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Abstract: The demand for renewable energy sources worldwide has gained tremendous research
attention over the past decades. Technologies such as wind and solar have been widely researched and
reported in the literature. However, economical use of these technologies has not been widespread
due partly to cost and the inability for service during of-source periods. To make these technologies
more competitive, research into energy storage systems has intensified over the last few decades.
The idea is to devise an energy storage system that allows for storage of electricity during lean
hours at a relatively cheaper value and delivery later. Energy storage and delivery technologies
such as supercapacitors can store and deliver energy at a very fast rate, offering high current in
a short duration. The past decade has witnessed a rapid growth in research and development
in supercapacitor technology. Several electrochemical properties of the electrode material and
electrolyte have been reported in the literature. Supercapacitor electrode materials such as carbon
and carbon-based materials have received increasing attention because of their high specific surface
area, good electrical conductivity and excellent stability in harsh environments etc. In recent years,
there has been an increasing interest in biomass-derived activated carbons as an electrode material
for supercapacitor applications. The development of an alternative supercapacitor electrode material
from biowaste serves two main purposes: (1) It helps with waste disposal; converting waste to a
useful product, and (2) it provides an economic argument for the substantiality of supercapacitor
technology. This article reviews recent developments in carbon and carbon-based materials derived
from biowaste for supercapacitor technology. A comparison between the various storage mechanisms
and electrochemical performance of electrodes derived from biowaste is presented.

Keywords: bio-waste; electrochemical double layer; supercapacitor; energy density; power density;
electrochemical stability

1. Introduction

The demand for energy worldwide is expected to double in about two decades [1,2]. Energy plays
an important role in the quality of our lives, impacting our social and economic development [3].
Modern economies are driven by the availability of reliable energy sources. Conventional energy
sources such as fossil fuels (coal, gas, and oil) are being depleted at a fast rate, accompanied
by the destruction of ecosystems and habitats, the extinction of wildlife, and pollution of the
environment [4–8]. A primary concern of harvesting energy from fossil fuels is that it is unsustainable
in the long term, so this has driven researchers and the industry to adopt sustainable and renewable
energy technologies. Over the past several decades, there has been a dramatic increase in research on
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renewable energy sources such as solar energy, geothermal energy, wind energy, biofuels, etc., while
electrochemical energy storage devices such as supercapacitors, rechargeable batteries, etc. have also
attracted significant research [9–11]. It is not an overstatement to say that successful development of
any renewable energy source (e.g., windmills and solar cells), hybrid and electric vehicles and smart
grids depend significantly upon the availability of a suitable energy storage system. A considerable
amount of literature has been published on the use of supercapacitors as a viable storage device
for renewable energy. Over 20,000 articles, books etc. were published in 2017, a higher number of
research work is projected for 2018 (data from google scholar). There has been a geometric increase
in the research published since the year 2000. Since supercapacitors were first experimented in 1957
by engineers at General Electric, they have found commercial applications in portable electronics,
transportation and aerospace industry [12,13]. These applications of supercapacitors have come about
due to advances in materials and manufacturing technologies. The various components such as the
anodes, cathodes, separators, binder, and electrolyte have received in-depth research activity leading
to improved performance and reduction in the cost of manufacture [14–16].

Energy storage and delivery technologies such as supercapacitors can store and deliver energy
at a very fast rate, offering high current in a short duration. Supercapacitors are categorized as
an electrochemical storage device, sometimes called an ultracapacitor. They can store and deliver
energy at a very fast rate offering high current in a burst. Hence, they have found applications in
electric vehicles, uninterruptible power supplies (UPS), and memory backups in IT systems. They also
have virtually unlimited cycle life, accompanied by high specific power. They also work better
than batteries in extreme temperatures, offering excellent low-temperature charge and discharge
performance. The Ragone plot [17–19] shows a comparison between various energy storage devices
in terms of power and energy density (Figure 1). Clearly, the plot gives a good overview of energy
storage performance; however, the plot is silent on critical factors such as cycle life, cost, and safety.
These factors have to be investigated on their own merits to develop a better understanding of a
particular energy storage technology.
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Figure 1. Ragone plot showing a comparison between various energy storage devices (“Reprinted
(adapted) with permission from [20], Copyright (2004) American Chemical Society”).

