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Abstract: We conducted a study on climate-driven flash flood risk in the Boise River Watershed using
flood frequency analysis and climate-driven hydrological simulations over the next few decades. Three
different distribution families, including the Gumbel Extreme Value Type I (GEV), the 3-parameter
log-normal (LN3) and log-Pearson type III (LP3) are used to explore the likelihood of potential
flash flood based on the 3-day running total streamflow sequences (3D flows). Climate-driven
ensemble streamflows are also generated to evaluate how future climate variability affects local
hydrology associated with potential flash flood risks. The result indicates that future climate
change and variability may contribute to potential flash floods in the study area, but incorporating
embedded-uncertainties inherited from climate models into water resource planning would be still
challenging because grand investments are necessary to mitigate such risks within institutional and
community consensus. Nonetheless, this study will provide useful insights for water managers to
plan out sustainable water resources management under an uncertain and changing climate.

Keywords: flood frequency analysis; flash flood; climate change and variability; Boise River
Watershed; HSPF

1. Introduction

Climate variability and change continues to increase the risk and frequency of floods for inland
communities in the United States (US) [1–4]. Floods in 2017 alone claimed more than 3 billion dollars
in property damages and crop losses [5]. As global warming shifts rainfall patters, more frequent
heavy rain is likely contributing to flash floods at the urban-rural interface, such as the Boise River
Watershed (BRW) [6]. In general, snowmelt-streamflow dominates high volume in many western
watersheds during spring and summer [7,8]. Thus, heavy snowfall and accumulation in winter can
elevate potential risks of flash flooding during snow-melting season. Over the last few years, this
consequence of heavy snowfall often affects streamflow augmentation in the Boise River so that the
second highest inflows to reservoirs upstream is recorded in water year 2017 (October 2016–September
2017) [9]. Such a high-volume water condition began increasing management concerns for reservoir
operators and homeowners who live in the flood plain.

Recent studies show that the global climate cycle will create and intensify more severe frequent
floods in many regions, resulting in threats to the reliability and resiliency of water resources
infrastructure [10,11]. Many previous studies have investigated long-term hydrologic variability
associated with climate change [12–15]. The general circulation models (GCMs) are commonly used to
characterize local hydrologic conditions induced by climate variability and change over the next few
decades. For instance, because of the timing change of snowfall and snowmelt in the western states,
regional water resources management is increasingly facing additional challenges; thus, heavy snowfall
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increases potential risks of flash flood in the snow-dominated watershed. Floods may also intensify in
many regions where total precipitation is even projected to decline due to climate uncertainties [14–16].
Based on the evidence of a larger proportion of snowmelt-driven streamflow volume during springtime
leveraged by temperature increase, potential impacts of climate change on streamflow in the western
states are likely increasing [12,17].

Many previous studies, however, focused on hydrologic consequence of climate change scenarios
using statistical downscaling and bias correction processes [13,18,19]. Thus, given the dominantly
linear response of the GCMs, future perturbations of hydrologic cycles induced by climate change were
investigated to characterize climate-induced hydrological impacts at the regional scales. Relatively
little study has been done to explore the risk of potential flash floods associated with climate variability
using frequency analysis [20].

In this study, therefore, we investigate how future climate variability can characterize potential
flash flood risks in the Boise River Watershed. Using both flood frequency analysis and future ensemble
streamflow generations with climate inputs, potential flash flood events are analyzed. We anticipate
that the result from this study will provide useful insights for local water managers to plan out future
flood mitigation strategies in a changing global environment.

2. Study Area

The Boise River Watershed (BRW) is selected as the study area (Figure 1). As a tributary of the
Snake River system, the BRW plays a key role of providing water to Boise metropolitan areas, including
Boise, Nampa, Meridian, and Caldwell. The drainage area of the basin is about 10,619 km2 with a
mainstream length of 164 km stretch and flows into the Snake River near Parma. More than 40% of
Idaho residents live in this basin and 60% of people of that are residing around the floodplain [21].
The main physical and geographic characteristic of the BRW is a greater proportion of precipitation
falling at higher elevations. It becomes the cause of predictably high flows due to the snow melting
process so that the localized flood event is often observed during late spring and early summer.
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Figure 1. Map of the Boise River Watershed.

