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Abstract: Data from global soil databases are increasingly used for crop modelling, but the impact of
such data on simulated crop yield has not been not extensively studied. Accurate yield estimation
is particularly useful for yield mapping and crop diversification planning. In this article, available
soil profile data across Sri Lanka were harmonised and compared with the data from two global soil
databases (Soilgrids and Openlandmap). Their impact on simulated crop (rice) yield was studied
using a pre-calibrated Agricultural Production Systems Simulator (APSIM) as an exemplar model.
To identify the most sensitive soil parameters, a global sensitivity analysis was performed for all
parameters across three datasets. Different soil parameters in both global datasets showed significantly
(p < 0.05) lower and higher values than observed values. However, simulated rice yields using
global data were significantly (p < 0.05) higher than from observed soil. Due to the relatively lower
sensitivity to the yield, all parameters except soil texture and bulk density can still be supplied from
global databases when observed data are not available. To facilitate the wider application of digital
soil data for yield simulations, particularly for neglected and underutilised crops, nation-wide soil
maps for 9 parameters up to 100 cm depth were generated and made available online.
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1. Introduction

With the growing concern about climate change and food security, process-based crop models
have been used to aid decisions at local, regional and global scales [1,2]. Traditional agronomic
experiments are time-consuming and expensive, but crop performance simulations allow evaluation
of the potential of crops and crop varieties in different geographic locations under different
agro-climatic environments [3]. Crop modelling approaches are also used in on-farm decision
making, studying nutrient dynamics [4], plant breeding [5], sensitivity of crops to changing climates [1]
and policy-making [2]. Crop modelling is a particularly useful tool for understanding the likely
productivity of crops in different environments. It has been recently suggested that crop modelling can
be used to provide evidence for crop diversification in areas that are affected by climate change [6,7].
Simulating the crop yield is particularly cumbersome for these crops as detailed field data are rarely
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available. Modelling the performance of these crops however can benefit from extensive data being
available for major crops.

To understand the genotype–environment (G × E) interaction in crop models and capture
agronomic reality, the availability of good quality environmental data is essential. Currently, spatial
and temporal variability in soil and climatic factors can be captured in crop models [8] and studies
have shown that crop models are sensitive to variation and therefore, capturing these dynamics is
important in delivering more accurate estimates. For example, using global gridded crop models,
Folberth et al. [9] reported that the soil type has a higher impact on crop yield than the interannual
yield variability due to weather. This is because soil texture has dynamic interactions with precipitation
and plant-available water content to buffer soil water holding capacity [9]. Others have reported the
importance of accurate soil data and their impact on yield simulations [8,10]. Furthermore, the yield
change under climate change can be either positive or negative depending on the type of soil [9].
Therefore, reliable and accurate soil data are essential to minimise the uncertainty in yield simulations.

Understanding the sensitivity of simulated yield to all input parameters in process-based crop
models is crucial in improving productivity. Climate data have been increasingly available in local,
regional and global databases and through remote sensing and reanalysis methods [11]. However,
the unavailability of observed soil data is still a challenge for crop model simulations [12].

Soil information in most countries is traditionally made available through semi-detailed soil series
maps that show the distribution of soils through sampled profiles or expert knowledge. The focus
in these inventories is to provide soil types rather than individual soil properties, e.g., pH, texture,
etc. [13]. Additionally, these profiles often reflect information at different depths as soil horizons vary
from one location to another. Another major limitation of conventional soil mapping is the scale
at which soil information is aggregated and the limitation of such data to provide finer scale soil
property information. Although these data are very useful in many areas including regional planning,
they needs extensive work in terms of digitisation, harmonisation of depths and estimation of missing
parameters before they can be used in crop models.

At the global level, few databases provide soil data at different geographic scales. The Harmonized
World Soil Database (HWSD) is a 30 arc-second raster database [14] and the International Soil
Reference and Information Centre—World Inventory of Soil Emission Potentials (ISRIC–WISE) contains
generalised soil data in a 5 by 5 arc-minute resolution [15]. The World Soil Information Service (WoSIS)
database provides data in point, polygon and grid formats that are useful for mapping [16].

Following several attempts to harmonise soil profiles and profile data at the global level
(Harmonized World Soil Database, 2020; [17]), maps of soil properties at a finer spatial resolution
have recently been developed using digital soil mapping techniques. Soilgrids and Openlandmap
are examples of such attempts to provide free to access interpolated soil property information in
geospatial formats [18,19]. The aim is to provide an automated soil property mapping framework that
distributes global soil information with a reasonable degree of accuracy and scale. This information
could potentially be used for finer scale insight generation regarding agricultural productivity [6]. Both
Soilgrids and Openalandmap databases produce predictions with various degrees of accuracy between
locations and properties depending on the density of samples and analytical techniques. However,
the application of these data for crop modelling using process-based modes such as Agricultural
Production Systems Simulator (APSIM) [2] is not studied. Nevertheless, since their data are provided
at a finer resolution (close to density of observed field data) there is a potential to use this data for crop
simulation modelling.

Few attempts have been made to use global soil data in yield simulations. Soil daTA Retrieval
Tool (START) prepares input data for crop models using Soilgrids database [20]. Additionally, a digital
database [12] is developed using Soilgrids data to prepare soil input files for Decision Support System
for Agro-technology Transfer (DSSAT) crop model [21]. However, assessing the crop modelling
performance with observed data versus globally provided data is an area that remains unexplored.
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Evaluating the impact of such data on the crop modelling outputs provides a primer to wider utilisation
of open data for the benefit of all stakeholders interested in agricultural diversification.

Other than issues such as reliability and formats, assessment of the impact of individual input
parameters in crop simulation modelling is also important. Although sensitivity analysis methods that
use all input variables (global sensitivity analysis methods) are generally computationally expensive,
their use in understanding the influence of input parameter space of models with many variables
(e.g., crop modelling) is crucial. Another important advantage of using global methods in estimating
the sensitivity of all parameters is understanding the interactions that exist within the parameter space.
Global methods have been used to ascertain the sensitivity of environmental parameters in relation
to yield. For example, Varella et al. [22] studied the global sensitivity of wheat yield in relation to
different soil, climate and crop conditions and Vanuytrecht et al. [23] employed the global sensitivity
analysis for determining the yield response to water availability. Soil parameter sensitivity estimation
is therefore essential in understanding the utility of such data in crop modelling.

