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Abstract: Plant diversity is associated with resilient ecosystems. Loss of plant biodiversity triggered
by anthropogenic and climatic factors jeopardizes environmental stability and sustainable forage
production. The understanding of biodiversity mechanisms and functional traits of species can help
to design forage production systems to buffer against perturbations. Resilience and productivity
are linked to plant species characteristics and interactions that enable them to recover from adverse
conditions and compensate for the loss of susceptible species. Benefits of diversified crops including
enhanced carbon assimilation, nitrogen fixation, and turnover are transferred to soil microbes
which in return contribute to resilience against drought and poor soil fertility. In the absence
of disturbances, these mechanisms are credited for stability and climax ecosystems. Cultivated
systems are more fragile because management interferes with many functions while maintaining few.
Strategies that sustain an entire range of functions can increase production regardless of climatic and
management factors. This has been demonstrated in binary mixtures of cool season grasses including
meadow bromegrass (Bromus biebersteinii Roem. & Schult.), orchardgrass (Dactylis glomerata L.),
smooth bromegrass (Bromus inermis Leyss.), and intermediate wheatgrass (Thinopyrum intermedium
(Host) Barkworth & D.R. Dewey) with alfalfa (Medicago sativa L.). Suitable combinations of perennial
species and cultivars bred for compatible traits can enhance resilience and productivity in a wide
range of ecosystems.
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1. Introduction

Plant diversity remains an important ingredient of stable environments and sustainable food
production systems. Biodiversity is generally described as diversity in the number of species,
their functions, and spatial arrangement in a community [1]. Plant diversity applies to different
scales from international biota to localized habitats such as those witnessed in agricultural landscapes.
Forage species have unique characteristics pertinent to ecosystem services. They provide feeds for
animal nutritional requirements, energy for soil microbes, carbon sequestration, and soil nutrient
cycling [2]. Other roles are maintaining soil moisture, hydrological cycles, and habitats for natural
enemies and pollinators and protection of the environment from pollutants [3]. There are indicators
that species diversity promotes ecosystem services. In cultivated and grassland systems, increasing
species richness and functional groups of grasses and legumes are responsible for enhancing forage
productivity [4–6]. In silvopasture systems, trees provide a buffer against extreme light intensities,
temperatures, and wind [7]. This supports soil moisture retention and favors forage production from
the undergrowth. The major challenge hindering the realization of these benefits is poor species
persistence which is associated with negative species interactions and adverse environments.
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Ecosystem resilience is a measure of its capacity to retain the same function, structure, feedback,
and identity following disturbance [8]. Functional diversity of species has a greater impact on
ecological processes that are responsible for resilience compared to species richness and individual
characteristics [9]. Such losses are mainly triggered by disturbances due to crop management, land-use,
and climate change [10]. The intensity and frequency of disturbances are critical to the management of
forage crop systems for resilience. It has been reported that disturbances may be ongoing (seasonal
occurrences), acute, or chronic (long term effects) with permanent impacts [11]. From previous studies,
there are inconsistent findings describing the response of forage ecosystems to ongoing disturbances.
To a greater extent, disturbances occurring during the most vulnerable growth stages of particular
species will have more of an impact. For example, grassland burning combined with more frequent
mowing during summer was reported to reduce grass species richness [12]. At the same time, mowing
alone increased grass species richness. Disease damage is an example of acute disturbance. Pathogens
can cause the death of susceptible plants and loss of a crop stand within a limited period of time [13].
This indirectly affects species’ functions. There are also direct consequences of acute disturbance
to species’ functions, such as irreversible damage to legume root nodules. This has been shown to
rapidly reduce nitrogen fixation by subterranean clover (Trifolium subterraneum L.) [14]. Long term
disturbances, including increased average temperatures, at a regional scale and reduced precipitation
can cause permanent shifts in ecosystem states. Examples include up to 50% loss in prairie wetlands in
the Great Plains which is an important habitat for ducks. In temperate grasslands, increasing summer
temperatures reduces quantum yield and, therefore, C3 grass species have less growth and abundance,
while allowing C4 grass species to dominate [15]. In addition, C4 grass rich vegetation may have
higher shoot carbon concentration compared to C3 grass [16]. Long term effects of conversion from
natural vegetation to agriculture have contributed to the wide scale loss of biodiversity. In the worst
affected habitats, there have been declines in species richness and total abundance by a magnitude
of 76.5% and 39%, respectively [17]. In contrast, some long term but less intense crop management
practices, such as mowing and grazing, are reported to increase grass species richness [18]. However,
there is less resilience to drought when these management practices are intensified [19].

