
a large thickness. The scatter-plots in Figure 5a show the relationship between observed and simulated
monthly water quality. Model simulation predictions for SS at Paringianu gauge demonstrate a high
coefficient of determination with observed data, while the straight line for validation data indicates
a very good fit with the 1:1 line. The temporal trend in Figure 4 for NO3-N confirmed performance
values during calibration, while during model validation, overestimation occurred during February
and March 2006 and April 2007. On the contrary, while the TN graph simulation did not capture
peak events well during calibration, the validation plots showed a more regular trend, although the
underestimation of peaks was evident. The scatter-plot confirmed that the observed versus simulated
data straight-line did not fit very well with the 1:1 best fit line.
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Figure 5. Scatter-plots showing the relationship between observed and simulated SWAT monthly water
quality loads at Paringianu (a) and Is Achenzas (b) gauge stations. Empty circles indicate calibration
data and solid dots indicate validation data. Straight line indicates the best-fitting for validation data.

Overall, the SWAT model successfully simulated NO3-N and TN in the watershed, despite
the poor performance when simulating specific peaks, which could be attributed to the inadequate
simulation of processes and pathways for all reactive nitrogen, including environmental and in-stream
processes. Previous studies reported that the SWAT model tends to underestimate peaks in discharge
and consequently underestimates nitrate loads [64].

It is well-known that sediment and chemical fluxes are controlled by river regimes and
discharge [65]. Therefore, it is fundamental to improve the accuracy of the water flow model
and specific narrow-peaks. Moreover, Zeiger and Hubbart [66] highlighted the need to deeply improve
the loading algorithms and routines of all nitrogen pools (i.e., ammonium and nitrite) in SWAT
simulations because these are generally underestimated. Similar to the nitrogen pool, the temporal
trend for P,,;, showed peaks that were underestimated during validation and the 95PPU range did not
capture all uncertainty, and in fact, most of the data points in Figure 5a are below the straight line.
Finally, DO displayed a better temporal trend during calibration, while during the validation period,
there was an underestimation of some peaks. Figure 5a confirms the poor coefficient of determination
for validation data, with the straight line being under the 1:1 line.

At Is Achenzas gauge station (Table 2), the statistical goodness-of-fit objective function NSE
for SS was 0.42 (not satisfactory) for calibration and 0.55 (satisfactory) for validation. Similarly, the
RSR value for SS during calibration and validation moved from “not satisfactory” to “satisfactory”
performance evaluation criteria, while PBIAS was 19% and KGE was 0.61. The NSE values for NO3-N
were 0.47 (satisfactory) during calibration and 0.67 (good) during validation, the RSR and PBIAS values
corresponded to “good” and “very good” ratings during validation, and the final KGE value was 0.74.
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The model results for TN showed an NSE value 0.58 (good) during validation and RSR value of 0.65
(satisfactory), while PBIAS during calibration and validation was “satisfactory”.

Interestingly, the P,,;;, model performance rating for NSE moved from “satisfactory” to “very
good” during validation and the KGE value increased to 0.59, although the final PBIAS value was
38.5% (not satisfactory). Contrasting results were obtained for DO, with the NSE value of 0.55 being
obtained during validation (good), RSR value of “satisfactory”, and KGE value of 0.42. It should be
noted that SWAT-CUP was not able to carry out the DO validation procedure, so performance values
were calculated using a spreadsheet.

The temporal results of observed and simulated water quality concentrations at Is Achenzas gauge
in Figure 6 graphically confirm some contrasting results obtained when calculating goodness-of-fit
objective function values. The graphical plot of SS concentrations reveals that simulation generally
underpredicted summer concentrations, while peak concentrations were well-captured. Similarly, the
95PPU range does not envelop the underprediction line very well, while peaks are well-captured.
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Figure 6. Comparison of observed and simulated monthly water concentration loads for (a) suspended

sediment, (b) nitrate, (c) total nitrogen, (d) mineral phosphorus and (e) dissolved oxygen at Is Achenzas
gauge station.

The scatter-plots in Figure 5b show a good coefficient of determination for SS, but also
underpredicted points during validation below the straight line. A visual inspection of the
temporal trend in Figure 6 for NO3-N and TN showed a similar trend, with underestimations
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for specific peaks during calibration and validation, while low concentrations during summer are
generally well-recognized.