The recent flash flood induced by heavy snowfall 2017 further highlights a research proposal to
increase water storage capacity of the Boise River system by raising small-portion elevation of the
existing dams, including Lucky Peak, Arrowrock and Anderson Ranch. The Bureau of Reclamation
is currently conducting the feasibility study of the dams under the December 2016 Federal Water
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Infrastructure Improvements for the Nation Act, which may also authorize funding for construction
of projects by 1 January 2021 [22]. Additional water capacity in the BRW (if this project is complete)
will provide more flexibility for water managers to mitigate impacts driven by climate-induced hydro
extremes (flood and drought). Seasonal streamflow for three stations managed by United States
Geological Survey (USGS), including USGS: 13200000 (OBS1), 13185000 (OBS2) and 13186000 (OBS3)
are observed. As shown in Figure 2, the seasonal trends at these stations are distinct in the sense that
snow-melting streamflows are dominant during summer, while rainfalls in later fall is also contributing
to streamflow before major snowfall starts.
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Figure 2. Box plots of the observed seasonal streamflow at the selected United States Geological Survey
(USGS) stations (OBS1: USGS 1320000, OBS2: USGS 13185000, OBS3: USGS 13186000).

3. Methodology

3.1. Flash Flood Frequency

For flood frequency analysis, the magnitudes of a single hydro variable, such as annual maximum
flood peak is widely used in hydro communities. For this study, 3-day running total streamflow
sequences (3D flows) was utilized to better represent potential flash floods. Since a flash flood is
caused by heavy rain and/or snowmelt streamflow in a short period of time, the maxim value of 3D
flow at the given month was selected to consider independent and identically distributed variants (iid)
for frequency analysis. For example, the flash flood in 2017 at OBS2 is recorded 876.69 cubic meter
per second (cms), which is the second highest flow (7 May 2017) after 904.44 cms (27 April 2012) (see
Table 1).



Water 2019, 11, 1039 4 of 17

Table 1. The 3-day running total streamflows at the selected USGS stations (OBS1: USGS 13200000,
OBS2: USGS 13185000, OBS3: USGS 13186000).

Index
OBS1 OBS2 OBS3

Date Flow Date Flow Date Flow

1 7 April 1951 179.53 28 May 1951 551.33 28 May 1951 420.79
2 27 April 1952 282.88 27April 1952 686.97 4 May1952 430.42
3 28 April 1953 133.37 13 June 1953 626.08 13June 1953 352.26
4 18 April 1954 121.48 20 May 1954 625.80 20 May 1954 408.89
5 23 December 1955 292.23 23 December 1955 575.68 10 June 1955 306.67
6 16 April 1956 189.16 24 May 1956 857.43 24 May 1956 592.67
7 30 May 1970 149.23 5 June 1957 663.75 5 June 1957 473.74
8 18 April 1958 162.26 21 May 1958 818.07 22 May 1958 609.94
9 6 April 1959 90.61 14 June 1959 390.77 14 June 1959 235.31