Once the output yield is properly estimated and validated, extrapolation of crop simulation
modelling results can generate valuable information regarding crop production in current and future
climates. Mapping the yield estimates using globally available datasets is becoming widespread.
For example, fine resolution data have been used in regional level crop modelling in the global yield
gap atlas project (GYGA—http://www.yieldgap.org/). With the increased popularity of web-based
decision support systems such as LANDSUPPORT (https://www.landsupport.eu/) [24], the importance
of harmonising conventional soil data and examining their efficiency in modelling becomes more
evident [6]. Therefore, in this study, we compared the observed soil data with global data (Soilgrids and
Openlandmap) in simulating yield using an exemplar crop model to determine the fitness of global
datasets for regional and possibly local decision making. The sensitivity of yield to each soil parameter
was also evaluated based on a harmonised soil dataset across Sri Lanka that was developed in this
study to confirm the relative significance of each parameter and database in yield simulations. Since
the available global soil databases did not capture the spatial variability of soil properties in the country,
interpolated soil maps were created and made available using the observed data as an alternative
database to be used in process-based crop models.

2. Materials and Methods

2.1. Study Area

This study was conducted in Sri Lanka, which is a tropical island in the Indian ocean, located
between 5◦ and 10◦ north latitude. Therefore, seasonal temperature variation is not observed in the
country. The mean annual temperature of the country varies from 16 ◦C in the central highlands to
27 ◦C in the coastal plains due to the altitudinal changes. The mean annual rainfall ranges from below
900 mm in the dry zone to above 5000 mm in the wet zone. Rainfall follows a bi-modal distribution
with two peaks centered in March–April and October–November [25]. The country is divided into
three major climatic zones according to the annual rainfall amount; the dry zone (annual rainfall
<1750 mm) that covers the east, northern and south-east part of the country, the wet zone (>2500 mm
rainfall annually) in the central and south-west regions and the intermediate zone (1750–2500 mm
annual rainfall) separating the two (Figure 1). The country is divided into three altitudinal classes as
Low country (<300 m), Mid country (300–900 m) and Up country (>900 m) [25]. Due to the diversity of
climatic conditions, a wide range of soil properties can be observed in Sri Lanka [26].

http://www.yieldgap.org/
https://www.landsupport.eu/
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for detailed comparison with global data and Agricultural Production Systems Simulator (APSIM) 
simulations (dots). Major climatic zones are marked based on the agroecological classification of 
Punyawardene [25]. 

2.2. Observed Soil Data 

Soil profile data were obtained from the SRICANSOL project [27–29] which is the most 
comprehensive and up-to-date soil database in Sri Lanka that describes taxonomic, physical and 
chemical properties of 110 georeferenced benchmark soil series in the country. Moreover, 12 
georeferenced benchmark soil profiles for the northern region which are not included in the 
SRICANSOL project were obtained from Mapa [30]. The altitude of sample collection sites ranged 
from 0.5 m to 2200 m above mean sea level. The distribution of sampling locations that were used in 
this study is shown in Figure 1. These locations cover almost all the land use types in Sri Lanka 
including agricultural fields, bare lands, plantations, forests and urban areas [26]. 

The selected properties were bulk density (BD—g cm–3), sand content (%), silt content (%), clay 
content (%), pH (in water), cation exchange capacity (CEC—cmol + kg–1), organic carbon (%), 
volumetric water content (VWC) at 0.33 bars pressure (VWC33) and 15 bars pressure (VWC1500). 
These are the basic soil properties required for APSIM simulations. Detailed analysis methods are 
available in Mapa et al. [29]. 

From the profile data, 44 locations that contained all the required properties up to 200 cm depth 
were used for detailed comparison and APSIM simulations (Figure 1). Among them, 18 locations 
were in the dry zone (DZ), 11 in the intermediate zone (IZ) and 15 in the wet zone (WZ). 

2.3. Global Soil Data 

Data from two digital soil databases were used in this study: Soilgrids [18] and Openlandmap 
[13]. The Soilgrids database uses 150,000 profile datapoints from the World Soil Information Service 
(WoSIS) and other sources, while Openlandmap uses 350,000 field observations of soil types based 

Figure 1. A map of Sri Lanka showing the soil sample collection sites (triangles) and locations used
for detailed comparison with global data and Agricultural Production Systems Simulator (APSIM)
simulations (dots). Major climatic zones are marked based on the agroecological classification of
Punyawardene [25].

2.2. Observed Soil Data

Soil profile data were obtained from the SRICANSOL project [27–29] which is the most
comprehensive and up-to-date soil database in Sri Lanka that describes taxonomic, physical
and chemical properties of 110 georeferenced benchmark soil series in the country. Moreover,
12 georeferenced benchmark soil profiles for the northern region which are not included in the
SRICANSOL project were obtained from Mapa [30]. The altitude of sample collection sites ranged
from 0.5 m to 2200 m above mean sea level. The distribution of sampling locations that were used
in this study is shown in Figure 1. These locations cover almost all the land use types in Sri Lanka
including agricultural fields, bare lands, plantations, forests and urban areas [26].

The selected properties were bulk density (BD—g cm–3), sand content (%), silt content (%),
clay content (%), pH (in water), cation exchange capacity (CEC—cmol + kg−1), organic carbon (%),
volumetric water content (VWC) at 0.33 bars pressure (VWC33) and 15 bars pressure (VWC1500).
These are the basic soil properties required for APSIM simulations. Detailed analysis methods are
available in Mapa et al. [29].

From the profile data, 44 locations that contained all the required properties up to 200 cm depth
were used for detailed comparison and APSIM simulations (Figure 1). Among them, 18 locations were
in the dry zone (DZ), 11 in the intermediate zone (IZ) and 15 in the wet zone (WZ).