Because of the charge storage mechanism, supercapacitors are capable of an extremely long
cycling life. It is reported to have a cycle life of over 500,000 [21–23], which is considerably higher than
other storage technologies. This is because supercapacitors store reversible electrostatic charges on the
surface of electrodes, while other technologies such as batteries really on chemical reactions.

Supercapacitors can be classified as three main types according to the energy storage mechanism.
Figure 2 shows the main categorization of supercapacitors and a further classification based on
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electrode materials [24,25]. The first type, which is the most common, is called the electrochemical
double layer capacitor (EDLC). These commonly use KOH, H2SO4 etc. as a liquid electrolyte between
the electrodes. The formation of Helmholtz double layers on the interface between the conductive
electrodes/electrolyte causes fast adsorption and desorption of the electrolyte ions at the interface,
providing high power density through the non-faradaic process. The size of the electrode surface
and Helmholtz layer thickness has an effect on the performance of the electrochemical double layer
capacitor. Hence, highly porous carbon materials such as activated carbon (AC), carbon nanotube, and
graphene are widely used as electrode material in the industry. Activated carbon has a large specific
surface area of 500–3000 m2/g [26–30]. Figure 3 shows a schematic illustrating the basic architecture of
an EDLC supercapacitor.
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The second type is called pseudocapacitors; these operate based on fast reversible Faradaic
redox reaction that occurs at the electrode. Similar to EDLCs, reactions occur at the surface of
the electrode producing a high energy density at a short cycle life and low rate capability [31].
They, however, operate at a lower voltage compared to EDLCs, thereby limiting their practical
energy densities. Pseudocapacitors are typically made using metallic oxides/hydroxides/sulfides or
conductive polymers or compounds with O and N functional groups. The third type is essentially a
combination of an EDLC electrode and a pseudocapacitive electrode; thus, utilizing the high-power
density of EDLC with the high energy of pseudocapacitors combined with good cyclic stability.



Sustainability 2019, 11, 414 4 of 22

Li-ion hybrid capacitors (LIHCs) have emerged as a leader in this field [32], offering a bridge
between supercapacitors and Li-ion batteries. This review focuses on providing a summary of the latest
advances in electrode materials derived from biowaste for supercapacitors. Furthermore, we briefly
discuss and compare the electrochemical performance (charge storage capacity, energy/power
densities, cyclic stability) of supercapacitors.

2. Type of Charge-Storage Mechanism

The performance of supercapacitors can be evaluated using similar criteria employed for energy
storage systems. Generally, three main techniques, namely, cyclic voltammetry (CV), galvanostatic
charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) are used to evaluate
parameters such as specific capacitance, energy density, power density, series resistance, cycling
life, rate capability etc. [33–40]. These electrochemical properties are evaluated to characterize a
supercapacitor (electrode material) based on specific parameters to be studied [41–43]. Collectively,
these techniques complement each other, giving a broad understanding of the energy storage
mechanism and the surface phenomena between the electrode and the electrolyte.

Together, these techniques provide important insights into the performance of the electrode;
for example, the CV test provides information on the degradation process [44,45], specific
capacitance [46,47] and can be used to distinguish between EDLC and pseudocapacitors [46].
Electrochemical properties are evaluated using applied voltage and current response. CV scans fall
short of providing valuable thermodynamic properties; however, kinetic aspects are well covered [48].
Just like CV scans, a GCD scan is useful in predicting specific capacitance and differentiating
between EDLC and pseudocapacitors. The stability of the supercapacitor can also be evaluated using
GCD [49–51]. EIS is a non-destructive technique that is used to evaluate the capacitive performance of
the electrode material, while differentiating between resistive and inductive behavior of the energy
storage system [52,53].

The specific capacitance of a supercapacitor can be estimated using CV and GCD experiments.
The specific capacitance, Cg (F/g) of the electrodes can be evaluated using:

Cg =
I

m dV
dt

(three electrode system) (1)

Cg =
2I

m dV
dt

(two electrode system) (2)

where m is the loading, I is the applied current, and dV
dt is the slope of the charge/discharge curve.

The energy density, E (Wh/kg) and power density, P (kW/kg) can be calculated using Equations (3)
and (4), respectively [36,54,55].