Furthermore, the scatter-plot for NO3-N and TN confirmed that straight lines do not fit the 1:1
best fit line very well. As reported for the Paringianu gauge, it is possible to hypothesize that the poor
performance of the peak simulation could be attributed to bias in the simulation. Nevertheless, Is
Achenzas gauge is located in an intensive agricultural area, so it is challenging to correctly simulate the
nitrogen cascade and transfer from agricultural soils to the drainage network. In this sense, previous
studies have reported that hot-spot areas of nitrogen surplus attributed to input uncertainty (e.g.,
fertilizers, manure, and point sources) greatly altered the nitrogen budget and leaching [67].

At Is Achenzas gauge, the temporal trend for P,,;, peaks was underestimated during validation
and the 95PPU range did not capture all uncertainty, while most of the validation points in the
scatter-plot in Figure 5b are below the straight line. On the contrary, the DO concentration showed a
better temporal trend during calibration, while overestimation is depicted during the validation period
(e.g., winter months 2005-2006). Figure 5b confirms the overestimation, with validation points above
the straight line. Nonetheless, all values of the coefficient of determination were satisfactory for the
validation period.

3.1.3. Sensitive Parameters

Table 3 reports a total of 27 of the most sensitive parameters identified with SWAT-CUP for
calibrating the model, including their descriptions, unit, and final range values. The following
parameters are the most sensitive to water flow: the baseflow recession constant (ALPHA_BF),
runoff curve number (CN2), soil evaporation compensation factor (ESCO), groundwater delay time
(GW_DELAY), groundwater re-evaporation coefficient (GW_REVAP), threshold depth of water in the
shallow aquifer required for return flow to occur (GWQMIN), and deep aquifer percolation fraction
(RCHRG_DP); the following for sediments: the linear parameter for channel sediment routing (SPCON),
exponent parameter for channel sediment routing (SPEXP), channel erodibility factor (CH_COV1),
channel cover factor (CH_COV2), USLE soil erodibility factor (USLE_K), and sediment concentration
in lateral and groundwater flow (LAT_SED); the following for nitrate: the nitrate percolation coefficient
(NPERCO), initial concentration of nitrate in the shallow aquifer (SHALLST_N), concentration of
nitrogen in rainfall (RCN), nitrogen uptake distribution parameter (N_UPDIS), and organic nitrogen
enrichment ratio (ERORGN); the following for total nitrogen: the organic nitrogen in the baseflow
(LAT_ORG), rate constant for the hydrolysis of organic nitrogen to ammonia in the reach (BC3), and
rate coefficient for organic nitrogen settling in the reach at 20 °C (RS4); the following for mineral
phosphorus: the rate constant for the decay of organic phosphorus to dissolved phosphorus (BC4),
phosphorus availability index (PSP), phosphorus soil partitioning coefficient (PHOSKD), phosphorus
percolation coefficient (PPERCO), and soluble phosphorus concentration in groundwater loading
(GWSOLP); and the following for dissolved oxygen: temperature adjustment factor (TMPINC). Overall,
these parameters govern the system inputs, storage, movement of surface or subsurface water, and
system outflows into HRUs.

As previously described, initial range values from published studies of Mediterranean climates
were utilized because the model was very sensitive and out-of-range realistic values can give insufficient
results. In fact, as SUFI-2 is an iterative algorithm, calibration starts in the first iteration by assuming
a large uncertainty [55], while in the last iteration, a single parameter was fitted and fixed. Overall,
considering that the model is a simplification of complex dynamics and processes in the watershed,
the reported sensitive parameters are those that best represent all sources of uncertainties (i.e., best
estimates for this model, variables, and data used) and model assumptions governed by model
equations that describe water flow and hydrological processes.
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Table 3. List of sensitive parameters of the SWAT model identified with SWAT-CUP and the final

calibration range.