It is well known that management can enhance species diversity and, thus, contribute to forage
productivity. However, there is no consistent link between management, resilience, and productivity,
particularly following chronic disturbances. There has been an overshadowing of functional attributes
by productivity in the analysis of ecosystem resilience. The recovery of ecosystem productivity from
long term disturbances appears to rely on feed backs from species’ functional attributes. Hence,
the magnitude with which aggregate functions of forage crop communities are restored following
disturbance seems critical to long term productivity. The objective of this paper is to relook at
biodiversity mechanisms and species’ traits that are responsible for resilience and productivity of
forage cropping systems. Crop management coupled with environment factors that stabilize forage
cropping systems and sustain forage productivity will also be discussed.

2. Drivers of Changing Plant Diversity

The ability of species in a community to exploit resources and changes in their composition
underlie ecosystem functioning and stability [20]. Stability in this context is the limited change in
species abundance in the long term. This is explained by interactions between biodiversity components
and mechanisms, as shown in Table 1. Interactions between species richness (the number of species in
a plant community) and compositional changes are important indicators of ecosystem functioning [21].
Increasing species richness in a plant community implies that those that compete better for space,
light, and soil nutrients will dominate shoot biomass. Hence, species richness is negatively related
to species evenness [22]. Species evenness is a measure of how equal species are in their abundance
based on population or biomass [23]. Species have divergent functional attributes and responses to
changes in the environment which may affect diversity. It is a common phenomenon that increasing
the amounts of soil mineral nitrogen favors the growth of grass at the expense of legumes [24]. Initially,
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competition for nutrients and water is aggravated in unproductive soils. Once these resources become
abundant, then more aggressive species harness incoming light, thereby suppressing the growth of less
competitive species. Deficiencies in light, water, and nutrients may limit the ability of some species
to reach their full reproductive potential. A limited ability to produce viable propagules can reduce
species abundance or can ultimately lead to their extinction.

Table 1. Relationship between biodiversity components and mechanisms from selected studies.

Biodiversity Components and Mechanisms Relationship Reference

Species richness Species asynchrony Positive (F = 4.94) [21]
Temporal stability Positive (F = 2.54) [21]
Species evenness Negative (R = −0.75) [22]
Soil inorganic nitrogen Negative (R2 = −0.49) [24]
Light Positive (R2 = 0.35) [24]
Soil moisture Positive (R2 = 0.25) [24]
Herbivory Positive (F = 13.5) [25]

Species evenness Herbivory Positive (F = 7.4) [25]
Over yielding Negative (R = −0.71) [26]
Temporal stability Positive (R = 0.68) [26]

Species asynchrony Temporal stability Positive (R2 = 0.45) [21]
Community stability Positive (R2 = 0.82) [27]
Soil inorganic nitrogen Negative (R2 = −0.31) [27]
Soil moisture Positive (R2 = 0.53) [27]

Species in a community remain abundant through mechanisms that reduce competition for
resources that are required for growth. This includes asynchrony in resource use and peak growth of
minor species compared to major species [21,26]. Species asynchrony is the variance in community
biomass relative to covariance among individual species [6]. Species asynchrony has a positive
relationship with plant community stability and soil moisture, but negative relationship with soil
inorganic nitrogen [27]. Asynchrony in growth and resource (nutrients, water, and light) use is not
often a typical occurrence in natural ecosystems where species abundance overrides the resource base.
Species have other strategies through which they respond to or alter the environment to suit their
survival [28]. One possibility is coexistence of species that are limited by different nutrients in the
same habitat [29]. In such circumstances, there is niche differentiation and reduced competition for
the same nutrient. There are many ways by which individual species alter soil conditions, resulting
in positive feedback to species composition. These include deposits of high C:N (carbon to nitrogen
ratio) residues from grass which suppresses microbial nitrogen mineralization and promotes more
even growth of grass and legumes in mixed communities [30].