2.3. Global Soil Data

Data from two digital soil databases were used in this study: Soilgrids [18] and Openlandmap [13].
The Soilgrids database uses 150,000 profile datapoints from the World Soil Information Service (WoSIS)
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and other sources, while Openlandmap uses 350,000 field observations of soil types based on a compiled
United States Department of Agriculture, (USDA) database (National Cooperative Soil Survey, 2020)
and various other sources to predict property maps using machine learning techniques [18]. Both
of these databases provide important variables needed for crop modelling such as bulk density,
soil texture, organic matter content and pH at finer scales. While Openlandmap provides soil water
content at 33 kPa, Soilgrids does not provide such information; cation exchange capacity is not available
in Openlandmap.

2.4. Calculations and Estimation of Missing Parameters

In both the SRICANSOL and Soilgrids databases, soil pH is based on a 1:2.5 soil water ratio.
In Openlandmap, the ratio of 1:1 was used to determine soil pH. However, modern soil classifications,
databases and crop models use the ratio of 1:5, which is defined according to the international standards
for soil pH determination (ISO 10390:2005). Therefore, soil pH in 1:2.5 and 1:1 ratios of water (W) were
converted to 1:5 following the methods developed by Kabała et al. [31] (Equation (1)) and Libohova et
al. [32] (Equation (2)), respectively.

pH 1:5W = 0.14 + 0.99 × pH 1:2.5W (1)

pH 1:5W = −0.51 + 1.06 × pH 1:1W (2)

Soil moisture information was not available in Soilgrids while VWC33 is available in the
Openlandmap database. Therefore, volumetric water content at 0.33 bars level (VWC33) and 15 bars
(VWC1500) were calculated using the pedotransfer functions developed by Gunarathna et al. [33] from
the SRICANSOL dataset (Equations (3) and (4)). Parallel to the crop model parameters, VWC33 and
VWC1500 were labelled as drainage upper limit (DUL) and wilting point (LL15), respectively.

VWC33 (DUL) = 0.4357 − 0.0035 × Sand% (3)

VWC1500 (LL15) = 0.3426 − 0.003 × Sand% (4)

Following the APSoil parameter estimation protocol [34], the soil moisture limit to which soil
can dry by evaporation (AirDry − AD) was calculated as 50% of the LL15 value in the top two layers
(0–5 and 5–15 cm), 80% in the 15–30 cm layer and 100% for all other profiles. Saturation (SAT) was
estimated for all the soils using porosity (PO) as follows.

PO = 1 − BD/TD (5)

where 2.65 g cm−3 was used as TD (true density).

SAT = PO − e (6)

A similar value of 0.05 was used for e in all the soils. The Soilgrids data are available for 7 standard
depths: 0, 5, 15, 30, 60, 100 and 200 cm making 6 layers. Average soil properties over depth intervals
(0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm) were derived based on the weighted average of the
depths using the trapezoidal rule (Equation (7)) [18].

1
b− a

∫ b

a
f (x)dx ≈

1
(b− a)

1
2

N−1∑
k=1

(xk+1 − xk)( f (xk) + f (xk+1)) (7)

Openlandmap contains soil data for 6 depths as 0, 10, 30, 60, 100 and 200 cm forming 5 layers,
therefore, the weighted average within the depths was calculated. To avoid the effect of depth on
simulated yield, the depths in both observed and Openlandmap data were standardised to 6 layers
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as 0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm using equal-area quadratic smoothing splines.
SplineTool v2 available at: http://www.asris.csiro.au [35] was used for the equal area spline process.

2.5. Yield Simulations

2.5.1. Crop

Rice was selected as the crop to simulate with both observed and global soil data because it is
the major crop in Sri Lanka that covers 15% of the total area and 29% of agricultural lands in the
year 2018 [36]. Rice is cultivated in all 25 administrative districts of the country in different amounts.
We selected BG 357, a local improved rice variety with the maximum observed yield of 9.5 t ha−1

(Department of Agriculture Sri Lanka—DOASL). The selected variety can be harvested within a
three-and-a-half-month period. Out of nearly 75 known varieties, BG 357 accounted for 2.2% of total
rice cultivated area in the 2017/2018 major growing season [36].

2.5.2. Crop Model

Many crop models require fair amount of soil information. In this study we chose the APSIM
(Version 7.10) model as an exemplar crop model with extensive literature that is available for the
APSIM rice module for Sri Lanka. APSIM contains a set of biophysical models that simulate different
aspects of a cropping system. The plant models simulate crop phenology, organ development and
physiological processes, assimilation and partitioning of biomass and response to abiotic stresses.
Crop- or cultivar-specific genotypic information is needed to simulate crop performance. Evaporation,
water movement and infiltration within profiles, runoff and cycling of different solutes can be simulated
by soil models [2]. Daily minimum and maximum temperatures, solar radiation and rainfall are
key weather inputs in APSIM. Crop management options allow simulation of a wide range of crop
management practices including planting, fertiliser application and irrigation. Detailed descriptions of
APSIM and supporting models are available at [2,37]. APSIM Oryza [38] simulates daily growth and
development of rice. Rice growth responds to climate (radiation, temperature and rainfall), soil water
supply (SoilWat model), and soil nitrogen (SoilN model) [39].

2.5.3. APSIM Simulations

Rice is cultivated as a rainfed crop in Sri Lanka during the major growing season which falls
between October to March [40]. Direct seeding was selected as the planting method as it is the most
common planting method in the country. The date of sowing was set as 1 November and the number
of plants per seed bed (plants m−2) was 350 [40]. Generally, planting date varies across the country,
but we used a fixed calendar date for all simulations to avoid the impact of sowing date on yield.
Genetic coefficients of BG 357 generated by Zubair et al. [40] were added to the APSIM Oryza model
while other crop parameters in the model (Version 7.10) were set to default. Recommended crop
management standard procedures by the DOASL were adopted in the simulations. Maximum ponding
depth was set as 50 mm during the 18 October–30 January period. Irrigation was enabled from 25
October to 31 January to top up the pond and ceased two weeks before harvesting. Following the
DOASL recommendations for rainfed rice, urea was applied at 30 kg ha−1 3 weeks after planting (WAP),
70 kg ha−1 at 5 WAP, 50 kg ha−1 at 7 WAP and 30 kg ha−1 at 8 WAP; 10 kg ha−1 of rock phosphate was
added at sowing. The field was assumed to be weed-, pest- and disease-free.