E =
1

2 × 3.6
CV2 (3)

P =
3.6E
∆t

(4)

Pmax =
1

4Rs
V2 (5)

where V (V) is operational voltage window of the cell, ∆t (s) is the discharge time, Pmax (kW/kg) is the
maximum power density, and Rs (Ω) is the equivalent inner resistance of the supercapacitor device.

As discussed in previous sections, the electrochemical double layer capacitor exhibits higher
energy density compared to the conventional parallel plate capacitors because of the exposed
surface area and comparatively small charge separation distance. The mechanism of the charge
storage as proposed by Helmholtz in the 19th century involves the alignment of charges at the
electrode/electrolyte interface and separated by an atomic distance [23]. Further modification of the
Helmholtz model has been reported by Gouy and Chapman [56]. The charge storage characteristics
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depend heavily on the choice of electrode material and electrolyte used. Carbon and carbon-based
materials that are derived from coconut shells, petroleum pitch and phenol resin together with
porous carbon, carbon nanotubes and carbon nanofibers exhibit large specific area (due to the porous
structure), good electronic conductivity and high chemical stability have found widespread application
in electrochemical double layer capacitor. Also, electrolytes such as KOH, H2SO4, Na2CO3 etc. have
been reported, due to their wettability of the electrode material. EDLCs do have some major drawbacks,
as listed below:

• Limited lifespan due to the usage of an electrolyte.
• Incorrect usage of the capacitor may result in electrolyte leakage.
• These capacitors cannot be used in AC circuits because they have a relatively high

internal resistance.
• The temperature ranges at which they can be used is limited because of the organic solvents that

may be volatile, toxic and inflammable.
• Enhancing surface area of electrodes.
• Relatively low energy density.

Pseudocapacitor is a hybrid between a battery and an electric double layer capacitor. They also
consist of an electrode and electrolyte and charge storage mechanisms is through chemical and
electrostatic means. Most reported electrode material includes transition metal oxides (such as
ruthenium oxide, nickel cobaltite, vanadium oxide aerogels) and conducting polymers. However,
pseudocapacitors’ performance is reported to be lower than EDLC mainly because of the inherently
slow faradaic charge/storage mechanism; this leads to poor cycle life, energy density, and mechanical
stability [57]. Conducting polymers used for pseudocapacitors can also be unstable at the nanoscale and
ruthenium oxide is extremely costly. Hybrid capacitors occupy the middle ground between batteries
and capacitors. These exhibit high energy/power densities compared to EDLCs and pseudocapacitors.
They also have a high operational temperature range of −55 ◦C to 125 ◦C. Materials mostly used
include carbon-coated conducting polymers, metal oxides (such as nickel and manganese-based oxides)
and graphene oxides.

3. Carbon from Bio-Wastes as an Excellent Material for EDLC

During the past decade, researchers have shown an increased interest in the use of porous carbon
materials as electrodes in high capacity supercapacitors [23]. Several carbon-based materials have been
investigated for use as electrodes in supercapacitors because of their outstanding electrical conductivity
and high specific surface area. The most investigated carbon-based materials widely reported include
activated carbons [58–60], carbon aerogels [61–63], graphene [64–68], carbon nanotubes [69–74], carbon
nanofibers [75–80], and nano-sized carbons [81–83]. These materials are popular because of the
ease of accessibility, processability, non-toxicity, high chemical stability, and wide temperature range.
Activated carbon has received considerable critical attention because of its high porosity and surface
area [84]. Table 1 shows a summary of different bio-waste and corresponding Brunauer-Emmett-Teller
(BET) surface values for activated carbons. These properties effectively promote charge accumulation
at the interface of the electrode and electrolyte, aiding with the formation of electrostatic adsorption of
positive and negative charges.

In recent years, there has been an increasing interest in the production of activated carbon from
bio-waste for sustainable development [85–93]. Several sources of bio-waste such as animal, mineral,
plant, and vegetables etc. have been reported in the literature as base materials for activated carbon
production for application as an electrode material for electrochemical energy systems [86,94–109].
Several types of electrodes have been tried and the most common systems today are built on the
electrochemical double-layer capacitor that is carbon-based, has an organic electrolyte, and is easy
to manufacture.
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Table 1. BET specific surface areas for different biowaste.

