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Abstract: Drought is a fundamental physical feature of the climate pattern worldwide. Over the past
few decades, a natural disaster has accelerated its occurrence, which has significantly impacted agri-
cultural systems, economies, environments, water resources, and supplies. Therefore, it is essential
to develop new techniques that enable comprehensive determination and observations of droughts
over large areas with satisfactory spatial and temporal resolution. This study modeled a new drought
index called the Combined Terrestrial Evapotranspiration Index (CTEI), developed in the Ganga
river basin. For this, five Machine Learning (ML) techniques, derived from artificial intelligence
theories, were applied: the Support Vector Machine (SVM) algorithm, decision trees, Matern 5/2
Gaussian process regression, boosted trees, and bagged trees. These techniques were driven by
twelve different models generated from input combinations of satellite data and hydrometeorological
parameters. The results indicated that the eighth model performed best and was superior among all
the models, with the SVM algorithm resulting in an R2 value of 0.82 and the lowest errors in terms of
the Root Mean Squared Error (RMSE) (0.33) and Mean Absolute Error (MAE) (0.20), followed by the
Matern 5/2 Gaussian model with an R2 value of 0.75 and RMSE and MAE of 0.39 and 0.21 mm/day,
respectively. Moreover, among all the five methods, the SVM and Matern 5/2 Gaussian methods
were the best-performing ML algorithms in our study of CTEI predictions for the Ganga basin.

Keywords: droughts; GRACE; evapotranspiration; machine learning; terrestrial water storage;
precipitation; Ganga river basin
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1. Introduction

Drought refers to an extended water shortage period. In terms of water resource
imbalance or excess evapotranspiration and moisture deficiency, the adverse impacts can
be magnified due to extreme event dry conditions [1–5]. Moreover, drought can result
in enormous socioeconomic, agricultural, hydrological, and meteorological effects [6,7].
Climate change has increased the severity, frequency, and extent of droughts worldwide in
the last decades [8,9]. Due to the direct relationship between drought and water availability,
any changes in drought characteristics due to climate change impact water shortages and
food security [10,11].

More than 150 indices have been developed for drought assessment, classification, and
monitoring [12]. These include the Palmer Drought Severity Index (PDSI) [13]; the Stan-
dardized Precipitation Index (SPI) [14]; the Standardized Precipitation Evapotranspiration
Index (SPEI) [15,16]; the Rainfall Anomaly Index (RAI) [17]; the Precipitation Evapotran-
spiration Difference Condition Index (PEDCI) [18], the Reconnaissance Drought Index
(RDI) [19,20]; and many others, as can be found in the review by Mishra and Singh [21].
Among these indices, the SPEI is a widely used index for tracking drought evolution at
different time scales of interest (i.e., 1, 3, 6, 9, 12, and 24 months) [15]. Scientifically, the
SPEI was developed from the SPI but involved the reference evapotranspiration (ETo)
and thus significantly exhibits the influential role of temperature in drought evolution
side by side with rainfall deficit [22,23]. This study modeled a new drought index called
the Combined Terrestrial Evapotranspiration Index (CTEI) in the Ganga river basin. It
was developed for the assessment of drought characterization in the Indus, Ganga, and
Brahmaputra river basins by utilizing hydro-metrological variables, i.e., precipitation (P)
and potential evapotranspiration (PET), as well as gravity data, i.e., Gravity Recovery and
Climate Experiment (GRACE) terrestrial water storage anomalies (TWSAs) [24]. Therefore,
this study focused on estimating and modeling the CTEI based on machine learning models
to evaluate the drought over the Ganga basin.

Prediction of droughts has continued to challenge climate and hydrology research
because of the spatiotemporal scales’ complexity [25]. Statistical, dynamical, and hybrid
models are applied in predicting droughts [26–28]. With the development of computer
technology, machine learning (ML) models have been applied in hydrological research to
reveal complex hydrological phenomena [29–31], including in predicting droughts [32–34].
Several ML algorithms, such as support vector machines (SVMs) [35,36], artificial neural
network (ANN) models [37,38], radial basis function (RBF) neural networks [39], fuzzy
logic models [40], and extreme learning machines (ELMs), have been used in hydrological
research [41]. For example, ANNs and SVMs are the most commonly applied techniques
in developing drought prediction models [42–45]. The SVM, ANN, and k-nearest neighbor
(KNN) techniques have been applied to predict drought in Pakistan [8]. The SVM and
KNN algorithms have been applied to predict the PDSI over 116 years in Turkey [46]. Khan
et al. [6] developed drought prediction models for Pakistan by applying the SVM, ANN,
and KNN techniques.