For the soil parameters, saturated flow-proportion of water above DUL which will drain to
adjacent soil layers per day (SWCON) was set as 0.5 throughout all profiles. The proportion of initial
organic carbon assumed to be inert (FInert) was 0.4 for 0–15 cm depths, 0.5 for 15–30 cm, 0.7 for
30–60 cm and 0.95 for the rest of the depths. The proportion of non-inert C in the microbial biomass
pool (FBiom) was set as 0.035 for 0–15 cm depths, 0.03 for 15–30 cm, 0.015 for 30–100 depths and 0.01
for 100–200 cm [34]. Other parameters were set to default in APSIM (Version 7.10). All the soil files
were prepared using APSoil (Version 7.20). Rice yield was simulated for a 30-year period (1980–2009).

http://www.asris.csiro.au
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Climate Data

The AgMERRA global gridded climate forcing dataset [41] (https://data.giss.nasa.gov/impacts/
agmipcf/agmerra/) which contains all the required weather parameters for APSIM was used in
simulations. Out of the several reanalysis climate databases that utilise comprehensive methods and
covariates, AgMERRA was identified as a potential dataset to use in process-based crop models where
observed data are not available [41–43] and has been used for APSIM simulations in Sri Lanka [40,44].
The effective resolution of different parameters in AgMERRA are 0.25◦ for rainfall, 0.5◦ for temperature
and 1.0◦ for solar radiation. The selected 44 soil locations were covered by 34 different grids. Daily
rainfall (mm), solar radiation (MJ m−2 day−1), minimum temperature (◦C) and maximum temperature
(◦C) were used in simulations. The variation of rainfall and minimum and maximum temperature
throughout the cropping period (1 November to 15 February) is shown in the Supplementary Materials
(Figure S1).

2.6. Global Sensitivity Analysis

The variance-based global sensitivity analysis, developed by Sobol [45], is very useful due to its
ability to partition model output variance for many input variables and their interactions in parameter
space. However, Sobol’s method produces undesirable results in the presence of dependence among
input variables. Recently, a new method based on game theory has been proposed to define indices to
explain variance, such as Shapley’s function of attributing the importance of input variables (players)
that are related to the Sobol indices, with applications in econometrics, multilinear extension of games
and crop insurance [46–49]. Shapley values or Shapley effects, when calculated for a system with
correlated regressors, provide consistent results [50]. Since there is a strong relationship between the
soil variable (i.e., through pedotransfer functions), Shapley’s effects can be used to provide a reliable
method for correctly ascertaining the impact of input space on the yield [51].

In this study, we calculated Shapley’s effect for all soil variables using a linear regression function
of yield as the response variable. The ‘sensitivity’ extension package of the R statistical software [52]
computes the Shapley effect for a linear Gaussian framework [53]. Using the vector of input variables
coefficients and variance–covariance matrix of 30 linear emulators that were formed based on 30 years
predicted yield and soil data, we computed the Shapley’s effect of soil parameters on the yield
uncertainty. Since the linear gaussian method assumes normality, we log-transformed variables that
showed strong non-normality in the Shapiro test [54,55].

Since Shapiro’s test of normality results were different for yields across the 30 years, we compared
the result of the emulators with and without log-transforming yield. The result showed that using a
log-transformed yield variable will produce more efficient models in terms of the standard deviation
of residuals and adjusted R2. We also log-transformed those independent variables that showed strong
non-normality, including BD, SAT, OC and CEC.

2.7. Interpolation and Mapping

The spatial variability of soil properties is often captured through interpolation. The choice
of interpolation technique, however, is important, as different interpolation methods can generate
different results. Cross validation or the leaving-one-out technique is a powerful technique to compare
the results of a wide range of interpolating techniques. The result of cross validation on each soil
parameter showed that different techniques should be used for different parameters.

Stochastic techniques are the most suitable methods for prediction and mapping the spatial
distribution of soil chemical properties [56–58]. For the soil chemical properties, Empirical Bayesian
Kriging methods showed the smallest Root Mean Square Error (RMSE) values among the interpolation
methods tested. On the other hand, for the soil physical properties, the Radial Basis Function (RBF)
showed smaller RMSE values among the other interpolation methods. In some cases, deterministic
interpolation was used due to non-existence of spatial dependence. Due to having fewer input

https://data.giss.nasa.gov/impacts/agmipcf/agmerra/
https://data.giss.nasa.gov/impacts/agmipcf/agmerra/
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requirements, it has been shown that RBF can be more usefully adopted by agronomists to map soil
properties [59].

Due to the small number of samples, the bottom layer (100–200 cm) was excluded from the
interpolation exercise. Therefore, interpolated maps were created for 5 standard depths as 0–5, 5–15,
15–30, 30–60 and 60–100 cm. All harmonised soil samples based on Mapa et al. [27–30] were used for
interpolation mapping. Yield maps were interpolated using 44 locations (Figure 1) used in APSIM
simulations. Empirical Bayesian Kriging was used as the interpolation method.

2.8. Evaluation

The efficiency of the simulated yield using different soil databases was evaluated both graphically
and statistically. The error between datasets was measured using the Root Mean Square Error (RMSE)
as follows (Equation (8)).

RMSE =

√∑n
i=1 (Oi − Si)

2

n
(8)

where O is observed and S is simulated yield in n number of samples.
To compare the error between datasets with different scales, Normalized Root Mean Square Error

(NRMSE) was performed (Equation (9)). The µ is the average of observed yields.