Herbivory may enhance or reduce species diversity. In productive soils, less intense feeding
can promote species evenness by eliminating shade and allowing less competitive species to
emerge [25,31,32] or by stimulating the growth of tillers. Some studies have indicated that light
grazing can enhance the tolerance of grass monocrops to drought. On the other hand, greater feeding
preference by grazers may injure and eventually eliminate selected species growing in mixtures.
Continual grazing coupled with high temperature and low precipitation can alter species composition
in favor of C4 grasses and legumes with underground crowns [33,34].

There is tremendous discourse supporting a diversity-productivity relationship where disturbances
are limited. The role of few but relatively abundant species to ecosystem function including nutrient
uptake, photosynthesis, carbon storage, and N fixation in ecosystem stability are often amplified [6,35].
In reality, ecosystems may face a myriad of disturbances occurring simultaneously. This elicits varied
responses from plant species in a community. There are suggestions from experiments involving
phytoplankton that the stability of ecosystems in response to multiple disturbances to a greater extent
depends on the correlation between sensitivities of species to different disturbances and population
dynamics of well-performing species when dominant [36]. Functional redundancy among major and
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minor species and varied responses to disturbances play a critical role in stabilizing ecosystems [35,37].
The evaluation of aggregate species functions can help to provide greater details of mechanisms of
importance to increasing productivity and resilience through diversified forage crops.

3. Mechanisms of Diversity-Productivity Relationships

3.1. Species Traits

Plant establishment, productivity, and persistence are important considerations for the suitability
of species to particular environments [38]. One feature of diverse plant communities, as explained
by [39], is the positive asymptotic diversity-productivity relationship. Net productivity of mixed plant
communities is a tradeoff between complementarity in resource use and competition. This relationship
is governed by availability and complementary resource utilization as well as neighbor recognition.
Interception and use of light, mineral nutrients, and water are key considerations.

Complementary use of light is described by increased efficiency in the absorption of irradiance by
species in mixtures compared to monoculture [40]. This is profoundly influenced by growth forms
of plant species, particularly leaf angle and self-shading. Various strategies have been described.
For example, it has been reported that associated leaf petioles with a wide angle relative to the
horizontal have been linked to the efficient utilization of light [41]. In this scenario, leaf orientation
captures more sun at low angles in the sky, however it minimizes heating and photoinhibition during
times when there is direct light. Conversely, leaf placement and overlap that minimize mutual
shading play a critical role in the amount of light that is absorbed by species with horizontal leaf
angles [40]. Species may also acclimatize to limited light by temporal variation in leaf morphology
and photosynthesis. For example, [41] reported horizontal leaf position early in the season when the
leaf area index (LAI) is low as a contributor to maximized light interception. However, later in the
season, top leaves growing vertically or having low chlorophyll contents allows more light to reach
the horizontal leaves in the lower canopy, thus increasing carbon assimilation. In addition, grasses
have been found to have greater photosynthetic efficiency and reduced dark respiration in mixtures
with legumes compared to monocrops [42,43].

Complementarity in resource use is accentuated among as opposed to within plant functional
groups [6]. The choice of plant species based on functional groups to a greater extent relies on
photosynthetic pathways, such as C3 and C4 grasses, N fixing capacity among legumes, and leaf
turnover rates [44,45]. The C4 plants have comparative advantage for growth in dry and nutrient
poor habitats, which is attributed to their greater water and N use efficiencies than C3 species [46].
In contrast, because of low photosynthetic efficiency under shade and low temperatures, C4 plants are
rare in shaded neighborhoods, unlike C3 species. Hence, the establishment of mixtures with C3 and
C4 species is rarely feasible. The tendency of C3 and C4 growth to dominate in spring and summer,
respectively is pertinent to unconstrained species coexistence of diverse species [47].