10 7 April 1960 150.65 12 May 1960 458.73 12 May 1960 318.85
11 4 April 1961 53.43 26 May 1961 364.72 26 May 1961 216.34
12 19 April 1970 108.74 20 April 1962 393.60 12 June 1962 281.19
13 7 April 1963 73.14 24 May 1963 453.35 24 May 1963 326.21
14 24 December 1964 305.26 24 December 1964 777.30 21 May 1964 281.19
15 23 April 1965 325.36 11 June 1965 682.43 11 June 1965 550.76
16 1 April 1966 64.34 8 May 1966 321.11 9 May 1966 233.05
17 23 May 1967 72.69 23 May 1967 577.66 24 May 1967 466.09
18 23 February 1968 74.39 4 June 1968 295.63 4 June 1968 180.09
19 6 April 1969 205.30 14 May 1969 543.12 14 May 1969 480.54
20 24 May 1970 103.92 26 May 1970 569.45 8 June 1970 382.84
21 5 May 1971 185.76 14 May 1971 667.71 13 May 1971 518.48
22 19 March 1972 188.59 2 June 1972 784.94 9 June 1972 510.27
23 15 April 1973 54.45 19 May 1973 435.80 19 May 1973 257.40
24 31 March 1974 206.15 16 June 1974 805.33 16 June 1974 485.35
25 16 May 1975 225.68 16 May 1975 627.50 7 June 1975 467.51
26 10 April 1976 156.31 12 May 1976 527.26 15 May 1976 335.27
27 16 December 1977 76.88 16 December 1977 208.13 10 June 1977 60.37
28 31 March 1978 159.99 9 June 1978 496.11 9 June 1978 358.21
29 17 May 1979 48.85 25 May 1979 406.63 25 May 1979 266.18
30 24 April 1980 138.75 6 May 1980 491.01 6 May 1980 334.14
31 21 April 1981 65.69 9 June 1981 413.14 9 June 1981 240.41
32 14 April 1982 212.94 25 May 1982 633.45 18 June 1982 503.19
33 13 March 1983 257.97 29 May 1983 871.59 29 May 1983 643.36
34 18 April 1984 196.80 15 May 1984 711.60 15 May 1984 496.96
35 11 April 1985 120.91 4 May 1985 332.72 25 May 1985 244.09
36 24 February 1986 253.44 31 May 1986 768.23 31 May 1986 557.27
37 14 March 1987 47.91 30 April 1987 242.39 30 April 1987 146.40
38 5 April 1988 41.00 25 May 1988 260.23 25 May 1988 177.26
39 20 April 1989 155.74 10 May 1989 466.38 10 May 1989 342.35
40 29 April 1990 98.00 29 April 1990 280.90 31 May 1990 167.92
41 18 May 1991 34.26 4 June 1991 258.53 12 June 1991 179.53
42 22 February 1992 36.10 8 May 1992 193.12 8 May 1992 116.10
43 5 April 1993 167.64 15 May 1993 675.36 21 May 1993 390.49
44 22 April 1994 28.57 12 May 1994 235.03 13 May 1994 137.62
45 8 April 1995 150.36 4 June 1995 518.20 4 June 1995 425.32
46 31 December 1996 152.88 16 May 1996 790.89 17 May 1996 552.74
47 2 January 1997 301.29 16 May 1997 856.02 17 May 1997 656.10
48 28 May 1998 169.33 27 May 1998 468.64 10 May 1998 312.62
49 20 April 1999 158.29 26 May 1999 657.23 26 May 1999 438.06
50 14 April 2000 90.73 24 May 2000 387.37 24 May 2000 255.42
51 25 March 2001 34.15 16 May 2001 273.26 16 May 2001 140.45
52 15 April 2002 157.72 15 April 2002 479.12 1 June 2002 280.34
53 27 March 2003 67.42 30 May 2003 689.23 30 May 2003 467.51
54 7 April 2004 99.39 5 June 2004 284.58 6 May 2004 171.03
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Table 1. Cont.

Index
OBS1 OBS2 OBS3

Date Flow Date Flow Date Flow

55 20 May 2005 59.81 20 May 2005 477.14 20 May 2005 381.99
56 6 April 2006 293.93 20 May 2006 844.69 20 May 2006 651.85
57 14 March 2007 57.14 2 May 2007 291.38 13 May 2007 152.63
58 20 May 2008 105.62 20 May 2008 760.02 20 May 2008 412.86
59 22 April 2009 96.56 20 May 2009 508.85 1 June 2009 325.36
60 6 June 2010 103.07 6 June 2010 726.04 6 June 2010 413.99
61 18 April 2011 152.91 15 May 2011 792.30 15 May 2011 416.82
62 1 April 2012 173.87 27 April 2012 904.44 26 April 2012 538.02
63 7 April 2013 34.77 14 May 2013 365.29 14 May 2013 220.02
64 11 March 2014 75.69 27 May 2014 489.88 27 May 2014 274.39
65 10 February 2015 117.80 9 February 2015 303.56 26 May 2015 160.84
66 14 March 2016 99.68 13 April 2016 439.76 13 April 2016 298.46
67 21 March 2017 318.28 7 May 2017 876.69 7 May 2017 813.54

Figure 3 illustrates the number of occurrences of 3D flows each month starting from January 1951
to December 2017 at the three USGS stations (OBS1, OBS2, and OBS3). It appears that the likelihood of
maximum 3D flows at the given month is noticeably observed in April and May at both OBS2 and
OBS3, while such flow is also observed in March at OBS1.
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Figure 3. The number of occurrences of the maximum 3-day running total streamflow sequences (3D
flows) at the given year for January 1 1951 to December 31 2017 at the selected USGS stations (OBS1:
USGS 1320000, OBS2: USGS 13185000, OBS3: USGS 13186000).