NRMSE =
RMSE
µ

(9)

Index of agreement, known as Wilmott index (d) measures the model prediction error between two
datasets (Equation (10)). The value varies within 0 and 1, and zero indicates no agreement. The perfect
match between datasets is indicated by 1.

d = 1−

∑n
i=1(Oi − S1)

2∑n
i=1

(∣∣∣Si − µ
∣∣∣+∣∣∣Oi − µ|)

2 , 0 ≤ d ≤ 1 (10)

3. Results

3.1. Comparison of Soil Properties in Different Climatic Zones

Of all observed soil parameters, the average pH, DUL, LL15 and AD (calculated) of the standard
profiles were significantly (p < 0.05) different among climate zones indicating the high variability of
soil properties in Sri Lanka (Figures 2 and 3). In general, global data fail to capture the broad variability
of observed soil data. The highest pH was observed from the dry zone, while soil moisture properties
were higher in the wet zone. Bulk density, pH, CEC and SAT were significantly (p < 0.05) different
among climatic zones in Soilgrids data. However, all the parameters except OC in Openlandmap data
were significantly (p < 0.05) different among climatic zones.

All parameters except bulk density and saturation in Soilgrids were significantly (p < 0.05) different
from the observed soil in the dry zone while all parameters were significantly (p < 0.05) different with
Openlandmap data. In the intermediate zone, pH and CEC from Soilgrids and organic carbon and pH
from Openlandmap were not significantly (p > 0.05) different from the observed soil data. In contrast
with the two other regions, all parameters except pH, CEC and sand from Soilgrids and DUL from
Openlandmap were not significantly (p > 0.05) different from observed data, indicating the higher
agreement of global and observed soil data in the wet zone of the country. Two global datasets used in
this study did not show a higher agreement as most of the parameters were significantly (p < 0.05)
different from each other.
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Organic carbon content in the dry zone and silt content in the wet zone were not significantly
(p > 0.05) different among Soilgrids and Openlandmap while all other parameters were significantly (p
< 0.05) different from each other. Sand, silt and clay content from global data in the dry zone were
significantly (p < 0.05) different to the observed data, while Soilgrids data in the intermediate zone
were significantly (p < 0.05) different in all three soil textural properties. Additionally, sand content in
the wet zone was significantly different in Soilgrids data when compared with observed data. The
discrepancies in both bulk density and textural values directly affect SAT, DUL, LL15 and AD since
they were calculated using pedotransfer functions.

Textural classes of observed soils showed a comparatively higher diversity than global soils
(Figure 4). Observed soils were distributed over 8 textural classes. However, most of the observed
soils contained coarse fragments (sandy clay loam, sandy clay, sandy loam). In contrast, global soils
were mainly distributed among 2–3 textural classes with smaller particles (clay and clay loam soils).
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When considering 6 standard depths, the highest average bulk density was reported from observed
soils. The minimum global bulk density data was 0.96 g cm−3 in all the depths and locations, while the
lowest observed bulk density was 0.3 g cm−3 which occurs in a Silty clay loam soil in the wet zone
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(Madabokka series). Soil pH was slightly acidic in global databases while it ranged from acidic (2.37)
to alkaline (8.27) in observed soil. Summary statistics of all three databases are given in Table 1.

Table 1. Summary statistics of observed, Soilgrids and Openlandmap databases for selected locations
for six standard depths.

Parameter Observed Soilgrids Openlandmap

BD (g cm–3) Mean 1.43 ± 0.23 1.38 ± 0.09 1.28 ± 0.13
Range 0.30–1.82 1.08–1.55 0.96–1.53

OC (%) Mean 1.13 ± 2.13 2.22 ± 1.58 1.65 ± 1.23
Range 0.01–16.81 0.00–10.00 0.00–6.58

pH Mean 5.79 ± 0.97 5.81 ± 0.45 5.46 ± 0.44
Range 2.37–8.27 5.09–6.92 4.68–6.81

CEC (cmol(+) kg−1) Mean 11.33 ± 8.21 18.48 ± 5.07 -
Range 0.78–51.49 10.00–35.00 -

Sand (%) Mean 61.20 ± 19.54 38.83 ± 4.84 45.54 ± 5.29
Range 3.70–99.00 27.00–50.00 33.50–58.12

Silt (%) Mean 13.66 ± 9.59 23.51 ± 2.88 21.25 ± 2.57
Range 0.00–62.07 16.00–31.00 14.50–28.56

Clay (%) Mean 25.13 ± 14.26 37.65 ± 4.90 33.21 ± 4.92
Range 1.00–67.35 26.00–48.50 20.28–46.00

SAT (mm mm−1) Mean 0.409 ± 0.089 0.429 ± 0.036 0.467 ± 0.049
Range 0.263–0.836 0.365–0.544 0.373–0.589

DUL (mm mm−1) Mean 0.220 ± 0.095 0.300 ± 0.017 0.356 ± 0.041
Range 0.045–0.423 0.261–0.341 0.274–0.465

LL15 (mm mm−1) Mean 0.162 ± 0.083 0.226 ± 0.015 0.206 ± 0.016
Range 0.017–0.350 0.193–0.262 0.168–0.242

AD (mm mm−1) Mean 0.129 ± 0.076 0.182 ± 0.056 0.166 ± 0.052
Range 0.009–0.350 0.096–0.262 0.084–0.242

Note: BD = bulk density, OC = organic carbon, CEC = cation exchange capacity, SAT = saturation, DUL = drainage
upper limit, LL15 = wilting point and AD = soil moisture limit to which soil can dry by evaporation. Values of
6 standard depths were used in this table.

3.2. Simulated Rice Yield

The average simulated rice yield for observed soils was 4.60 ± 1.26 t ha−1. Out of the three
datasets, the highest (average) simulated rice yield was recorded with Soilgrids (6.17 ± 0.82 t ha−1),
followed by Openlandmap data (5.73 ± 0.74 t ha−1). Rice yields simulated using both Soilgrids and
Openlandmap soil data were significantly (p < 0.05) higher than the observed soil (Figure 6). However,
the yields from two global soil databases were also significantly (p < 0.05) different from each other.
A comparatively higher coefficient of variation (CV) was reported from observed soil (0.2735) than
from Soilgrids (0.1322) and Openlandmap (0.1283) data.