Plant species’ identity and functions in more diversified communities are the key to enhanced
primary productivity. This has been a major motivation for the combination of grasses with legumes.
It is common to mix C3 grass and legume species to tap both yield and nutritive value benefits.
Nevertheless, albeit that generally lower shoot biomass is produced by C4 grasses, these species have
relatively more carbon accumulation than C3 grasses [16]. Higher shoot carbon can buffer community
productivity against drought and low soil N [48]. Legumes, on the other hand, buildup dry matter
from N fixation. In addition, legumes in mixtures have taller growth and greater plasticity in shoot
height that enhances space-filling [49]. On average, grasses contribute relatively less to community
biomass compared to legumes [6], however they have similar effect on stabilizing community biomass.
Conversely, despite their dominance in mixtures, legumes are responsible for lower stability in overall
plant community dry matter yields [4]. Plant species display variations in traits with increasing species
richness. Some traits may contribute to enhanced plant community dry matter yields. These include,
long shoot length, vertical leaf distribution, high leaf N, and lower foliar δ15N [49]. The δ15N
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is a measure of how much N plants acquire from the environment [50]. Low values of δ15N in
plant communities indicate complementary resource use and less acquisition of N from the soil and
the atmosphere.

Plant water relationship is a major factor controlling the primary production of mixed crops.
Theoretically, increased numbers of phytomers for plants in mixtures creates a large leaf photosynthetic
area. This causes high rates of evapotranspiration. Leaves lose water through stomatal pores in
response to gaseous exchange for photosynthesis [51]. There are different perspectives of the benefits
of species diversity to water use. For instance, grasses in mixtures are reported to have higher water use
efficiency and root:shoot ratio than monocrops [42]. Higher root:shoot ratio is a mechanism by which
species acquire scarce soil water while minimizing evapotranspiration [52]. On account of altered crop
environments, there are other plant-water interactions that may indirectly influence the productivity of
forage mixtures. These include increased retention of precipitation water being intercepted by a larger
multispecies canopy and litter [53]. Diversity in root architecture and functions may allow different
plant species growing together to exploit water from varying soil depths [5]. Diversity that includes
deep rooted legumes versus shallow rooted grasses has been proposed as a measure against drought
shocks [54].

It is clear that species have a wide range of mechanisms by which they adapt to growing in
diversified communities. Studies evaluate these mechanisms in isolation which misrepresents a more
complex system. In natural ecosystems that are subjected to minimal disturbances, species function
can be perpetuated leading to a steady state. Cultivated systems are more fragile because management
interferes with many functions while maintaining few. With increasing interest in sustainable cropping
systems, there are more attempts to constitute cropping systems with broader and enduring niches.

3.2. Crop Establishment and Management for Diversity

Crop management for food, fiber, and economic needs is a major obstacle to crop diversification.
There has been a preeminence of strategies to promote crop characteristics of immediate relevance
to consumers, for example, through breeding, pest and disease control, and fertilizer application.
Some studies have shown the tendency for annual-annual crop and annual-perennial crop mixtures to
suppress yields owing to competition [55,56]. Crop diversity measures with potential for resilience
against climate change, pests, and diseases have been extensively discussed which to a greater extent
depend on forage species [57]. The perennial nature of forage crops can sustain functions that transcend
short term management goals and seasonal factors. This inspires the integration of perennial forage
species with annual crops. Conversely, most forage crops are perennial and involve high costs of
establishing and restoration after annihilation. Moreover, a relatively competitive nature of perennial
forages often serves as an impediment to diversification. These challenges have been addressed by
understanding mechanisms that increase synergies and alleviate competition among crop species.
For example, the coexistence and productivity of species in grass-legume mixtures is initially contingent
upon their similarities in tolerance for soil and weather conditions and resource sharing. This allows
for the simultaneous seeding of different species. Subsequently, species’ growth rate and habits are
key determinants of their compatibility and longevity [58]. These include prostrate growth and shade
tolerance (plant yield as a percentage of that obtained under full light) by legumes and bunch forming
grasses [59]. Bunch formation is the characteristic of grasses having short rhizomes and upright shoots
which leaves space for the growth of legumes as opposed to sod forming grasses [60].