Bio-Waste Activation Method SBET (m2/g) Ref.

Almond shell Physical, steam, 850 ◦C/30 min 601 [110]
Almond tree pruning Physical, steam, 850 ◦C/30 min 1080 [110]

Apricot stone Chemical, ZnCl2 814 [111]
Bagasse Chemical, ZnCl2 923 [112]
Bamboo Chemical, KOH 1533 [113]
Bamboo Chemical, KOH 1120 [114]

Cocoa pod husk Chemical, KOH 490 [115]
Cocoa pod husk Chemical, K2CO3 615 [115]
Cocoa pod husk Chemical, ZnCl2 780 [115]

Coconut shell Physical, CO2, 600 ◦C/2 h 1700 [116]
Coconut shell Physical, steam, 1000 ◦C/120 min 1926 [117]
Cotton stalk Chemical, H3PO4 1720 [118]

Coir pith Chemical, ZnCl2 910 [119]
Durian shell Chemical, H3PO4 1024 [120]

Hazelnut bagasse Chemical, KOH 1642 [121]
Hazelnut bagasse Chemical, ZnCl2 1489 [121]

Hazelnut shell Chemical, ZnCl2 647 [111]
Jute Chemical, KOH 1769 [122]

Olive stone Physical, steam, 850 ◦C/30 min 813 [110]
Palm kernel shell Chemical, KOH 217 [123]

Peanut hull Physical, steam, 600 ◦C/2 h 253 [124]
Pistacio-nut shell Physical, CO2, 900 ◦C/30 min 778 [125]

Rice husk Chemical, ZnCl2 927 [112]
Sugarcane bagasse Physical, steam, 900 ◦C/2 h 320 [126]

Tea Chemical, KOH 2532 [127]
Walnut shell Physical, steam, 850 ◦C/30 min 792 [110]

Wood apple outer shell Chemical, ZnCl2 794 [128]

Juan Mi et al. [129] focused on the preparations of coconut-shell-based porous carbons with
a tunable micro/mesopore ratio for high-performance supercapacitors applications. They used a
one-step thermal treatment combined with pyrolysis and steam activation to produce porous carbon.
The ratio of mesopore to total pore volume (Vmeso/Vtotal) was reported to be greater than 75%. Using
a three-electrode setup, the cyclic voltammetry (Figure 4a) shows a quasi-rectangular shape, which is
perfect for the double layer energy storage mechanism. The specific capacitance values ranged from
209–228 F/g at 5 mV/s depending on the activation, water flow rate, and activation time. Galvanostatic
charge/discharge cycling plots (Figure 4b) show negligible voltage drops, indicating that these carbons
exhibit good electric conductivity.
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CS-800-0.10-60, and CS-800-0.12-60 tested with a three-electrode setup in 6 mol/L KOH. at 5 mV/s
and 0.5 A/g. (Reprinted (adapted) with permission from [129]. Copyright (2012) American Chemical
Society.)
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In a similar work [130], coconut shell activated charcoal was synthesized using chemical activation
method using KOH as an activating agent. The specific surface area (mesopores size of 3 nm)
was reported to be 1640 m2/g. EDLCs fabricated using the samples as electrode material with
polymer electrolyte exhibited energy and power density of 88.8 Wh/kg and 1.63 Kw/kg, respectively.
Yin et al. [131] prepared activated carbon from coconut fibers with a multi-tubular hollow structure
using KOH for activation. The sample with 4:1 mass ratio of KOH to carbonized coconut fibers
exhibited a specific surface of 2898 m2/g with a pore volume of 1.59 cm3/g (30% mesopores).
The prepared supercapacitor electrode (with 6 M KOH electrolyte) exhibited a specific capacitance of
266 F/g at a current of 0.1 A/g, maintaining 76% of its capacitance at 100 A/g. They found that the
3-dimensional hierarchical porous activated carbon electrode exhibited a high capacitance of 155 F/g
at 0.1 A/g and 142 F/g at 10 A/g and achieved a high-energy density of 53 Wh/kg and a high-power
density of 8224 W/kg.