Three distribution families, including the generalized extreme value type I (GEV), the 3-parameter
lognormal (LN3) and Pearson distributions (LP3) [23–25] are commonly used for flood frequency
analysis. The parameters of these distributions, however, should be estimated from several statistical
methods, but the method of moment (MOM) was selected for the curve fitting based on the previous
research [26]. For GEV, the reduced extreme value variate, Xi, can be defined as a function of the
Weibull plotting position, qi, which is the probability of the ith-largest event from the sample size, n.
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Thus, the points when plotted would apart from sampling fluctuation, lie on a straight line through
the original [27].

qi =
i

n + 1
, (1)

Xi = − ln[− ln(1− qi)], (2)

where, ln is the natural logarithm [28,29]. The specified position of a ith-flood, Yi, can be defined
as [30]:

Yi = Y + KiσY, (3)

where, Y is the mean of the flood series, σy is the standard deviation of the series, and Ki is a frequency
factor defined by a specific distribution, which is GEV I (GEV) in this case [27,31,32].

Ki = (0.7797Xi − 0.45). (4)

In order to plot the fitted values from three-parameter lognormal distribution, mean, standard
deviation, and location parameter should be estimated [33]. The parameter estimation for the location
parameter, in particular, is more difficult in the sense that an iterative solution of a nonlinear equation
should be achieved to retain their desirable asymptotic properties. [34]. The method of quantiles would
be a feasible solution to estimate the location parameter, τ.

τ =
xqx1−q − (x0.5)

2

xq + x1−q − 2x0.5
, (5)

where, xq, x1−q, and x0.5 are the largest, smallest, and median of the observations. This choice of the
values ensures that the estimated lower bound is smaller than the smallest observation so that the fitted
lower bound is reasonable [34]. For the three-parameter log normal distribution, Yi may be written:

Yi = τ+ exp(a + bqi), (6)

a =
1
n

∑n

i=1
ln(xi − τ), (7)

b =

√∑N
i=1(xi − τ)

2

N − 1
. (8)

Researchers [35] demonstrate parameter estimation to generate a sample from a log Pearson type
3 distribution (LP3). The probability density function of LP3 can be represented as:

f (x) =
λβ(x− ζ)β−1 exp(−λ(x− ζ))

Γ(β)
, (9)

where, λ, β and ζ are parameters for LP3 and the method of moment is applied for parameter
estimation [28].

3.2. Hydrological Model Used

Hydrological Simulation Program FORTRAN (HSPF) was used as a hydrological model to
simulate the past and future hydrological consequences associated with climate variability [36–38].
HSPF is a process-based, river basin-scale, and semi-distributed model that simulates hydrological
conditions through Hydrological Response Units (HRUs) within the watershed. Built upon Sandford
Watershed Model IV [39,40], HSPF is widely used for water quantity and quality simulations for
many national and international watersheds [41–45]. For hydrological simulation, a series of datasets
was used, including the Digital Elevation Model (DEM) in 30-meter resolution and the National
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Hydrography Dataset (NHD). As environmental background data, the 2011 Land Use Land Cover
(LULC) datasets provided by National Land Cover Database (NLCD) were used to perform a more
detailed assessment of current LULC conditions in three watersheds. For climate forcing data, phase
2 of the North American Land Data Assimilation System (NLDAS-2) data, including precipitation,
temperature, and potential evapotranspiration (PET) at an hourly time step were used [46]. NLDAS-2
is in 1/8th-degree grid spacing (about 12 × 12 km) and the simulation period is set for 1 January 1979
through 31 December 2015 at an hourly time step.

For HSPF calibration and validation, we utilized observed daily streamflow for calibration
(1979–2005) and validation (2006–2015). Initial 2-year simulations (1979–1980) were used as the warm
up period. A total of three observed streamflow stations located in above reservoirs were selected for
calibration target points because these stations are less influenced by anthropogenic water activities
(e.g., diversion, irrigation, and dam operations) (see Figure 1). A model-independent parameter
estimation package (PEST) was used as an automatic calibration tool in BEOPEST environment, which
is a special version of PEST in parallel computing to save calibration time and to improve model
performance. Model performance was measured based on criteria, including correlation coefficient (R),
the Nash–Sutcliffe efficiency (NSE), observation standard deviation ratio (RSR), and percentage of bias
(PBIAS), which are typically used as described in the Appendix A. The more detailed HSPF modeling
and calibration efforts can be found in the literature [13].