There are alternative measures to alleviate competition, including the living mulch cropping
system, sod seeding, and relay planting. According to [61], the living mulch is a legume crop that is
seeded between rotations of annual crops to provide herbage for hay and pasture during late fall and
winter. Relay seeding allows for the early establishment of under-sowed legume crops following the
removal of the main crop. The legumes are suppressed using banded herbicides before the subsequent
planting of annuals. Sod seeding is a measure to invigorate deteriorating legume stands in established
grass pastures. Grass is suppressed using herbicides and is subsequently over seeded with legumes
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that regenerate rapidly during spring [62]. There are suggestions that benefits of perennial forages
can be incorporated in annual crops without affecting yields. This has been demonstrated in corn
(Zea mays L.)-bracharia grass (Bracharia spp.)-calapo (Calopogonium mucunoides Desv.) and corn-Guinee
grass (Panicum maximum) intercrops [63,64]. Options for intercropping annual crops with perennial
counterparts are limited by the shade avoidance which afflicts the growth and grain yields of annuals.
There are opportunities to sustain such systems by breeding crops to reduce shade avoidance [65,66]
and maintaining assemblages of crops that can enhance nutrient availability to sustain all species.

3.3. Resilience and Persistence of Diversified Forage Crops

The maintenance of ecosystem functions by various species is a valuable attribute of ecosystem
resilience. Resilience is benchmarked upon a threshold in the ecosystem state following disturbances
from fires, diseases, predators, adverse temperatures, drought, soil erosion, salinity, and flooding [8].
The effects of selected disturbances on forage ecosystems are shown in Table 2. For example, cultivation,
grazing, and fire are common disturbances in grassland ecosystems in the US [67–70]. These may cause
losses in species richness and ground cover to the extent of devastating species’ ecosystem functions.
In more diverse plant communities, the loss of species is compensated by the regeneration of species
which may have dominant effects on vegetation characteristics. Examples of some species that have
been found to withstand fires in tallgrass prairie are Prairie Junegrass (Koeleria macrantha (Ledeb.)
Schult.), sandberg bluegrass (Poa secunda J. Presl), western wheatgrass (Pascopyrum smithii (Rydb.)
Á. Löve), and green needlegrass (Nassella viridula (Trin.)) [67].

Table 2. Effect of selected disturbances on forage ecosystems.

Ecosystem Criteria for Ecosystem State Disturbance Effects Reference

Tallgrass prairie, Texas, USA Simpsons diversity index Cultivation Loss of species diversity from 4.8 to 2.8 [68]
Species richness Loss of species richness from 42 to 29
Specie evenness Change in species evenness from 0.22 to 0.09

Mixed prairie, Mandan, North Dakota, USA Soil organic carbon (SOC; g C kg−1) Moderate grazing † SOC loss from 36.1 to 32.6 g [69]
Tallgrass prairie, northeastern Kansas, USA Species richness Fire Loss of species richness from 19.8 to 18.2 [70]

Mixed prairie, North Dakota, USA Grassland ground cover (%) Fire Reduced ground cover from 4.3 to 1.1% [71]

† 2.6 ha steer−1.

In cultivated systems, tillage, irrigation, fertilizer, grazing, and harvesting are common
disturbances. These may reduce the lifespan of individual plants or entire crop stands. In mixed crops,
legumes are more vulnerable to the adverse effects of management and biotic stresses. Competitive
advantage in the interception of light and nutrient uptake by grasses can reduce the persistence
of legumes in mixtures [71,72]. There are various ways to evaluate the persistence of species in
intrinsically diverse plant communities. These include plant density, dry mass, and LAI [73].