A number of researchers have reported on agricultural crops and residues as a major source of
carbon-based material. Malik Wahid et al. [132] employed hydrothermal pretreatment on sugarcane
bagasse to prepare a three-dimensional (3D) interconnected, conducting, and high surface area carbon
nanochannel. The hydrothermal preprocessing is depicted in Figure 5. Samples were prepared with
different synthesis protocols (pyrolyzed temperature and atmosphere). Figure 6 shows FESEM images
of different carbon forms synthesized from different synthesis protocols with the same basic sugarcane
bagasse precursor at 800 ◦C pyrolysis.
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Figure 6. FESEM images of different carbon forms synthesized from different synthesis protocols
with the same basic sugarcane bagasse precursor at 800 ◦C pyrolysis: (a) BHC (sample prepared by
initial hydrolysis step followed by direct pyrolysis), (b) BAC (samples prepared by simple activation),
and (c) BHAC (hydro-thermally treated and activated sample) (Reprinted (adapted) with permission
from [132]. Copyright (2014) American Chemical Society.)

Using a three-electrode cyclic voltammetry method (1 M H2SO4, platinum strip as the counter
electrode and AgCl as the reference electrode), the researchers reported results of cycling the current
density from 1 to 20 A/g a 72% capacitance retention. At a current density of 1 A/g and a scan rate of
5 mV/s, they recorded a capacitance of 280 F/g and 275 F/g, respectively. The material exhibited an
energy density of 7 Wh/kg at a power density of 571 W/kg. Izan Izwan Misnon et al. synthesized
carbon from oil palm kernel shell for high-performance supercapacitors [99]. The samples that were
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chemically activated showed a specific capacitance of 210 F/g in 1 M KOH electrolyte at 0.5 A/g,
whereas the physically activated samples exhibited 50% lower specific capacitance. In addition, both
samples showed similar quasi-rectangular shape at this scan rate region, indicating EDLC behavior in
the charge storage mechanism. The electrodes maintained approximately 95–97% of capacitance after
1000 cycles. Table 2 shows the performance data for electrode materials from biowaste.

Table 2. Performance data for electrode materials from biowaste.

Biowaste Process Material Form Electrolyte Electrode
Configuration

BET Surface
Area (m2/g)

Measurement
Protocol

Specific
Capacitance

(F/g)
Ref.

Bamboo
carbonization

and KOH
activation

Activated
biomass
carbon

3 M KOH 3 electrodes 2221 0.5 A/g 293 [134]

Bamboo KOH
activation

activated
carbon 6 M KOH 3 electrodes 3000 5 A/g 300 [135]

Corncob
residue

steam
activation
without

pre-carbonization

porous carbon 6 M KOH 3 electrodes 1210 1 A/g 314 [133]

Coconut
kernel pulp
(Milk free)

KOH
activation

activated
carbon 1 M Na2SO4 2 electrodes 1200 10 mV/s 173 [136]

Corn stalk core KOH
activation

activated
carbon - 3 electrodes 2350 1 A/g 140 [137]

Corn syrup
(High fructose) Self-Physical activated

carbon KOH 2 electrodes 1473 0.2 A/g 168 [138]

Endothelium
corneum

Gigeriae galli
carbonized nitrogen-doped

porous carbon 6 M KOH 3 electrodes 2150 1 A/g 198 [139]

Fish gill
carbonization
and thermal

activation

activated
carbon 6 M KOH 3 electrodes 2082 2 A/g 334 [108]

Gelatin hydrothermal Porous carbon
nanosheets 6 M KOH 3 electrodes 1620 50 A/g 183 [140]

Leaves (Fallen)
activations of

(KOH and
K2CO3)

porous active
carbon 6 M KOH 2 electrodes 1078 0.3 A/g 242 [141]

Starch
(Porous)

carbonisation
and KOH
activation

porous carbon
microspheres 6 M KOH 2 electrodes 3251 0.05 A/g 304 [142]

Sugar cane
bagasse

chemical
activation with

ZnCl2

Activated
carbon 1 M Na2SO4 2 electrodes 1452 50 A/g 300 [143]

Sugar cane
bagasse

calcium
chloride
(CaCl2)

activation

Nitrogen-Rich
Porous

Carbons
6 M KOH 2 electrodes 806 30 A/g 213 [144]