Moreover, it has been reported that the accuracy of the SVM technique was higher than
that of the ANN algorithm in predicting the SPI for Iran [47]. Most artificial intelligence
models are highly accurate, although they are complex and have high computational costs
during the training stage. In contrast, rule-based decision trees (DTs) and tree-based en-
semble methods, e.g., gradient boosting (GB) and random forest (RF) methods, have lately
become attractive because they are simple and at the same time still powerful and robust
predictive algorithms [48,49]. Hassan et al. [48] predicted global solar radiation by applying
bagging, GB, RF, and DT methods and comparing them with multilayer perceptron (MLP)
and support vector regression (SVR). It was reported that the accuracy of tree-based models
was the best. Recently, a novel, simple tree-based ensemble method named XG-Boost has
been developed; it is an improved version of gradient boosting with higher computation
efficiency and better capability to deal with overfitting problems [30]. Based on the tech-
niques mentioned above, 12 different data-driven models were investigated to forecast
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the CTEI in this study. Machine learning models differ in terms of their input parameters.
Five variants of each model were built, changing the applied machine learning algorithm
for each: RF, SVM, boosted trees, bagging, and Matern 5/2 Gaussian process regression
(GPR). These algorithms were applied due to their high performances in previous studies.
They are very good at learning complex and highly nonlinear relationships. Therefore, the
objectives of this study are to (1) fit five machine learning algorithms for the modeling of
the CTEI prediction based on advanced models derived from artificial intelligence theories;
(2) compare the accuracy and stability of these models, and (3) determine which were the
best outcomes provided by the five models based on the prediction accuracy with the best
combination of the input variables.

2. Materials and Methods
2.1. Study Area

The Ganga river basin (GRB) is one of the most populous (about 440 million people)
river systems in the world [10]. The basin is situated in the northern part of the country. It
lies between latitudes 21◦32′8.6′′–31◦27′36.2′′ N and longitudes 73◦14′33.4′′–90◦53′18.9′′ E,
covering an area of 1,086,000 km2 (Figure 1).
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Figure 1. The Ganga river basin’s elevation map and its tributaries along with a scale of the varying elevation.

The GRB spreads out into four countries, India (79%), Nepal (14%), Bangladesh (4%),
and China (3%). In India, it covers 861,452 km2, which is nearly 26% of the country’s total
geographic area [50]. The GRB originates in the Himalayan Mountains at the Gangotri
glacier’s snout, at an elevation of ~7000 m a.s.l. The Bhagirathi and Alaknanda Rivers’
confluence occurs in Devprayag, which is then officially called the Ganga River. The Ganga
River’s main tributaries are the Yamuna, the Ramganga, the Gomti, the Ghaghra, the
Sone, the Gandak, the Kosi, and the Mahananda. It flows for about 2510 km, generally
southeastward, through a vast plain to the Bay of Bengal. The primary source of water
in the Ganga River is surface runoff generated by precipitation (~66%), base flow (~14%),
glacier melt (~11.5%), and snowmelt (~8.5%). The GRB receives 84% of total rainfall during
the monsoon season (June to October). The monsoon season accounts for 75% of the rain in
the upper basin and 85% of the rain in the lower basin [51]. The elevation range across the
basin varies from sea level to the highest mountain peak (~8850 m a.s.l). Several researchers
have documented drought years in the region. For example, the NRAA [52] reported that
India had experienced 22 large scale droughts years—in 1891, 1896, 1899, 1905, 1911, 1915,
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1918, 1920, 1941, 1951, 1965, 1966, 1972, 1974, 1979, 1982, 1986, 1987, 1988, 1999, 2000, and
2002—and also that their frequency had increased during the periods 1891–1920, 1965–1990
and 1999–2002. Rathore et al. [53] reported that India experienced three major droughts in
2002, 2004, and 2009. A drought occurred in Tharparkar, in Sindh province, starting in 2013
and reaching its most devastating point between March and August 2014 [54]. Kothawale
and Rajeevan [55] documented several rainfall deficit years between 1871 and 2016. They
reported four deficit years (2004, 2009, 2014, and 2015) between 2003 and 2016.

2.2. Data Used
2.2.1. GRACE Terrestrial Water Storage Anomaly

In this study, 168 monthly GRACE data gravity solutions (level-3 RL-05, particular
harmonics) at 1◦ × 1◦ spatial resolutions were acquired from three research agencies, the
Center for Space Research (CSR) at the University of Austin/Texas, the NASA Jet Propulsion
Laboratory (JPL), and the German Research Centre for Geosciences (GFZ), and were used
to determine TWSA changes from January 2003 to December 2016 (14 years) (Table 1).
However, 17 months’ worth of GRACE solutions were missing during the observation
period; therefore, a particular month’s missing solution was replaced by the available
sequent months (before and after) [56,57]. The GRACE TWSA data obtained from three data
centers (JPL, GFZ, and CSR) were averaged to reduce the gravity field noise [58,59]. The
TWSA includes the groundwater storage anomaly (GWSA), soil moisture storage anomaly
(SMSA), canopy water storage anomaly (CWSA), surface water storage anomaly (SWSA),
and snow water equivalent anomaly (SWEA), as expressed by Equation (1).