There are limited thresholds that are set to explicitly determine the thresholds of resilience [8].
Loss of legume density and biomass are common measures of adverse effects on species’ persistence
in mixtures. However, these changes are not commensurate with species’ functions. For example,
in established mixtures, alfalfa density has been found to reduce from 352 plants m−2 at establishment
to 90 plants m−2 in three years [74]. In contrast, it is reported that atmospheric N fixation and
activities of denitrifying enzymes increase to a peak at 30% and 25% legume seeding proportions,
respectively [75,76]. Hence, in mixtures, the minimum grass seeding proportion may be of greater
consequence in crop management for resilience. When grass dominates mixtures, there is less net
accumulation of soluble N in the soil which minimizes N2O emission [77]. There are more intricate
interactions that can stabilize both forage and soil microbes from perturbations in the environment.
For example, more diverse grassland communities have more shoot carbon storage and enhanced
stability against drought, however at the expense of soil microbial biomass [78]. On the other hand,
increasing species evenness specifically promotes a high ratio of gram-positive:gram-negative bacteria
for plant communities. As indicated by [79], a high ratio of gram-positive:gram-negative bacteria can
increase microbial community resistance to disturbances including drought. Managers are mainly
concerned with designing forage cropping systems for species persistence however, with less regard
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for resilience. Forage crop mixtures offer benefits of enhanced productivity and resilience as discussed
in the following section.

4. Resilience and Productivity of Grass-Legume Mixtures: Evidence from Recent Studies

Grasses and legumes are major sources of nutrients and energy for livestock production. Grasses
are rich in neutral detergent fiber which is important for livestock dry matter intake. However,
low crude protein in grasses may be supplemented by rich sources from legumes. Hence, grass-legume
mixtures are highly valued for pasture and hay production systems. Some grass species that are
commonly grown in mixtures are bunch forming cool season grasses, including orchard grass,
tall fescue (Schedonorus arundinaceus (Schreb.) Dumort., nom. cons.), and meadow bromegrass [80].
On the other hand, alfalfa, birdsfoot trefoil (Lotus corniculatus L.), sainfoin (Onobrychis viciifolia Scop.),
and white clover (Trifolium repens L.) are among cool season legumes that are included in mixtures.
Defoliation during the first harvest in spring, and subsequent deficits in soil moisture coupled with
high temperatures in summer, may reduce resilience in biomass production [81]. Crop diversification
facilitates species interactions which may avert adverse effects to forage production.

In a recent study at the University of Wyoming Sheridan Research and Extension Center, Wyoming,
USA, meadow bromegrass, alfalfa, sainfoin, and birdsfoot trefoil growing as monocrop and mixtures
were evaluated for their resilience following harvesting in spring (mid-June) in three consecutive years
from 2015 to 2017. There were 50–50% and 70–30% mixtures of meadow bromegrass with each legume,
50-25-25% mixtures of meadow bromegrass with two legumes, and 50–16.7–16.7–16.7% mixtures of
meadow bromegrass and three legumes (alfalfa, sainfoin, and birdsfoot trefoil). The amount of seeds
for each species were determined by dividing the recommended seed mass by the pure live seed
(the product of seed germination and purity). All of the crops were irrigated with approximately
210 mm of water annually. Resilience was determined as shown in Equation (1) [82].

Resilience = PostDr/PreDr (1)

where PostDr is the aggregate shoot dry matter yield after disturbance and PreDr is the aggregate
biomass before disturbance. Disturbance was considered to be the effects of mowing during the first
harvest of the crops. A resilience value of 1 indicated full recovery following disturbance. Resilience
values below 1 indicated a negative response to the disturbance. Treatment effects were determined by
using the analysis of variance.