Parameter Model Process Description Unit Calibration
Range
ALPHA_BH Water flow Baseflow recession constant day 0.71-1.04
CN2.mgt Water flow Initial SCS 1junoff curv? .number for _ 36.4-44.6
moisture condition
ESCO.hru Water flow Soil evaporation compensation factor - 0.24-0.25
GW_DELAY.gw Water flow Groundwater delay time day 22.5-25.8
GW_REVAP.gw Water flow Groundwater re-evaporation coefficient - 0.02-0.04
GWQMIN.gw Water flow Threshold depth of water in the shallow 4639 11995
aquifer required for return flow to occur
RCHRG_DP.gw Water flow Deep aquifer percolation fraction - 0.18-0.49
SPCON.bsn Sediment Linear parameter for channel - 0-0.0009
sediment routing
SPEXPbsn Sediment Exponent parameter for channel - 1.28-1.33
sediment routing
CH_COVl.rte Sediment Channel erodibility factor - 1.11-0.21
CH_COV2.rte Sediment Channel cover factor - 0.10-0.18
USLE_K.sol Sediment USLE soil erodibility factor - 0.01-0.29
LAT SED.hru Sediment Sediment concentration in lateral and mg/L 6.56-169.3
groundwater flow
NPERCO.bsn Nitrate Nitrate percolation coefficient - 0-0.076
. Initial concentration of nitrate in
SHALLST_N.gw Nitrate shallow aquifer mg/L 0.34-0.68
RCN.bsn Nitrate Concentration of nitrogen in rainfall mg/L 1.15-1.23
N_UPDIS.bsn Nitrate Nitrogen uptake distribution parameter - 62.9-63.8
ERORGN.hru Nitrate Organic nitrogen enrichment ratio — 2.32-3.7
LAT_ORGN.gw Total nitrogen Organic nitrogen in the baseflow mg/L 5.5-8.8
BC3.swq Total nitrogen Ratg constant for hydr.olysm of organic day 0.10-0.24
nitrogen to ammonia in the reach
. Rate coefficient for organic nitrogen
RS4.swq Total nitrogen settling in the reach at 20 °C day 0-0.07
Rate constant for decay of organic
BCiswq Phosphorus phosphorus to dissolved phosphorus day 0-32-0.35
PSP.bsn Phosphorus Phosphorus availability index - 0.38-0.40
PHOSKD.bsn Phosphorus Phosphorus soil partitioning coefficient - 184.6-185.3
PPERCO.bsn Phosphorus Phosphorus percolation coefficient - 10-11.1
Soluble phosphorus concentration in
GWSOLP.gw Phosphorus groundwater loading mg P/L 0.003-0.008
TMPINC.sub Dissolved oxygen Temperature adjustment factor °C 42.5-51

3.2. Water Balance

The average monthly water balance components over the simulation period are reported in Table 4.

The results showed that evapotranspiration is the predominant outflow component, with 431 mm
year~!, accounting for approximately 68% of the annual precipitation (635 mm), while about 30% was
the water yield, namely water discharged in the channels. As shown in Table 4, the surface runoff
is 60.5 mm year ™!, representing about 9.5% of the annual precipitation, confirming that this outflow
component that governed soil erosion is not significant at a watershed level. The monthly surface
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runoff has significant seasonal peaks during winter months, following the Mediterranean precipitation
pattern [58], with associated sediment and pollutant losses, as depicted in Figures 4 and 6.

Table 4. Water balance average monthly basin values for precipitation, surface runoff, lateral flow,
water yield, and evapotranspiration.

Month Precipitation Surface Runoff Lateral Flow  Water Yield ET (mm) PET
(mm) (mm) (mm) (mm) (mm)

January 64.53 6.48 1.93 29.95 35.42 59.93
February 63.33 5.95 1.76 28.56 36.73 67.12
March 59.53 5.90 1.63 29.75 44.47 100.59
April 63.49 5.83 1.51 24.05 54.31 124.18
May 42.23 2.73 1.1 14.38 64.30 168.96
June 15.70 0.40 0.45 4.77 40.64 209.30
July 4.54 0.03 0.11 0.98 15.19 245.31
August 7.12 0.04 0.12 0.61 10.94 22418
September 44.45 1.33 0.76 247 21.59 160.26
October 70.94 5.65 1.56 7.90 33.29 116.19
November 106.15 14.57 241 19.51 36.83 76.92
December 93.39 11.56 2.88 26.92 37.72 60.80

ET: real evapotranspiration; PET: potential evapotranspiration.

On the contrary, the transition to an ephemeral state of most river corridors gave negligible water
yield values during summer month. The potential evapotranspiration was equal to 1614 mm year~!,
with a peak during summer months of up to 7.9 mm day~!. These results are in agreement with
those obtained by De Girolamo and Lo Porto [30] in the Rio Mannu basin and confirmed the overall

reliability of the model.