Comparatively higher agreement (d = 0.27) with lower RMSE (1.69 t ha−1) was reported for
Openlandmap soils than for Soilgrids (Table 2). However, the index of agreement was less than
0.3 indicating a poor agreement of yield between observed and global soil data. The RMSE between
observed and Soilgrids yield was 2.02 t ha−1. In contrast, a relatively higher agreement (d = 0.43) was
observed between the yields from Soilgrids and Openlandmap soils. Out of all, 9.1% and 11.4% of
the fields simulated using observed soil showed a higher yield than Soilgrids and Openalandmap,
respectively. The slope of the regression curve in the Soilgrids simulated yield showed a significant
(p < 0.05) deviation from zero while Openlandmap was not significant (p > 0.05) when compared
with yield simulated using observed soil. The slopes of the regression lines were 0.1933 and 0.1672,
respectively. Relatively higher correlation was reported from Soilgrids (r = 0.2982) than Openlandmap
(r = 2860). Relatively higher agreement (r = 0.3209), which is significant (p < 0.05), was reported
between Soilgrids and Openlandmap simulated yields.
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Table 2. Performance evaluation of the APSIM simulated yield from different soil databases.

Parameter Observed vs. Soilgrids Observed vs.
Openlandmap

Soilgrids vs.
Openlandmap

RMSE (t ha−1) 2.02 1.69 1.00
NRMSE 0.44 0.37 0.16

d 0.23 0.27 0.43

Out of the three climatic zones, the highest observed yield was reported from the wet zone
(5.54 t ha−1) followed by the intermediate (4.81 t ha−1) and dry zones (3.68 t ha−1). The yields from
Openlandmap showed the same pattern, however, the highest yield from Soilgrids soil was from
the intermediate zone. The second highest yield from Soilgrids was from the wet zone. Out of the
three climatic zones, the highest agreement of global data with observed yield was from the wet zone
followed by the intermediate zone. The yield distribution pattern across the country was different
according to soil databases (Figure 7). The highest yield from observed soil is from the southwestern
part of the country (wet zone). The variability of yield from all three databases is due to spatial
variation of both soil and climate.
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The probability exceedance distribution of yield showed different patterns and did not separate
according to the median values in all three soil datasets (Figure S2). Parallel to the mean yields, the
highest yield at 0.5 probability exceedance level was observed from Soilgrids followed by Openlandmap
and observed soil.

In Sri Lanka, nation-wide yield information for rice varieties is not available. However, the average
rice yield for the major growing season in Sri Lanka during the 1980–2009 period was 3.70 ± 0.37 t ha−1

(DOASL) and nearly consistent with the yield simulated using observed soil. It should be noted that
observed yields are subject to different biotic and abiotic stresses such as pest and diseases, nutrient
deficiencies and agroclimatic variability, whereas the simulations assume that these stresses are absent.

3.3. Sensitivity of Rice Yield to Soil Parameters

To ascertain the degree of sensitivity of yield to different parameters across the three soil datasets,
a sensitivity analysis was carried out. The accuracy of each emulator in sensitivity tests was initially
evaluated using the sigma squared value. The average sigma squared value over 30 years in observed
soil was 0.123 which indicates a good linear relationship between the response and predictors.
Comparatively lower sigma squared values were reported for global data (0.066 and 0.071 for Soilgrids
and Openlandmap, respectively), suggesting a better linear relationship between predicted yield and
soil parameters than observed data. The average R2 value for the model fit was 0.99 in all the three data
sets. The lower sigma squared and higher R2 values indicate a good model fit for sensitivity analysis
in all datasets; therefore, the models were used to study the sensitivity of input parameters.

The Shapley’s sensitivity index of 11 input parameters for three data sets is shown in Figure 8.
According to the Shapley effect, LL15 is the most influential soil parameter followed by AD for APSIM
simulated rice yield in both observed and Openlandmap datasets. However, DUL ranked as the most
influential parameter in Soilgrids, followed by AD and LL15. In general, soil hydrological parameters
have the highest impact on rice yield. The Shapley effect of none of the parameters in both observed
and Soilgrids exceeded 0.1. In contrast, comparatively higher sensitivity was reported for silt and clay
(Shapley effect 0.12) in Openlandmap data. It should be noted that DUL in Openlandmap and both
LL15 and DUL in Soilgrids were derived from pedotransfer functions. All other parameters, BD, SAT,
pH, OC, CEC and sand, were identified as less sensitive soil parameters for rice yield.
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Of all parameters, the Shapley effect of soil bulk density and saturation (derived from BD) were
not significantly different (p > 0.05) among datasets, while all other parameters were significantly
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(p < 0.05) different. Since DUL and LL15 were derived from soil texture, the choice of accurate texture
data has a direct influence on the crop yield. Therefore, sand, silt and clay content from both Soilgrids
and Openlandmap data were not suitable for yield simulations in the study area. However, due to low
sensitivity and no significant difference (p > 0.05) between datasets, bulk density from global databases
can still be used in crop models for yield simulations. Due to lower sensitivity, pH, OC, CEC can be
obtained from global soil databases for yield simulations even though the values of some of them are
significantly different from observed soil data.

3.4. Interpolated Maps

Figure 9 shows an example of interpolated maps that were produced using a Bayesian kriging
method. In general, pH patterns resemble the climate zones of Sri Lanka depicted in Figure 1. The
prediction error map (available at http://dx.doi.org/10.17632/5sc7njfcyn.1) showed relatively higher
standard error in coastal regions due to the lower density of sampling in those areas. The level of error
remained constant in all soil layers and that indicates a good model fit. The same patterns can be seen
with hydrological parameters as a distinction between climate zones is also evident in those maps.Sustainability 2020, 12, x FOR PEER REVIEW 15 of 21 

 
Figure 9. Interpolated soil properties in Sri Lanka for the 0–5 cm layer. 

Of all 9 parameters, volumetric moisture content (15 bars level) showed the lowest RMSE across 
all layers while CEC showed higher RMSE (Table A1). In general, interpolating soil physical 
properties proved to be challenging as the lowest RMSE for all three parameters belong to the Radial 
Basis function method which is a deterministic interpolation technique using a regularised spline 
method which does not use the inherent autocorrelation that exists in soil properties. 