There was a significant interaction (p = 0.0006) between year and treatment in their effect
on crop resilience (Figure 1). Alfalfa maintained greater resilience (1, 2.3, and 2.1) in 2015, 2016,
and 2017, respectively compared to the other monocrops (0.2 to 1.2). There were similar patterns of
consistent resilience of alfalfa and sainfoin monocrops from 2015 to 2017. During this period, the alfalfa
monocrop was also more resilient in biomass production compared to each of the mixtures. However,
some mixtures had consistent increases in resilience from 2015 to 2017. These include the 70–30%
mixture of meadow bromegrass with alfalfa (0.5 to 1), 50–50% mixture of meadow bromegrass with
birdsfoot trefoil (0.4 to 0.6), and 50–25–25% mixture of meadow bromegrass, alfalfa, and birdsfoot
trefoil (0.5 to 0.8). The 50–50% mixture of meadow bromegrass with alfalfa (0.6 to 0.8) increased and
maintained resilience in 2016 and 2017. The rest of the mixtures had patterns similar to monocrops that
were characterized by greater resilience in 2016 compared to 2015 and 2017. It was clear that mixtures
may not recover fully from mowing and high temperatures during summer. Nevertheless, the fact that
mixtures, particularly those with alfalfa, maintained increasing levels of resilience against mowing
suggests that diversifying forage crops may help to buffer production against continued disturbances
over years.
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Figure 1. Resilience of meadow bromegrass (MB), alfalfa (Alf), sainfoin (Sf), and birdsfoot trefoil (BFT)
monocrops and their mixtures after first harvest in 2015, 2016, and 2017 at the University of Wyoming
Sheridan Research and Extension Center, Wyoming, USA. Within each treatment, means for each year
followed by the same lowercase letters are not significantly different at p > 0.05. Within treatments,
means for the different years with the same uppercase letters are not significantly different at p > 0.05.

From studies that have been conducted in different climatic zones, it is evident that diversifying
species in the formulation of grass-legume mixtures can help to enhance crop resilience. It is more
prevalent for mixtures to produce similar or higher yields compared to most productive monocrops
despite suboptimal growth conditions [26,58,81,83–88]. For example, in a five-year study, a crop that
was established from a 35–65% seed mass ratio of intermediate wheatgrass and alfalfa produced
3.2 times higher forage yield compared to intermediate wheatgrass monocrop in dryland conditions at
Mandan, North Dakota, USA [83]. The area experienced lower total rainfalls (164 mm) than average
(183 mm) during April, May, and June, which was the duration for the peak yields. Studies from
different parts of Wyoming, USA also indicate the benefits of grass-legume mixtures. For instance,
mixtures of meadow bromegrass with alfalfa (50–50%), meadow bromegrass with birdsfoot trefoil
(70–30%), and orchardgrass with alfalfa (25–75%) generated 42, 45, and 47% higher yields, respectively
compared to alfalfa monocrops [26,84]. Irrigation mitigates against the adverse effects of low and
irregular rainfall that is 373 mm on average. The vast northern Great Plains region of the USA
has long, cold winters alternating with short, hot summers [85] which may devastate forage crops.
In Iowa, USA, 50–50% binary mixtures of smooth bromegrass and alfalfa produced lower yields than
alfalfa monocrop, however 3.5 times greater yield than grass monocrop [86]. The average yield of
alfalfa in Iowa is 8.6 Mg ha−1 compared to 6.5 Mg ha−1 in Wyoming. A similar trend was observed
under irrigated conditions in Isparta, Turkey. A 67–33% mixture of smooth bromegrass with alfalfa
had slightly higher forage yields than alfalfa monocrop, however 2.9 times higher yields than grass
monocrop [87]. The efficient use of light and storage of carbon in roots are important mechanisms
behind more rapid growth of temperate forage species in mixtures compared to monocrops [81].
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These results clearly demonstrate that the benefits of diversifying forage crops transcend climatic
conditions and crop management.

5. Conclusions

Disturbances from human and natural effects are blamed for the loss of plant diversity. Increasing
management intensity coinciding with adverse climates contributes to the loss of plant functional
groups that are important for ecosystem stability. This paper provides a synthesis of biodiversity
mechanisms and species traits that are responsible for the resilience and productivity of forage cropping
systems. Asynchrony in species’ response to disturbances, complementary resource use, and species
persistence are characteristics that can contribute to resilient forage production systems. In the absence
of disturbances, these mechanisms are credited for stability and climax ecosystems. Cultivated systems
are more fragile because management interferes with many functions while maintaining few. It emerges
that holistic approaches in evaluating the changes in ecosystem functions can help to develop more
resilient cropping systems. Breeding and the combination of species with compatible traits provide
the opportunity to incorporate benefits of perennial forages in annual crops. These include enhanced
carbon input from roots, efficient nitrogen cycling, plant-microbe interactions that enhance resilience
to drought, and recovery from fires. The benefits of diversifying forage crops potentially transcend
climatic conditions and crop management systems.
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