3.3. Water Quality and High Loading Areas

The 28-year (1982-2009) annual average SWAT model outputs for sediment load, TN, and total
phosphorus (TP) loadings were calculated at a sub-basin and watershed level to provide insights
regarding ongoing environmental pressures (Table 5). Overall, at a watershed level, the simulated
average load of sediments was 1.13 t ha~! year~!. Regarding land use, the loading rate was 0.97 t ha™!
year~! for durum wheat, 3.66 t ha™! year™! for pasture, 1.52 t ha™! year™! for tall shrublands, 0.32 tha™*
year~! for eucalyptus plantation, and 0.05 t ha~! year~! for evergreen forest.

Table 5. Annual average model values for sediment load, total nitrogen, and total phosphorus.

Basin Values Sediment Load (t ha~1 year—1) TN (kg ha~1 year1) TP (kg ha~1 year1)

Average 113 4.85 1.18
Min. value 0.0004 0.0016 0.0014
Max. value 11.06 30.79 6.93

The annual average sediment load predicted is lower than both the threshold limit of tolerable
soil erosion in Europe (1.40 t ha™! year™') [68], and the soil loss rate for the Mediterranean climatic
zone (4.61 tha™! year‘l) [69]. Overall, these results are comparable to those from studies performed in
the Mediterranean area using the SWAT model. For instance, Nerantzaki et al. [70] reported a mean
erosion rate of 0.97 t ha™! year™! in a karstic watershed in Greece. Similarly, Gamvroudis et al. [2]
found an average sediment yield equal to 0.85 t ha~! year™! in a large temporary river basin in
Greece. Conversely, in a recent study in the Carapelle watershed with temporary rivers (Apulia, Italy),
Ricci et al. [4] reported an average annual sediment load of 6.8 t ha™! year™!. Nevertheless, this river
basin has steep-slope areas with high erosion rates (up to 13 t ha~! year~!), while on the alluvial plain,
the sediment yield was comparable to that of the present study (<1 t ha™! year™!). At the watershed
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level, the obtained nutrient loads estimation was 4.85 kg ha™! year™! for TN and 1.18 kg ha™! year™!
for TP. Considering differences in watershed characteristics between areas, these values seem to be
consistent with those obtained in the Mediterranean area. For instance, De Girolamo et al. [71], for
the conterminous Rio Mannu basin in southern Sardinia, reported an average of 0.86 kg ha~! year™!
for TP. Similarly, a recent nutrient apportionment tool tested in south-eastern Italy showed that the
average TN riverine export was 2.8 and 5.2 kg ha~! year™! at a basin scale and for productive lands,
respectively [72]. The authors attributed the relatively low rates of TN losses in the watershed to the fact
that groundwater was the principal receptor of the NO3-N leached from fractured soils. These results
reflect those of Carvalho-Santos et al. [73], who reported, for the baseline scenario in a medium-sized
Mediterranean watershed in Portugal, values of 1.04 kg ha~! year™! and 1.09 kg ha™! year~! for TN
and TP, respectively.

In another study in a medium-sized Greek catchment, Panagopoulos et al. [58] found that the
mean annual TN yield was 20 kg ha~! year~!. Although this result differs from the findings presented
here, this discrepancy could be attributed to the large watershed (405 km?) with a very high slope
gradient and higher sediment yield (14 t ha™! year™!). Overall, these regional studies further confirm
the importance of local land uses and management of determining in-stream water erosion and the
consequent sub-basin load across the catchment. Spatialized water quality loads were calculated from
the SWAT model for each sub-basin’s outlet. Figure 7 shows the average annual loads for sediment
load, TN, and total TP during the period 1982-2009.
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Figure 7. Spatial variations of SWAT model annual average estimated for (a) sediment load, (b) total
nitrogen, and (c) total phosphorus.