3.3. Future Climate Scenarios Implemented

A total of 13 Global Circulation Models (GCMs) under representative concentration pathways
(RCPs), including mid-range mitigation emission scenarios (RCP4.5) and high emission scenarios
(RCP8.5) were used to generate climate-driven streamflows over the next few decades until 31
December 2099. Using Multivariate Adaptive Constructed Analogs (MACA)-based Coupled Model
Inter-Comparison Project (CMIP5) statistically downscaled data for conterminous USA [47], the
extended future streamflows were generated at the selected USGS stations (OBS1, OBS2 and OBS3).
There were a total of 13 MACA. More detailed information about the GCMs are listed in Table 2.

Table 2. List of the Coupled Model Inter-Comparison Project (CMIP5) models used in this study.

Model Modeling Group Note

BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration, China

1. 4 km spatial resolution
2. Scenario: RCP4.5,

RCP8.5

BCC-CSM1-1m

BNU-ESM College of Global Change and Earth System Science, Beijing Normal
University, China

CANESM2 Canadian Centre for Climate Modelling and Analysis, Canada

CCSM4 National Center for Atmospheric Research, USA

CNRM-CM5 Centre National de Recherches Meteorologiques, Meteo-France, France

CSIRO-MK3
Commonwealth Scientific and Industrial Research Organisation in

collaboration with the Queensland Climate Change Centre of Excellence,
Australia

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory (GFDL), USA

IPSL-CM5A-LR
Institute Pierre-Simon Laplace, France

IPSL-CM5A-MR

IPSL-CM5B-LR

MIROC5 Atmosphere and Ocean Research Institute, Japan

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Japan
MIROC-ESM-CHEM

Basically, RCPs indicate the estimation of the radiative forcing associated with future climate
variability and change. For example, RCP8.5 represents the increase of the radiative forcing throughout
the 21st century before it reaches a level to 8.5 W/m2 at the end of the century. All datasets covering the
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period 1979–2099 were obtained from [47]. Although future GCM data would be useful, additional
efforts are needed to incorporate such data into HSPF modeling framework. Thus, bias correction was
applied using a quantile-based mapping technique associated with the synthetic gamma distribution
function to cross-validate GCMs and NLDAS-2 dataset. The bias correction assumes the biases
represents the same pattern in both present and future climate conditions. It was based on the
comparison between Cumulative Distribution Function (CDF) for NLDAS-2 and GCM data within
the same time window. Thus, the bias between the GCM and NLDAS-2 during the reference period
(1979–2005) was also considered to adjust future climate conditions prior to HSPF simulations as forcing
inputs. The CDF was first calculated based on the month-specific probability distribution for monthly
GCM and NLDAS-2 data, including precipitation, temperature and potential evapotranspiration
(PET). The inverse CDF of the gamma function was then used to apply bias correction for GCMs from
NLDAS-2. The more detailed process can be found at [13].

4. Results

Figures 4–6 illustrate a comparison of the 3D flows against the Gumbel reduced variable
for the selected USGS OBS1, OB2, and OBS3, respectively. Simple correlation coefficients and
Kolmogorov–Smirnov statistic were computed for goodness-of-fit and it is concluded that all
three methods are acceptable because the correlation coefficient is high enough (>0.98) and the
Kolmogorov–Smimov empirical statistic [48], Dn (Dn = 0.16) is smaller with 95% confidence level.
The interested reader may also apply another goodness of fit, such as chi square test [49] for cross
validation, when necessary. Confidence limits suggested by [50] were also applied to provide useful
insights for water managers, who may utilize this information to mitigate impacts driven by flash
floods. Note that the upper and lower bound lines are plotted based on GEV and those lines indicate a
wide range of uncertainty for GEV Type I distribution at the 95% confidence level.
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The Monte Carlo simulation was also conducted to understand the impact of risk and uncertainty
in flash flood events. A total of 1000 streamflow sequences were generated and distinct 30, 60 and
90 samples were selected to observe a 95% confidence level. Table 3 shows the 3D peak flow from
Monte Carlo simulation associated with different return periods (25, 50, 100, 150 and 200 years) based
on Gumbel Extreme Value Type I (GEV). Note that the return period of 200 years can be interpreted as
the total span of streamflow data in BRW has 200-year records from 1951 to 2150 (200 years), which is
beyond of the climate model projection until 2099.
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Table 3. The 3D peak flows from Monte Carlo simulation from 1000 streamflow sequences with different
sample sizes (30, 60, 90) and return periods (25, 50, 100, and 200 years) based on Gumbel Extreme Value
Type I (GEV).