4. Discussion 

Legacy soil survey data will provide an initial understanding of the diversity of soils and 
integration, and harmonisation of these data across standard horizons and per soil property is the 
first step towards improving their utility for digital soil mapping and yield modelling [19,60]. The 
heterogenicity of different soil parameters across Sri Lanka and within soil series was previously 
described [26]. Being a tropical country with diverse climatic, topographic and biodiversity variation, 
a high spatial variability is reported for soil parameters in Sri Lanka [26] and is also reflected in wide 
ranges for observed data in Figures 2 and 3. The diversity of observed soil types is captured by global 
databases to some extent as some of the parameters such as pH in dry and wet zones in all three 
databases are significantly different. Rathnayake et al. [61] reported pH ranges of 4.1 to 7.7 (1:5) and 
>4.1 to 5.09 (1:5), respectively, in their study areas in DZ and WZ. Although all of the datasets used 
in this study show ranges within the range mentioned above, failure of observed data to reflect lower 
pH variation in DZ shows that more local data are required before any conclusion can be made 
regarding soil acidity in DZ as pH value is highly sensitive to soil moisture content. 

Soilgrids was previously compared with observed data in Sri Lanka. Vitharana et al. [62] 
reported that soil organic carbon content stock in Sri Lanka reported by Soilgrids was overestimated 
by 122% in the 0–30 cm layer and 209% in the 30–100 cm layer than observed values. The average 
overestimation of organic carbon from Soilgrids and Openalandmap for all six depths (up to 200 cm) 
were 506% and 320% respectively, and higher than the amount reported by Vitharana et al. [62]. The 
higher discrepancy of organic carbon between observed and global data may be associated with 
elevation, slope angle and elevation, which were identified as major environmental controllers that 
determine spatial distribution of OC stocks [62]. 

Figure 9. Interpolated soil properties in Sri Lanka for the 0–5 cm layer.

Of all 9 parameters, volumetric moisture content (15 bars level) showed the lowest RMSE across
all layers while CEC showed higher RMSE (Table A1). In general, interpolating soil physical properties
proved to be challenging as the lowest RMSE for all three parameters belong to the Radial Basis
function method which is a deterministic interpolation technique using a regularised spline method
which does not use the inherent autocorrelation that exists in soil properties.

4. Discussion

Legacy soil survey data will provide an initial understanding of the diversity of soils and
integration, and harmonisation of these data across standard horizons and per soil property is
the first step towards improving their utility for digital soil mapping and yield modelling [19,60].
The heterogenicity of different soil parameters across Sri Lanka and within soil series was previously
described [26]. Being a tropical country with diverse climatic, topographic and biodiversity variation,
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a high spatial variability is reported for soil parameters in Sri Lanka [26] and is also reflected in wide
ranges for observed data in Figures 2 and 3. The diversity of observed soil types is captured by global
databases to some extent as some of the parameters such as pH in dry and wet zones in all three
databases are significantly different. Rathnayake et al. [61] reported pH ranges of 4.1 to 7.7 (1:5) and
>4.1 to 5.09 (1:5), respectively, in their study areas in DZ and WZ. Although all of the datasets used in
this study show ranges within the range mentioned above, failure of observed data to reflect lower pH
variation in DZ shows that more local data are required before any conclusion can be made regarding
soil acidity in DZ as pH value is highly sensitive to soil moisture content.

Soilgrids was previously compared with observed data in Sri Lanka. Vitharana et al. [62] reported
that soil organic carbon content stock in Sri Lanka reported by Soilgrids was overestimated by 122% in
the 0–30 cm layer and 209% in the 30–100 cm layer than observed values. The average overestimation
of organic carbon from Soilgrids and Openalandmap for all six depths (up to 200 cm) were 506%
and 320% respectively, and higher than the amount reported by Vitharana et al. [62]. The higher
discrepancy of organic carbon between observed and global data may be associated with elevation,
slope angle and elevation, which were identified as major environmental controllers that determine
spatial distribution of OC stocks [62].

The variation of soil properties in Sri Lanka is high as six out of twelve global taxonomic orders
are found in the country [26]. This is reflected in the observed soil physical properties (sand %, silt %
and clay %). This consistent underestimation of sand % and overestimation of silt % and clay % could
be due to the standardisation filter that was applied to global datasets to make sure the total percentage
of all three variables amounted to 100% [18].

As a consequence of this disparity, the pedotransfer functions (Equations (3)–(5) and (6)) are also
affected. The inputs to calculate soil hydrological parameters using different pedotransfer functions
are different [63]. Furthermore, pedotransfer function-derived soil hydrological parameters show
significant difference among each other [63,64]. The impact of different pedotransfer functions on soil
hydrological properties was not compared in this study, therefore, the choice of pedotransfer functions
may also have an impact on the yield in two global databases.

Yields that were simulated using the global soil data were significantly (p < 0.05) higher than
those of observed data. Therefore, the likely productivity of a certain crops cannot be determined by
solely using the present version of global data. Although using global datasets is generally useful for
providing an overview, their use in developing any understanding of crop performance at a local scale
is questionable. However, as described in Section 3.3, these data can prove useful in filling the gaps in
data, particularly for mapping the crop yield at the regional or national scales.

There is no threshold value to explain linearity or nonlinearity of developed models to study the
sensitivity of inputs [44]. However, the increment of sigma squared value from 0.13 to 1.6 changed
the linearity of the emulator to moderate nonlinearity [65]. The average sigma squared values for
sensitivity analysis are within the acceptable range reported by Gunaratne et al. [44] suggesting a strong
linear relationship between the log-transformed response and predictors for all models. Therefore,
the sensitivity of fitted models in Shapley’s sensitivity analysis were accurate and able to capture the
sensitivity of all tested inputs. Using GEM-SA software for sensitivity analysis, Gunarathna et al. [44]
studied the sensitivity of soil input parameters into rice yield in Sri Lanka. Authors reported that the
highest sensitivity for rice was for DUL followed by LL15. However, they did not include AD, which
showed the highest sensitivity in the current study. Without AD, the sensitivity of inputs of the current
study were consistent with the finding of Gunarathna et al. [44].