GRACETWSA = GWSA + SMSA + SWSA + SWEA + CWSA (1)

Table 1. Detailed descriptions of each dataset used in this study.

Data Used Variables Agencies/Model (Version) Spatiotemporal Resolution Duration

GRACE
TWSA

(averaging CSR, GFZ, JPL)

CSR (RL05) 1◦ × 1◦, Monthly

2003–2016

GFZ (RL05) 1◦ × 1◦, Monthly
JPL (RL05) 1◦ × 1◦, Monthly

TWSA
(averaging Mosaic, NOAH, VIC,

CLM)
MOSAIC (V001) 1◦ × 1◦, Monthly

TRMM

TWSA
(averaging Mosaic, NOAH, VIC,

CLM)
Precipitation

NOAH (V001) 1◦ × 1◦, Monthly
VIC (V001) 1◦ × 1◦, Monthly
CLM (V001) 1◦ × 1◦, Monthly

3B42v7 0.25◦ × 0.25◦, Daily
GDAS Potential evapotranspiration SPEIbase v2.4 1◦ × 1◦, Daily

2.2.2. Global Land Data Assimilation System (GLDAS) Observation

Global Land Data Assimilation System (GLDAS) is a joint project designed by NASA,
the National Oceanic and Atmospheric Administration (NOAA), and the National Centers
for Environmental Prediction (NCEP) by integrating the hydrological components obtained
from ground and satellite-based observations with satisfactory spatial and temporal reso-
lutions [60]. The details of the data products are described by Han et al. [61]. The GLDAS
data comprises data for four land surface models (LSMs): the community land model
(CLM2.0) [62], variable infiltration capacity (VIC) [63], National Oceanic and Atmospheric
Administration (NOAH) [64], and Mosaic [65]. The spatial resolution of all the LSM data
is about 1◦ × 1◦. For monthly Total Water Storage (TWS) data obtained through GLDAS,
a summation of the monthly soil moisture (SM) layer, snow water equivalent (SWE), and
canopy water storage (CWS) from 2003 to 2016 from four LSM datasets were used (Table 1).
The average of four LSM datasets was used to estimate the monthly TWS with minimum
bias [66]. None of these LSM datasets includes groundwater storage or surface water storage
(SWS) [60,62]. We assumed that the SWS in the study area was likely to be a minor compo-
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nent or a small contribution over the region; therefore, it was neglected. Numerous previous
studies neglected the SWS changes for canopy water storage (CWS) estimation; for instance,
Rodell et al. [60] and Tiwari et al. [67]. The GLDAS TWSA was converted into anomalies with
the same considerations as GRACE data (i.e., the baseline period of January 2004 to December
2009). The GWSA was obtained by subtracting the model-based GLDAS TWSA from the
GRACE TWSA [68] by rearranging Equation (1), as is widely used in different regions of the
world to isolate the GWSA from the GRACE-derived TWSA [60,67].

2.2.3. Tropical Rainfall Measuring Mission

The Tropical Rainfall Measuring Mission 3B43 Version 7 (TRMM-3B43-V7) monthly
research precipitation data at 0.25◦ × 0.25◦ spatial resolutions were used for the Indus
Ganga river basins during the period 2003–2016 [69] (Table 1). This product is commonly
used worldwide for global precipitation analysis, for which its algorithm combines several
instruments [69]. Nonetheless, several authors have compared the TRMM data with
observational data and reported good accuracy [57,70,71].

2.2.4. Potential Evapotranspiration

Datasets with a spatial resolution of 1◦ × 1◦ for the daily global potential evapotran-
spiration between 2003 and 2016 were used (Table 1). These data were generated from
the climate parameter, i.e., extracted from the Global Data Assimilation System (GDAS)
analysis fields. The NOAA generates the GDAS data every six hands it is freely available
on the USGS website (https://earlywarning.usgs.gov/fews/product/81). The daily PET is
calculated on a spatial basis using the Penman-Monteith equation [72]. The monthly and
yearly PET was obtained using the accumulation of daily data. The monthly time series
of GRACE terrestrial water storage anomalies, GLDAS observations, precipitation, and
potential evapotranspiration are shown in Figure 2.
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2.3. Methodology
2.3.1. CTEI Description and Calculation

The CTEI was derived using the GRACE TWSA data and meteorological variables
(i.e., precipitation and evapotranspiration) for 2003–2016. This index was developed by
Dharpure et al. [24] using hydrological and climatological conditions in the Indus, Ganga,
and Brahmaputra river basins and which also highlighted that the CTEI was positively
correlated with the ground observation wells. They also revealed that this index could
quantify drought and severity on spatial and temporal scales. This model presents a
comprehensive picture for estimating drought events at a regional scale where ground
observation is limited.