Waste
tea-leaves

carbonisation
and KOH
activation

activated
carbons 2 M KOH 3 electrodes 2841 1 A/g 330 [145]

Qu et al. [133] used corncob residue to prepare a porous carbon for supercapacitor electrodes,
using a green and low-cost steam activation method. The carbon obtained at 850 ◦C, which was
further treated with ash removal and acid soaking exhibited SBET of 1210 m2/g with a yield of
23.2 wt.%. They reported a capacitance of 314 F/g at a scan rate of 5 mV/s and a capacitance retention
of 82%. The performance of the samples was attributed to the well-developed porosity and good
conductivity. The same authors made use of an organic and 6 M KOH aqueous electrolyte to determine
the electrochemical performance of corncob residue-derived carbon. They found an energy density
of 5.3 Wh/kg at a power density of 8276 W/kg in 6 M KOH, while the organic electrolyte exhibited
energy and power density of 15 Wh/kg and 2827 W/kg, respectively.

Fu et al. [146] obtained multi-hierarchical porous carbon from a typical food waste, crab shell.
The multi-hierarchical porous carbon exhibited a specific capacitance of 322.5 F/g and 223.4 F/g
at current densities of 1 A/g and 10 A/g, respectively. The same authors reported that the crab
shell-derived carbon/SrFe12O19 composites showed 94.5% capacitance retention over 10,000 cycles,
exhibiting a specific capacitance of 690.4 F/g at 1 A/g, and 401.3 F/g even at 10 A/g. The authors
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conclude that such a cheap, green and high-performance electrode composites based on crab shell
waste provide good prospects in energy storage applications. In another novel work, activated
carbon tubes were prepared from biomass waste cotonier strobili fibers [102]. They reported that the
optimized material demonstrated a specific capacitance of 214.5 F/g at 50 A/g in the three-electrode
setup. A fabricated supercapacitor exhibited 84.21% capacitance retention at a remarkable specific
energy of 33.04 Wh/kg at 160 W/kg.

Ismanto et al. [147] used cassava peel waste as a precursor in the preparation of activated
carbon-based electrodes. Proximate analysis results show that the cassava peel had high carbon
of 28.7% and low as content of 0.4%, making it a promising precursor for preparation of activated
carbon. Various carbon content from biowastes is given in Table 3. The activation of carbon was
prepared through a combination of chemical and physical methods and the surface was modified with
oxidizing chemical agents (H2SO4, HNO3 and H2O2). They reported a BET surface area of 1352 m2/g.
Galvanostatic charge-discharge electrochemical testing was used to investigate the gravimetric specific
capacitance. The specific capacitance of unmodified sample was 153 F/g, whereas the modified sample
exhibited over 60% increase.

Table 3. Various carbon content from biowastes.

Biowaste Carbon Content (%) Ref.

Apricot shell 23.2 [148]
Bamboo 16.60 [149]

Coconut shell 25–40 [58,59,150–153]
Durian shell 23.36 [154]
Palm shell 18.70 [59]

Pitch 33.6 [155–157]
Seaweed 16 [158,159]

Sugarcane bagasse 34.2 [143]
Wheat straw 37 [160]

Guo et al. obtained porous carbon material from soybean roots [161]. The roots were carbonized
for 2 h at 500 ◦C (SRC) under nitrogen atmosphere and further functionalized for 2 h at 900 ◦C
under a nitrogen atmosphere (SRPC-4K-900). Figure 7 depicts the sample preparation and SEM
images. Samples were denoted by SRC (Soybean Root-Derived Carbons), and the activated Porous
Carbons were named SRPC-nK, where n represents the KOH/char weight ratio. Using a symmetric
two-electrode supercapacitor in 6 M KOH, they reported the existence of quasi-rectangular shapes
for CV plots (Figure 8). They found that the sample SRPC-4K exhibited a specific capacitance of
276 F/g at 0.5 A/g and a capacitance retention of 98% after 10,000 cycles (Figure 8). They assembled a
supercapacitor using an ionic liquid electrolyte (EMIM BF4) and reported an energy and power density
of 100.5 Wh/kg and 4353 W/kg, respectively.