These maps are quite revealing and interesting in several ways, showing differences, especially
in the northern part of the watershed, where some sub-basins (e.g., 9, 27, and 28) have a high rate of
sediment (up to 11 t ha™! year™!), TN (up to 30 kg ha™! year™!), and TP (up to 6.9 kg ha~! year™!)
exports. These results corroborate our earlier hypothesis that poorly-drained soils in the northern
portion of the basin are more prone to erosion, while well-drained soils with gentle slopes in the
southern part are less prone to surface runoff, sediment erosion, and nutrient leaching. Similarly,
previous studies have reported a strong relationship between geomorphological and pedological
characteristics of the basin and related soil-based hydrological processes [4,74,75]. In this sense, it
is interesting to note that areas with higher sediment load transport are the same, with the highest
nutrient leaching, confirming that these nutrients and fluxes are strictly related to the sediment load
transported through the river network [76].
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Moreover, the maps reveal that some sub-basins in the southern watershed (e.g., 63 and 84) have
hot-spot areas contributing up to 1.29 t ha™! year™!, 12 kg ha™! year™!, and 2.4 kg ha™! year™! for
sediment load, TN, and TP, respectively. These results may be explained by the fact that in these
sub-basins, intensive agricultural practices and fertilization are more frequent, and consequently, these
generate relatively higher nutrient loads. However, a possible source of uncertainty is due to the role
of agricultural ditches (vegetated and unvegetated) in nitrogen retention (i.e., in-ditch denitrification),
as suggested by Soana et al. [77] for NO3-N pollution removal by the ditch network. This study
reveals that vegetated ditches intercept and decrease nitrogen loads in surface waters generated in the
surrounding agricultural lands. This view is supported by Lassaletta et al. [78], who confirmed that
nitrogen retention in the Mediterranean catchments is high compared to nitrogen inputs.

These findings raise important implications for developing future best management and soil
conservation practices prior to promoting land use scenarios in the area, as stated in the introduction.
In accordance with extensive recent studies, allocating second-generation lignocellulosic crops in
fragile and degradation prone areas could mitigate environmental risks associated with the agronomic
management enhancing ecosystem services [79]. Future studies on the current topic should be
undertaken to investigate simulations with climate and land use scenarios and management approaches
with suitable bioenergy crops for promoting environmental sustainability and profitability for farmers
in the study area. Further work needs to be done to establish whether scenarios with bioenergy crops
result in changes in the water balance, as suggested by other studies [80,81].

Even though large and detailed datasets were used to ensure that reliable and consistent results
were obtained, their generalizability is subject to certain limitations. First, the river discharge data is
dated and limited to one gauge station. It is worth noting that changes in the precipitation pattern or
inter-annual variability affect stream flow and consequently the amplitude of soil erosion and nutrient
export. Second, uncertainty also stems from the water quality data collected at monthly time steps. An
automatic grab sample concentration collected at daily or sub-daily time steps would ensure lower
uncertainty in the results. Third, another weakness was the paucity of data regarding land use and
site-specific management practices. Detailed data on agronomic management (i.e., tillage, fertilizer
application, and irrigation) would further improve model calibration. Finally, further work should be
conducted to improve model simulations, incorporating other biophysical parameters using remote
sensing and GIS data and improved dynamic routing algorithms for nitrogen and phosphorus pools,
as well as for bioenergy crops.

4. Conclusions

The SWAT model was calibrated and validated using detailed grab sample data collected by
three gauge stations located in the southwest of Sardinia, Italy. The SUFI-2 sequential uncertainty
fitting algorithm was used to parametrize the model and calculate the objective function for monthly
discharge, suspended sediment, nitrate nitrogen, total nitrogen, mineral phosphorus, and dissolved
oxygen. This study has shown that the model reliably represented the spatiotemporal variability of the
flow regime, sediments, and nutrient fluxes in the ephemeral river system. Water balance simulations
revealed that evapotranspiration is a dominant outflow component, while surface runoff is a key
component during winter months because most of the river channels are dry during summer months.
The results obtained show that sediment loss is lower than both the threshold limit of tolerable soil
erosion in Europe and the soil loss rate for the Mediterranean drylands. Nevertheless, the research has
shown that the catchment has hotspot areas of sediment and nutrient loadings in the north-east and
southern part of the basin. The evidence from this study indicates that high erosion rates and nutrient
removal were generally associated with steep-slope areas and arable crops, as suggested by previous
studies of the Mediterranean area. The outcomes of this study establish a quantitative framework to
assess the impact of anthropogenic pressures on the hydrological response of a river basin with an
intermittent flow and provide a basis for implementing new agronomic scenarios to meet production
and environmental goals in future targeting studies.
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