For the calculation of the CTEI, firstly, the difference between the P and PET was
calculated for each month [15] using the following Equation (2):

Dt = Pt − PETt (2)

where D indicates the difference for each month t. After that, the difference anomaly (DA)
was derived using the following Equation (3) [73]:

DAt = Dt −Dµ (3)

where Dµ indicates the average value, which is calculated for the period from January
2004 to December 2009. The monthly climatologies concerning the DA and TWSA were
derived based on the GRACE deficit approach [74]. The climatology of each month,
i.e., from January 2003 to December 2016, was computed by averaging the values of the
DA and TWSA in the same months of the year (e.g., all Januaries in the 14-year record
were averaged) [73,74]. This monthly climatology was used to remove the influence
of seasonality [75]. The DA and TWSA time series’ monthly residuals were obtained
by subtracting the climatologies from each month’s DA and TWSA data, respectively.
The obtained residuals were added together to get the combined water storage anomaly
(CWSA), indicating the net deviation in the volume of water storage based on seasonal
variability. Finally, we normalized the CWSA by removing the mean CWSAµ and dividing
by the standard deviation CWSAσ of each month [74], as in the following Equation (4):

CTEIt =
CWSAt − CWSAµ

CWSAσ
(4)

where CTEIt indicates the Combined Terrestrial Evapotranspiration Index. The CTEI was
compared with the pre-existing drought indices, with good correlations with the GRACE
Groundwater Drought Index (GGDI) (0.88), the Water Storage Deficit Index (WSDI) (0.96),
the Combined Climatologic Deviation Index (CCDI) (0.97), and Standardized Precipitation
Evapotranspiration Index (0.49) [22].

2.3.2. Machine Learning Models
Support Vector Machine

A support vector machine is a supervised learning algorithm. It can also be used as a
regression model, maintaining all the main features that describe the algorithm (e.g., maximal
margin). Support vector regression (SVR) uses a similar SVM theory for the classification
method, with a few slight changes. The limit of tolerance is set in approximation to SVMs, for
which the problem has already been formulated. The main aim is to minimize the error by
individualizing the hyperplane, which increases the limit of tolerance because a part of the
error is tolerated. The goal of SVM is to make the function (x) as flat as possible. Hence, given
the linear function, we can minimize the process and constraints, as shown in Figure 3, where:
w and b are the dot products in x; E is the maximum deviation value from the observed target
values; ξ, ξ* are slack variables, greater than or equal to zero; and C is a constant that affects
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both the function of flatness and tolerated variations. The SVM estimation function (F) in any
given regression scenario can be defined as follows in Equation (5):

F(x) = W.Tf(x) + b (5) (5)
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W is the weightage vector; Tf represents the nonlinear transfer function, which projects
the input vectors towards a very high dimension feature space; and b is the constant
variable. The parameters used for the SVM algorithm were batch size = 100, C = 1, filter
type = normalized training data, and kernel = poly kernel.

Decision Trees

Decision-tree learning is a forecasting model for going from observations about a dot
(represented in branches) to prediction and conclusions about the target value (represented
in leaves). The primary aim is to create a model that forecasts the target value based on
several independent inputs. An example is shown in the diagram on the right. Each internal
node represents one of the input variables; there are edges to increase more children for
each input variable. Each leaf has a value of the goal variable, given the input values of
variables represented by the process from the root to leaf. In this study, various techniques
were often deployed to construct more than one decision tree (Figures 4 and 5).

Water 2021, 13, 547 9 of 20 
 

 

model, a statistical inference technique called bootstrapping is used. Each of the trees 
which make up a particular forest is built up from random sub-sampling of datasets. This 
bootstrap method is based on a random draw with replacements. Hence, the term” ran-
dom” is used in the name of this model. The final prediction of the model output is deter-
mined by an ensemble of methods from among all results from each tree making up the 
forest. This can be called the” majority vote.” One technique to avoid overfitting RF model 
application problems is to limit the minimum leaf size (min-leaf). This parameter deter-
mines the minimum number of observations used to create each child node; smaller mini-
leaf values need a deeper learning process. The parameters used for each algorithm were 
bag size percentage = 100, batch size = 100, number of execution slots = 1, number of iter-
ations = 100, and seed = 1. 

 
Figure 4. The typical architecture of a regression tree model; LM, linear model. 

 
Figure 5. Typical architectures of bagging or random forest models. The algorithms are different 
depending on the way the regression trees are built. 

At each step, the processing system divides the subdivision into two unconnected 
segments that decrease the value of the squared deviation, described as follows in Equa-
tion (6): R(t) = 1N (t) (yi − ym(t))∈  (6)

Figure 4. The typical architecture of a regression tree model; LM, linear model.