Ahmed et al. [162] in their studies reported successful preparation of nitrogen-doped activated
carbon from orange peels. The investigated the properties of the fabricated capacitor cells using
electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge.
The electrochemical performance of the samples was tested in a two-electrode assembly using 6 M
KOH as the electrolyte. They observed a surface area of 1577 m2/g for the activated carbon and
established a specific capacitance of 167 F/g at 0.7 A/g. The samples exhibited specific energy and
power densities of 23.3 Wh/kg and 2334.3 W/kg, respectively. Li Yin-Tao et al. [141] obtained porous
active carbon from fallen leaves (activation process is shown in Figure 9). They employed KOH, K2CO3

and mixed KOH, K2CO3 for activation and observed that the mixed activation produced enlarged pore
sizes for the activated carbon (SBET of 1078 g/cm), noting that the surface area and hierarchical pore
structures were related to the mass ratio of two activators. They reported a high specific capacitance of
up to 242 F/g (0.3 A/g, 6 M KOH) in a two-electrode system, maintaining a high retention rate.
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Society.)
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Figure 8. (a) CV curves at 5 mV/s of SRPC-3K, SRPC-4K, and SRPC-4.5K in a symmetric two-electrode
supercapacitor in 6 M KOH aqueous solution; (b) CV curves of SRPC-4K and SRPC-4K-900 at 5 mV/s;
(c) GCD curves at 1 A/g; (d) GCD rate performance SRPC-3K, SRPC-4K, and SRPC-4.5K; (e) GCD
curves at various current densities; (f) cyclic stability at 5 A/g for 10,000 cycles of SRPC-4K (inset: GCD
curves of the 1st and 10,000th cycles). (Reprinted (adapted) with permission from [161]. Copyright
(2016) American Chemical Society.)

In another work, porous starch was used as a precursor to produce porous carbon
microspheres [142]. Samples were stabilized, carbonized and activated in KOH. They reported a
high BET surface area of 3251 m2/g, observing specific capacitances of 304 F/g at a current density of
0.05 A/g and 197 F/g at a current density of 180 A/g in 6 M KOH. Samples exhibited a capacitance
retention of 98% over 1000 cycles.
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Figure 9. The activation process on ACs from fallen leaves by KOH and/or K2CO3. on ACs from
fallen leaves by KOH and/or K2CO3 [141]. (Reprinted from Journal of Power Sources, 299, Yin-Tao Li,
Yu-Tong Pi, Li-Ming Lu, Shun-Hua Xu, Tie-Zhen Ren, Hierarchical porous active carbon from fallen
leaves by synergy of K2CO3 and their supercapacitor performance, 519–528, Copyright (2015), with
permission from Elsevier.)

Kishore et al. [136] recently developed carbonized milk-free coconut kernel pulp at low
temperatures. They found that the surface area decreases with increasing temperature; at 600 ◦C, they
observed a surface area of 1200 m2/g. The measured specific capacitance in 1 M H2SO4 electrolyte
was reported as 173 F/g for carbon sample prepared at 600 ◦C. Na et al. [95] used a novel broken
eggshell and rice husks to fabricate a novel egg white gel polymer electrolyte and green solid-state
supercapacitor (Figure 10). On employing Green-S-SC based on this EW-GPE and RH-AC electrodes,
they found that the specific capacitances decrease with increasing scan rate as expected. The sample
exhibited good specific capacitance (214.3 F/g at 0.2 A/g), high flexibility and stable cycle performance.
Various biowaste used for deriving activated carbon that finds application as an electrode material in
supercapacitors are listed in Table 4.
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Figure 10. Schematic of the fabrication of the green solid-state supercapacitor using the egg and rice
waste (broken eggshell and rice husk) [95]. (Reprinted from Electrochimica Acta, 274, Ruiqi Na, Xinyu
Wang, Nan Lu, Guanze Huo, Haibo Lin, Guibin Wang, Novel egg white gel polymer electrolyte and a
green solid-state supercapacitor derived from the egg and rice waste, 316–325, Copyright (2018), with
permission from Elsevier.)



Sustainability 2019, 11, 414 12 of 22

Table 4. Summary of key performance metrics for activated carbon derived from biowaste for
supercapacitors.