OBS1 25 50 100 150 200

N = 30
Upper 348 410 458 486 514

Lower 255 285 319 337 353

N = 60
Upper 336 390 437 464 491

Lower 268 302 341 358 380

N = 90
Upper 333 381 426 458 480

Lower 274 313 352 374 386

OBS2 25 50 100 150 200

N = 30
Upper 1075 1206 1337 1425 1471

Lower 822 918 983 1039 1067

N = 60
Upper 1033 1166 1278 1371 1422

Lower 858 952 1044 1093 1123

N = 90
Upper 1025 1143 1268 1337 1402

Lower 876 972 1062 1118 1164

OBS3 25 50 100 150 200

N = 30
Upper 780 884 985 1076 1109

Lower 587 654 714 761 780

N = 60
Upper 753 854 950 1013 1053

Lower 612 686 759 805 829

N = 90
Upper 739 842 929 994 1029

Lower 628 705 781 822 844

The streamflow calibration and validation were also performed to generate climate-induced future
streamflows at BRW. The calibration and validation periods of streamflow are 1979–2005 (27 years) and
2006–2015 (10 years), respectively, but the first two years (1979–1980) were used as a warm up period.
Table 4 shows the calibration and validation results for performance measures of streamflow at BRW
using daily and monthly time steps. Based on criteria and recommended statistics (see Appendix A)
for model performances [51,52], all three observed stations, OBS1, OBS2 and OBS3 show good model
performance (e.g., R2 = 0.87, NS = 0.86, and RSR = 0.37, and PBIAS = 11.10 at OBS1) during the
calibration period. Overall, the calibrated HSPF performs very well to generate climate-driven future
streamflows with GCMs inputs.

Table 5 lists the maximum of climate-driven ensemble streamflows (3D flows) from HSPF
simulations with GCMs inputs. Both RCP 4.5 and RCP 8.5 scenarios are incorporated into HSPF to
explore potential flood risks over the next few decades. It appears that RCP 4.5-induced streamflows
might not have a great influence on the difference in the overall 3D flows at the selected stations.
However, when the RCP 8.5 scenario was used, the significant increase was observed at OBS2 and
OBS3. Based on the flood frequency analysis, the maximum of 3D flows at OBS2 and OBS3 are reported
1471 cms (N = 30) and 1109 cms (N = 3), respectively, which is much less than that from HSPF with
GCMs inputs (see Table 5). This implies that uncertainties embedded in GCMs is quite large as opposed
to the hydro stationarity—the idea that natural systems fluctuate within an unchanging envelop of
historic flow variability [53–55]. Such an uncertainty, perhaps, can be reduced through more cohesive
joint modeling efforts from the field of climatology and hydrology. Thus, the regional climate models
are evolving with additional information and new approaches to better increase the predictability
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using any large-scale driving data, including aerosols and chemical species [56]. Additionally, the
fast-moving technologies and applications, such as high-performance computing, computer parallelism
in hydrological modeling [57], and unmanned aerial system (UAS) for flood mapping would be another
avenue to improve predictability by mitigating uncertainty and risks associated with other foreseen
factors [13] (e.g., population growth, urbanization, and economic development).

Table 4. Performance statistics for the calibrated (1979–2005) and validated (2006–2015) monthly
streamflow at the Boise River Watershed using daily and monthly time steps.

Variable
OBS1 OBS2 OBS3

Cal Val Cal Val Cal Val

R2 Daily 0.82 0.72 0.78 0.74 0.81 0.87

Monthly 0.87 0.81 0.85 0.80 0.85 0.92

NS
Daily 0.81 0.70 0.77 0.73 0.79 0.86

Monthly 0.86 0.87 0.85 0.89 0.84 0.95

RSR
Daily 0.43 0.54 0.48 0.52 0.46 0.37

Monthly 0.37 0.36 0.39 0.34 0.40 0.22

PBIAS (%) Daily 11.11 17.35 7.82 3.19 9.74 1.50

Monthly 11.10 17.41 7.77 3.18 9.79 1.64

Table 5. The maximum of 3D flow from Hydrological Simulation Program FORTRAN (HSPF)
simulations with Global Circulation Models (GCMs) inputs.