Water 2021, 13, 547 8 of 18

Water 2021, 13, 547 9 of 20 
 

 

model, a statistical inference technique called bootstrapping is used. Each of the trees 
which make up a particular forest is built up from random sub-sampling of datasets. This 
bootstrap method is based on a random draw with replacements. Hence, the term” ran-
dom” is used in the name of this model. The final prediction of the model output is deter-
mined by an ensemble of methods from among all results from each tree making up the 
forest. This can be called the” majority vote.” One technique to avoid overfitting RF model 
application problems is to limit the minimum leaf size (min-leaf). This parameter deter-
mines the minimum number of observations used to create each child node; smaller mini-
leaf values need a deeper learning process. The parameters used for each algorithm were 
bag size percentage = 100, batch size = 100, number of execution slots = 1, number of iter-
ations = 100, and seed = 1. 

 
Figure 4. The typical architecture of a regression tree model; LM, linear model. 

 
Figure 5. Typical architectures of bagging or random forest models. The algorithms are different 
depending on the way the regression trees are built. 

At each step, the processing system divides the subdivision into two unconnected 
segments that decrease the value of the squared deviation, described as follows in Equa-
tion (6): R(t) = 1N (t) (yi − ym(t))∈  (6)

Figure 5. Typical architectures of bagging or random forest models. The algorithms are different
depending on the way the regression trees are built.

• Boosted Tree

Boosting is an ensemble technique to create a collection of predictors. In this technique,
models are learned sequentially. Early learners fit simple models to the data and analyze
data for errors. The boosted tree is performed based on an ensemble to train the new
sample [76,77]. When a hypothesis misclassifies an input, its weight is increased. The
next hypothesis is more likely to classify it correctly. Combining the whole set at the
end converts weak learners into a better-performing model. A typical paradigm is Ada-
Boost, which can be used for regression-type modeling; bootstrap-aggregated (or bagged)
decision trees, an early ensemble method, construct numerous decision trees by frequently
re-sampling training data using the replacement method and electing the trees for the
consensus forecast; a random forest regression is a specified type of bootstrap assemblage.

• Bagged Tree

Bootstrap aggregation (bagging) is used when the goal is to reduce the variance of
a decision tree. The bagging tree technique is a robust technique widely deployed in the
accurate estimation of drought, which uses re-samples of the training datasets [78,79]. The
first step involves bootstrapping the samples from the raw data that comprise the different
training data sets. One of the bagging algorithm’s main advantages is that it combines all
the trees to provide a combined tree model rather than a single tree model output. Also,
it removes the instability that is present in the regression tree growth. This is done by
removing the initial training datasets instead of novel training dataset sampling for each
time step. The average of all the predictions from different trees is used, which is more
robust than a single decision tree.

• Random Forest

An RF is simply a collection of decision trees whose results are aggregated into one
final result [78]. Their ability to limit overfitting without substantially increasing error
due to bias is why they are such powerful models. One way the random forests reduce
variance is by training on different samples of the data. To increase the robustness of
this model, a statistical inference technique called bootstrapping is used. Each of the
trees which make up a particular forest is built up from random sub-sampling of datasets.
This bootstrap method is based on a random draw with replacements. Hence, the term”
random” is used in the name of this model. The final prediction of the model output is
determined by an ensemble of methods from among all results from each tree making up
the forest. This can be called the” majority vote.” One technique to avoid overfitting RF
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model application problems is to limit the minimum leaf size (min-leaf). This parameter
determines the minimum number of observations used to create each child node; smaller
mini-leaf values need a deeper learning process. The parameters used for each algorithm
were bag size percentage = 100, batch size = 100, number of execution slots = 1, number of
iterations = 100, and seed = 1.

At each step, the processing system divides the subdivision into two unconnected segments
that decrease the value of the squared deviation, described as follows in Equation (6):

R(t) =
1

N (t) ∑
i∈t

(yi− ym(t))2 (6)

N (t) is the number of sample groups in connection (t), yi represents the value taken by target
variables in the i unit, and ym equals the average of the target variable in connection t.

Matern 5/2 Gaussian Process

A Matern 5/2 Gaussian process regression is a random process. Any point x∈Rd is
assigned a random variable f(x). The Matern 5/2 kernel takes actual data densities of the
stationary kernel. It creates a Fourier transform of the radial basis function (RBF) kernel. It
does not have any measure problems for high-dimensional spaces. The algorithm of the
Matern 5/2 GPR is as follows in Equation (7)

P(f|X) = N(f|µ,K) (7)

In Equation (6), f (x) = p (f(x1),...,f(xN)), µ = (m(x1),...,m(xN)), and Kij = κ(xi,xj). m is
the mean function, and it is common to use m(x) = 0 as GPs are flexible enough to model
the mean arbitrarily well. κ is a positive definite kernel function or covariance function.
Thus, a Gaussian process is a distribution over functions whose shape is defined by K. If
points xi and xj are considered similar by the kernel, the function values at these points,
f(xi) and f(xj), can be expected to be similar too. All algorithms were implemented for
-CTEI modeling using MATLAB (R 2019a) software. The CTEI datasets for all algorithms
were divided into training sets for those from 2003 to 2013 and testing sets for those from
2014 to 2016.