Biowaste Energy Density
(Wh/kg)

Power Density
(W/kg) Cycles Percentage

Retention (%) Ref.

Bamboo 3.3 2250 3000 91 [135]
BambooBiochar - - 150 95 [163]

Banana-peel 40.7 8400 1000 88.7 [96]
Banana peel - - 5000 ~100 [164]

Banana peel waste 0.75 31 - - [165]
Bradyrhizobium japonicum with a

Soybean Leaf as a Separator - - 8000 91 [166]

Celtuce leaves 2000 92.6 [167]
Coconut shells 38.5 - >3000 93 [129]
Coconut shells 69 - 2000 85 [168]
Coconut shell 3000 97.2 [169]
Coffee beans 10–20 6000 >10,000 - [170]
Coffee Bean 15 75 10,000 82 [171]

Coffee ground 34 215,000 - - [172]
Corncob residue 5.3–15 8276–2827 100,000 82 [133]
Cotton (natural) - - 20,000 97 [173]

Dead Neem leaves (Azadirachta indica) 55 569 - - [174]
Eucalyptus tree leaves - - 15,000 97.7 [175]

Fibres from oil palm empty fruit
bunches 4.297 173 - - [176]

Garlic peel 100 95–98 [177]
Garlic Skin 14.65 310.67 5000 94 [178]

Gelatin 7.43 263.5 5000 92 [140]
Human hair 29 2243 >20,000 ~100 [179]

Indian Cake Rusk 47.1 22,644 6000 95 [101]
Lemon peel 6.61 425.26 3000 92 [180]

Ligno-cellulosic waste, fruit stones 13 3410 20,000 99 [181]
Oil palm kernel shell - - 1000 95–97 [99]

Orange peel 23.3 2334.3 - - [162]
Paulownia flower (PF) 44.5~22.2 247~3781 1000 93 [182]

Pea skin 19.6 254,000 5000 75 [183]
Peanut shell and rice husk 19.3 1007 - - [184]

Pistachio nutshell - - 4000 ~100 [185]
Pistachio nutshell 10–39 52,000–286,000 - - [186]

Potato starch - - 900 86 [187]
Rape flower stems - - 1000 96 [188]

Raw rice brans 70 1223 10,000 ~97 [189]
Rice husk - - 10,000 97–99 [94]
Rice husk 5.11 - 10,000 90 [190]
Sago bark 5 400 1700 94 [191]

Shells of broad beans - - 3000 90 [192]
Soybean residue 12 2000 5000–10,000 90 [193]

Soybean Root 100.5 63,000 10,000 98 [161]
Spent coffee grounds - - ~2000 98 [194]

Sugarcane bagasse 5 35,000 1000 90 [132]
Sugar cane bagasse 5.9 10,000 5000 83 [143]

Sugar industry spent wash waste - 414,000 1000 ~100 [109]
Sunflower seed shell 4.8 24,000 - - [195]

Waste tea-leaves - - 2000 92 [145]
Wood sawdust 5.7–7.8 250–5000 10,000 94.2 [196]

4. Summary/Future Prospects

The demand for renewable energy sources worldwide has gained tremendous research attention
over the past decades. The development and optimization of novel materials towards energy storage
is essential to the push to provide clean energy through renewable sources. Materials derived
from waste and for that matter biowaste have continuously gained penetration into the field of
supercapacitor technology. In this review, we gathered different activated carbons derived from
biowaste for electrochemical energy storage systems, discussing the various performance parameters
and storage mechanisms of the various types of supercapacitors.

In particular, we presented reports on the surface area and pore size effects on the performance
of supercapacitors. Specific capacitance, energy/power densities, and cyclic stability have been
reviewed, discussing the requirements for an application. We also reviewed the processing of electrode
materials to optimize or maximize the performance of the supercapacitor. Supercapacitor electrode



Sustainability 2019, 11, 414 13 of 22

materials such as carbon and carbon-based materials offer a high specific surface area, good electrical
conductivity and excellent stability in harsh environments, etc. The development of an alternative
supercapacitor electrode material from biowaste serves two main purposes: (1) It helps with waste
disposal; converting waste to a useful product, and (2) it provides an economic argument for the
substantiality of supercapacitor technology.
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