Climate Scenario USGS Station Streamflow Date Climate Model

RCP 4.5
OBS1 985.83 30 December 2011 Ipsl.cm5a
OBS2 2469.16 30 December 2011 Ipsl.cm5a
OBS3 1777.35 8 February 2015 Bcc.scm1

RCP 8.5
OBS1 776.65 16 March 1998 Ipsl.cm5b
OBS2 1636.52 9 January 2089 Canesm2
OBS3 2563.15 18 January 2089 Canesm2

For example, Figures 7–9 illustrate the time series of ensemble 3D flows at OBS1, OBS2 and OBS3
respectively from HSPF associated with each of the climate projections. Note that logarithm base 10 is
applied to the flow to show general trends of the flow over the next few decades until 2099. One can
see that the magnitude of the projected annual 3D peaks varies in different ways for every projection.
These peaks would correspond to flash flood values with a return period greater than 140 years when
compared to historic observation (1951–2017, 67 years). The linear regression model was then applied
to draw a trend line with 95% confidence levels for visual inspection. Additionally, the upper and
lower envelop lines indicating 85% and 25% of 3D flows are drawn to provide a general insight for the
reader. Unlike 3D flows at OBS1 and OBS2, the climate-driven 3D flows at OBS3 shows an increasing
trend with 95% confidence. However, overall climate-driven 3D flows over time get more extreme in
the sense that a wider envelop of 3D flow ranges is observed as shown in Figures 7–9. Although an
uncertainty does still exist in our assumption, the outcome from this research will provide a useful
insight for water managers for their future water management practices based on scientific facts rather
than personal judgement.
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5. Conclusions

We have conducted a study on climate-driven flood risks in the Boise River Watershed using flood
frequency analysis and future streamflow ensembles generated by HSPF with climate inputs. Three
distribution families, including the Gumbel Extreme Value Type I (GEV), the 3-parameter log-normal
(LN3) and log-Pearson type III (LP3) are used to predict future flood risks using a 3-day running total
flow (3D flow). In addition to this conventional flood frequency analysis, climate-driven streamflow
ensembles are also generated to oversee the likelihood of future flash flood events over the next few
decades until 2099. The result indicates that the magnitude of the potential flash flood events is likely
increasing over time from both methods, while climate-induced future ensemble streamflows (3D
flows) is a broader envelop of historic flow variability. This implies that optimal use of available climate
information should be practiced for water managers to plan out their adaptation strategies associated
with hydroclimatic nonstationary and uncertainty in a changing global environment. We anticipate
that this research will provide useful insights for water stakeholders to make a better decision based on
scientific facts rather than personal conjecture. Furthermore, this study can be exemplified to explore
future water storage design and management practices in the Boise River Watershed to cope with
climate uncertainties.
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Appendix A

R =

1
N ×

∑N
i=1

(
QOi −QOi

)
×

(
QSi −QSi

)
√

N ×
∑N

i=1 Q2
Oi− (

∑N
i=1 QO1)

2

N × (N−1) ×

√
N ×

∑N
i=1 Q2

Si− (
∑N

i=1 QS1)
2

N × (N−1)

, (A1)

NSE = 1.0−


∑N

i=1(QOi − QSi)
2∑N

i=1

(
QOi − QOi

)2

, (A2)

RSR =

√∑N
i=1(QOi − QSi)

2√∑N
i=1

(
QOi − QOi

)2
, (A3)

PBIAS =

∑N
i=1(QOi −QSi)∑N

i=1 QYOi
× 100, (A4)

where, QOi and QSi are observed and simulated streamflow at the time step, respectively. QOi and QSi
are mean observed and simulated streamflow for the simulation period. N is the total number of values
within the simulation period. R is the correlation coefficient between the predicted and observed values.
It ranges from 0.0 to 1.0. A higher value indicates better agreement between predicted and observed
data. Santhi et al. [58] indicated that R values greater than 0.7 show acceptable model performance.
NSE is the percentage of the observed variance and determines the efficiency criterion for model
verification [59]. It is calculated from minus infinity to 1.0. Higher positive values indicate better
agreement between observed and simulated values. RSR is a standardized Root Mean Square Error
(RMSE) based on observed standard deviation recommended by Legates and McCabe [60]. A zero
value shows the optimal model performance. PBIAS calculates the average tendency of the simulated
values to be larger or smaller than observed counterparts [61]. Lower PBIAS value (e.g., close to zero)
indicates better performance. Positive PBIAS indicates underestimated bias, while negative PBIASO
values shows the overestimated bias.
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