2.4. Statistical Analysis

Actual data for the CTEI and modeled values were compared for the study period. To
evaluate the accuracy of models, the following statistical indicators were selected: (1) root
mean square error, (2) coefficient of determination, and (3) mean absolute error [80–83].
All parameters were defined as follows: CTEIi

A is an observed or actual value, CTEIi
P is a

simulated or foreseen value, CTEI− is the mean value of reference samples, and N is the
total number of data points.

1. Root Mean Square Error.

Root mean square error (RMSE) is a sample’s standard deviation about the differences
between foreseen and actual values. It is given by Equation (8):

RMSE =

√√√√ 1
N

N

∑
i=1

(CTEIi
A −CTEIi

P)
2

(8)

2. Coefficient of determination (Equation (9))

R2 = 1− ∑N
i=1 (CTEIi

A −CTEIi
P)

2

∑N
i=1 (CTEIi

A −CTEI−)
2 (9)
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3. Mean absolute error (MAE)

The mean absolute error evaluates the mean magnitude of the errors in a set of
forecasts without considering their sign. It is an average for the test sample of the absolute
differences between foreseen and actual values. It is defined as follows in Equation (10):

MAE =
1
N

N

∑
i=1

∣∣∣∣∣CTEIi
P −CTEIi

A

∣∣∣∣∣ (10)

3. Results and Discussion
3.1. Assessment of ML Models Performance

In this study, we developed twelve different data-driven models for predicting the
CTEI in the Ganga basin. As discussed in the methodology, each of these models differed
depending on the number and type of input parameters. We developed five variants
corresponding to each of these models by changing the applied machine learning al-
gorithm, namely RF, SVM, boosted trees, bagging, and Matern 5/2 GPR. The different
input parameters used in the model building were the TWSA (from GRACE and GLDAS),
evapotranspiration (ET), P, PET, wind speed (u), radiation, GWSA, air temperature (Ta),
and surface temperature (Ts). These input parameters have also been used in previous
studies [23,84]. The detailed setup combination for each model is given in Table 2.

Table 2. The effectiveness of the considered models for the Combined Terrestrial Evapotranspiration Index (CTEI) estimate
in the Ganga basin.

ML Model Input Variables ML Algorithms R2 RMSE MAE

Model 1 GRACE TWSA, Ta, P, PET

RF 0.42 0.59 0.45
SVM 0.30 0.65 0.48

Boosted trees 0.54 0.53 0.36
Bagged trees 0.25 0.67 0.52

Matern 5/2 GPR 0.63 0.47 0.28

Model 2 GRACE TWSA, GWSA, ET, R

RF 0.41 0.60 0.45
SVM 0.61 0.49 0.32

Boosted trees 0.53 0.54 0.38
Bagged trees 0.49 0.56 0.42

Matern 5/2 GPR 0.56 0.52 0.35

Model 3 GRACE TWSA, GLDAS TWASA, GWSA, P, Ts

RF 0.41 0.60 0.45
SVM 0.39 0.61 0.46

Boosted trees 0.50 0.56 0.41
Bagged trees 0.42 0.60 0.45

Matern 5/2 GPR 0.60 0.50 0.32

Model 4 u, RN, LWN, PET

RF 0.02 0.79 0.62
SVM 0.15 0.72 0.56

Boosted trees 0.05 0.76 0.60
Bagged trees 0.01 0.78 0.61

Matern 5/2 GPR 0.03 0.77 0.60

Model 5 GWSA, E, RN, SWN

RF 0.31 0.65 0.46
SVM 0.60 0.49 0.36

Boosted trees 0.51 0.55 0.40
Bagged trees 0.23 0.69 0.53

Matern 5/2 GPR 0.53 0.54 0.37

Model 6 −GRACE TWSA, GLDAS TWASA, SWN, LWN, P, PET

RF 0.19 0.70 0.52
SVM 0.71 0.42 0.29

Boosted trees 0.51 0.55 0.39
Bagged trees 0.22 0.69 0.52

Matern 5/2 GPR 0.70 0.42 0.25
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Table 2. Cont.