Soilgrids and Openlandmap used more than 100,000 field observations (derived from WoSIS and
USDA databases) to develop the global datasets. However, only nine locations in Sri Lanka were
reportedly used to provide property maps for Sri Lanka [19]. Perhaps, this is the reason for the low
performance of models used to generate Soigrids data as only the pH model could explain more than
80% of variation [18]. This shows the importance of developing and validating local soil property
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datasets using locally harmonised survey information. The accuracy of global datasets will be greatly
improved if the local soil datasets are openly accessible.

Different attempts have been made to map soil properties in different geographic scales using
different techniques [66]. However, less attention is given to national level digital soil mapping that
could benefit different end-users. One of the reasons for the lack of such attempts is the variation
in units, property scales, depths, number of samples, and complexity of techniques. As shown by
Ramcharan et al. [67] and Pásztor et al. [68], developing broad-scale soil property maps using low
density of observation data (observation density up to 0.001 per km2) can still meet the need for soil
simulation models. The utility of such data for crop modelling, however, should still be investigated.
As the density of observed soil data increases, the amount of spatial autocorrelation resulting from
similarity of soil samples will be improved. This will improve the results of interpolations used at the
national level.

The importance of developing a web-based national soil database that could be readily available
was highlighted by Mapa [66]. As a step toward filling the gap in national level digital soil database,
we developed a digital 3D soil database that includes 9 parameters up to 100 cm depth. The accuracy
of some of the maps that were produced is lower for CEC and soil physical properties (Figure 9).
This is due to very low density of soil profile data across the country that leads to low amounts of
spatial autocorrelation needed for successful interpolation. However, since the interpolated maps
are produced using observed data, they can still be useful in ascertaining spatial variability of soil
properties across Sri Lanka.

Soil data from two detailed and comprehensive datasets were used in the interpolations.
Undoubtedly, there are several field observations in different parts of the country that were not
used in mapping that could be used to improve predictions and create more accurate maps with
other parameters. As the next step, we expect to collect more samples through a crowd-sourcing
approach [69] using observation data and develop freely accessible detailed digital soil maps for
Sri Lanka.

In this article, the impact of soil properties on one of the major crops was studied as a proxy.
With the increased popularity of fewer-parameter crop models such as SIMPLE [70] in simulating
underutilised crops that contributes to agricultural diversification [6,24], the findings of this article
can be used. This is because, due to the dependency of low inputs, the choice of the correct soil
database can severely affect the final yield estimations. Additionally, the method we followed to
develop a country-specific soil database can be applied in locations where observed soil data are scarce
for regional-level crop modelling that will in turn help with inclusion of other options in regional
development programs.

5. Conclusions

Due to the unavailability of fine-scale harmonised observed soil data, relying on available big
environmental data for yield simulation and mapping is the only option. In particular, modelling
for underutilised crops, as a prerequisite for adoption of these crops into the crop diversification
projects can greatly benefit from this data. To examine the applicability of open access soil data for
crop modelling as a primer for further calibration models for minor crops, we compared the results of
models using three databases. Using an exemplar crop model (APSIM), we found that the majority of
global soil data are not a good option to fill gaps due to the significant deviations with observed data,
however, they might still be used for yield simulation. The APSIM simulated yields for global soil data
were significantly different from those of observed soil. Soil hydrological parameters such as LL15
(wilting point), AD (soil moisture limit to which soil can dry by evaporation) and DUL (drainage upper
limit) were identified as the most sensitive inputs for simulated rice yield. Due to the comparatively
lower sensitivity to yield, other soil parameters such as pH, CEC and organic carbon from global
databases can be used in APSIM modelling where observed data are not available. However, bulk
density and textural properties from global databases should be used with caution as they influence
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the soil hydrological parameters using pedotransfer functions. Newly developed digital soil maps that
contain nine soil properties up to 100 cm depth are freely available and can be used as an alternative
to global soil databases in cases when local data are not available. To allow for wider accessibility,
the data were stored in a free repository (doi:10.17632/5sc7njfcyn.1) that can be accessed by anyone
who is interested.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/18/7781/s1,
Figure S1: Variation of average maximum (Tmax) and minimum (Tmin) temperatures with rainfall in different
soil sampling locations during 1980–2010 period. The average maximum (Avg_Tmax) and minimum (Avg_Tmin)
temperatures with rainfall of all the locations are also marked; Figure S2: Probability exceedance patterns of
APSIM simulated yields using observed, Soilgrids and Openalandmap soil.
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Appendix A

Table A1. The prediction accuracy of interpolation methods for soil attributes at 0–5, 5–15, 15–30, 30–60
and 60–100 cm layers in Sri Lanka Soil Parameter.

Geostatistics
Methods

Neighbourhood
Types

Semivariogram Types/Kernel
Function/General Properties

RMSE
0–5 cm 5–15 cm 15–30 cm 30–60 cm 60–100 cm

pH EBK Smooth Circular Linear 0.770 0.756 0.848 1.273 1.500

OC EBK Standard
Circular Linear 2.649 2.620 2.616 2.185 1.651

BD EBK Standard
Circular Linear 0.184 0.274 0.281 0.390 0.668

CEC EBK Standard
Circular Linear 14.949 14.765 14.301 12.761 8.177

DUL EBK Standard
Circular Linear 0.090 0.086 0.077 0.088 0.115

LL15 EBK Standard
Circular Linear 0.082 0.078 0.070 0.074 0.091

Clay RBF Standard Completely Regularised Spline 10.838 10.694 11.678 13.377 14.735
Sand RBF Standard Completely Regularised Spline 15.970 15.861 16.482 20.565 21.368
Silt RBF Standard Completely Regularised Spline 8.159 8.151 8.688 8.717 8.685

Note: OC = Organic carbon, BD = Bulk density, CEC = Cation exchange capacity, DUL = Drainage upper limit
(VMC33), LL15 = Wilting point (VMC1500), EBK = Empirical Bayesian Kriging and RBF = Radial Basis Function.
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