Model 7 ET, R, Ta

RF 0.05 0.76 0.61
SVM 0.04 0.77 0.61

Boosted trees 0.00 0.79 0.65
Bagged trees 0.03 0.77 0.62

Matern 5/2 GPR 0.02 0.77 0.62

Model 8
−GRACE TWSA, GLDAS TWASA, GWSA, ET, R, Ta,

RN,SWN, LWN, P, PET

RF 0.33 0.63 0.45
SVM 0.82 0.33 0.20

Boosted trees 0.58 0.51 0.34
Bagged trees 0.52 0.54 0.38

Matern 5/2 GPR 0.75 0.39 0.21

Model 9
−GRACE TWSA, GLDAS TWASA, GWSA, P, ET, R,

Ta, TS, RN, SWN, LWN, PET, u

RF 0.35 0.63 0.44
SVM 0.60 0.49 0.36

Boosted trees 0.46 0.57 0.38
Bagged trees 0.48 0.57 0.40

Matern 5/2 GPR 0.69 0.43 0.24

Model 10 GRACE TWSA, GWSA, TS, P, u

RF 0.24 0.69 0.50
SVM 0.44 0.59 0.44

Boosted trees 0.39 0.61 0.44
Bagged trees 0.15 0.73 0.54

Matern 5/2 GPR 0.56 0.52 0.35

Model 11 GRACE TWSA, Ta, TS, PET, SWN

RF 0.13 0.73 0.52
SVM 0.53 0.53 0.37

Boosted trees 0.39 0.61 0.41
Bagged trees 0.25 0.67 0.51

Matern 5/2 GPR 0.58 0.51 0.31

Model 12 GWSA, TS, ET

RF 0.43 0.59 0.43
SVM 0.50 0.55 0.41

Boosted trees 0.52 0.54 0.39
Bagged trees 0.28 0.66 0.51

Matern 5/2 GPR 0.59 0.50 0.36

These models’ setups range from a simple model that depends on only important
climatic variables, like evapotranspiration, to very complex models including complex
climatic inputs and radiation and heat fluxes. Table 2 shows the implementation and
effectiveness of all the twelve models in the CTEI estimates for the Ganga basin. Like those
of model 7 and model 4, some of the model setups performed too poorly for all the five
methods used. These models were the ones in which the following input parameters were
used: PET, ET, radiation (R), net radiation (Rn), long-wave net radiation (LWN), and Ta.
These models had R2 lower than 0.15 in all cases. The RMSEs and MAEs for all models
were as high as 0.6, 80, and 65, respectively. Based on these statistical analyses, it can be
observed that model 8 showed the best predictions for the CTEI when compared to the
other model setups.

Moreover, among all the five methods used, the SVM and Matern 5/2 GPR methods
were the most highly performing ML algorithms in our study of CTEI predictions in the
Ganga basin (as detailed in Table 2). Model 8 showed the best performance among all the
model settings. Most of the implemented ML algorithms used in model 8 showed higher
values of R2 and the lowest values in terms of the RMSE and MAE. The SVM algorithm
was characterized as the best performing method among all the five algorithms, with an
R2 value of 0.82 (Figure 6) and the lowest errors in terms of the RMSE (0.33) and MAE (0.20).

The residual plot for model 8 with the SVM method shows that the maximum errors
in the CTEI predictions occurred in the range of 0 to 2 mm, as shown in Figure 7.



Water 2021, 13, 547 12 of 18
Water 2021, 13, 547 13 of 20 
 

 

 
Figure 6. The best model for predicting the CTEI with the implementation of the support vector 
machine (SVM) algorithm—model 8. 

The residual plot for model 8 with the SVM method shows that the maximum errors 
in the CTEI predictions occurred in the range of 0 to 2 mm, as shown in Figure 7. 

Figure 6. The best model for predicting the CTEI with the implementation of the support vector machine (SVM) algorithm—
model 8.

Water 2021, 13, 547 14 of 20 
 

 

 
Figure 7. The residuals versus the Ganga basin’s actual values for the best model (model 8 SVM). 

Furthermore, the GPR boosted trees and bagged trees algorithms performed com-
paratively better, with R2 values of 0.75, 0.58, and 0.52, respectively. They also had very 
low values for the error statistics in terms of the RMSE (0.39, 0.51, and 0.58, respectively) 
and MAE (0.21, 0.34, and 0.38, respectively). 

3.2. Comparison of Actual CTEI with Predicted CTEI 
Figure 8 compares the actual CTEI with the predicted CTEI for all the twelve models, 

from which the best ML algorithm was obtained. It shows a plot for the years from 2003 
to 2014. Models 4 and 7 performed the worst. The rest of the models performed compar-
atively well. As mentioned in the previous section, model 8 with the SVM algorithm pro-
vided the best CETI prediction compared with the observed CTEI. Table 3 shows the in-
terannual variation for the observed and the predicted CTEIs for the years from 2003 to 
2016. 

Figure 7. The residuals versus the Ganga basin’s actual values for the best model (model 8 SVM).

Furthermore, the GPR boosted trees and bagged trees algorithms performed compara-
tively better, with R2 values of 0.75, 0.58, and 0.52, respectively. They also had very low
values for the error statistics in terms of the RMSE (0.39, 0.51, and 0.58, respectively) and
MAE (0.21, 0.34, and 0.38, respectively).



Water 2021, 13, 547 13 of 18

3.2. Comparison of Actual CTEI with Predicted CTEI

Figure 8 compares the actual CTEI with the predicted CTEI for all the twelve models,
from which the best ML algorithm was obtained. It shows a plot for the years from 2003 to
2014. Models 4 and 7 performed the worst. The rest of the models performed comparatively
well. As mentioned in the previous section, model 8 with the SVM algorithm provided the
best CETI prediction compared with the observed CTEI. Table 3 shows the interannual
variation for the observed and the predicted CTEIs for the years from 2003 to 2016.
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predicted CTEI values for 2003–2016.

Table 3. Average actual and predicted CTEIs and differences and deviations for the best machine
learning models in the training and testing periods in the Ganga basin.

Year Actual CTEI
Model 8

Predicted CTEI Difference Deviation

2003 1.03 1.06 0.03 0.03
2004 0.82 0.78 −0.04 −0.05
2005 0.49 0.44 −0.05 −0.10
2006 0.18 0.14 −0.05 −0.25
2007 0.43 0.28 −0.14 −0.33
2008 0.44 0.23 −0.21 −0.48
2009 −0.44 −0.29 0.15 −0.34
2010 −0.51 −0.39 0.12 −0.24
2011 0.26 0.14 −0.12 −0.47
2012 −0.35 −0.19 0.16 −0.45
2013 −0.02 −0.20 −0.18 10.31
2014 −0.42 −0.28 0.14 −0.34
2015 −0.71 −0.70 0.01 −0.02
2016 −1.21 −1.27 −0.06 0.05
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The maximum deviation in the CTEI predictions occurred in 2013, while the minimum
deviation occurred in 2015, 10.31 and −0.02, respectively. Figure 9 compares the actual
CTEI and predicted CTEI (model 8, SVM algorithm) for all the years. It can be observed
that model 8 with the SVM algorithm could predict almost concurrently with the observed
datasets, except for a few years. Figure 9 shows the correlation coefficients for both the
training and testing periods of all the datasets using the best algorithm for each of the
models. It can be observed that model 8 showed the highest correlation in the training
and testing period, > 0.85. Model 9 also predicted the CTEI values equally compared to
model 8, with correlations up to ~0.82 for both periods. As models and 7 performed too
poorly, they showed the least correlation (<0.3) throughout the simulation period. The
SVM algorithm worked best compared to all the other methods, and it has also been widely
used previously [32,66,82].
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This study’s findings show that machine learning algorithms are one of the best,
efficient, and most powerful tools that can be used for evapotranspiration prediction
when there are limited datasets [23,45]. This indicates similarities to approaches with
large-scale conceptual hydrological models [85,86]. It can be observed that when the
models were given input variables like climatic parameters (P, Ta, Ts), sensible heat fluxes,
as well as GRACE and GLDAS TWS datasets, the models resulted in highly accurate
predictions [84,87]. Considering only the temperature and extraterrestrial radiation has
advantages for ML algorithms [27,28,49].

These model predictions provide the CTEI based upon net evapotranspiration without
intense data requirements [22,57]. These analyses show that when various variables,
ranging from climate and radiation to heat fluxes—and further including GRACE TWSA,
GLDAS TWASA, GWSA, ET, R, Ta, RN, SWN, LWN, P, and PET data-are used, a better
opportunity is provided for predicting CTEI values with high accuracy. This is also
supported by previous studies [10,24,29,34].

4. Conclusions

In this study, a new drought index called the CTEI was modeled based on five machine
learning models (SVM, RF, boosted trees, bagged trees, and Matern 5/2 GPR). This index
was driven by a combination of meteorological variables and the GRACE TWSA for the
Ganga river basin. The monthly data were collected from 2003 to 2016 and divided into
training (2003–2013) and testing (2014–2016) models. This research aimed to investigate
the performances of the five selected machine learning models in predicting nonlinear
interaction between limited input parameters to simulate the monthly values of the CTEI.
Different combinations of satellite data with the hydroclimatic parameters, based on limited
parameters (the ML models’ inputs), were used for CTEI estimation. After analyzing all the
combinations, the main finding of this study was that the eight model settings (considering
GRACE TWSA, GLDAS TWASA, GWSA, ET, R, Ta, RN, SWN, LWN, P, and PET) with the
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SVM algorithm showed the best performance among all the model settings in predicting the
CTEI. This model also found the Matern GPR algorithm to be satisfactory. It achieved the
second-highest rank for CTEI prediction. Model 6 ranked as the third-best option, achieving
reasonable outcomes based on a data fusion of GRACE TWSA, GLDAS TWASA, SWN,
LWN, P, and PET.
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