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Abstract: This study has evaluated the removal efficiencies of phosphate ions (PO4
3−) using pristine

(TB) and chemical-activated tangerine peel biochars. The adsorption kinetics and isotherm presented
that the enhanced physicochemical properties of TB surface through the chemical activation with
CaCl2 (CTB) and FeCl3 (FTB) were helpful in the adsorption capacities of PO4

3− (equilibrium
adsorption capacity: FTB (1.655 mg g−1) > CTB (0.354 mg g−1) > TB (0.104 mg g−1)). The adsorption
kinetics results revealed that PO4

3− removal by TB, CTB, and FTB was well fitted with the pseudo-
second-order model (R2 = 0.999) than the pseudo-first-order model (R2 ≥ 0.929). The adsorption
isotherm models showed that the Freundlich equation was suitable for PO4

3− removal by TB
(R2 = 0.975) and CTB (R2 = 0.955). In contrast, the Langmuir equation was proper for PO4

3− removal
by FTB (R2 = 0.987). The PO4

3− removal efficiency of CTB and FTB decreased with the ionic strength
increased due to the compression of the electrical double layer on the CTB and FTB surfaces. Besides,
the PO4

3− adsorptions by TB, CTB, and FTB were spontaneous endothermic reactions. These findings
demonstrated FTB was the most promising method for removing PO4

3− in waters.

Keywords: adsorption; biochar; chemical activation; phosphate ions; tangerine peel

1. Introduction

With a significant increase in the amount of nutrients introduced to the water system
due to the rapid industrialization and recent population growth, increasing water pollution
hinders effective water quality management [1,2]. Nutrients are divided into point and
non-point sources, depending on the primary source of inflow. Although most effluents
from domestic sewage treatment plants and livestock wastewater treatment plants meet
the water quality criteria, agricultural drainage water, a representative non-point source,
significantly affects the discharge of nutrients because the increased amounts of compost
or fertilizer used to improve agricultural production [3,4]. This oversupply of nutrients
into the water system through point and non-point sources increases eutrophication causes
algal blooms. It reduces the amount of dissolved oxygen in the aquatic ecosystem, thereby
causing the deaths of aquatic organisms [5]. Among the main components of nutrients, ni-
trate ions (NO3

−) are required in relatively large quantities for algal growth, but phosphate
ions (PO4

3−) are a limiting factor that can promote algal growth even when present in
small amounts. PO4

3− can lead to blue-green algal blooms, leading to renal failure through
toxicity [6,7].

The anaerobic anoxic aerobic (A2O) process is typically applied for the biological
treatment of PO4

3−. Although this process requires no chemical injection and generates
little sludge compared to the amount of phosphate removed [8], the results are significantly
affected by the operating conditions. Besides, A2O is not suitable for strict water quality
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criteria because it cannot protect microorganisms against toxic chemicals present in the in-
fluent water. Moreover, microorganisms in the A2O process are subject to more significant
technical limitations in treatment efficiency compared with the physicochemical treatment
process [6]. There are commonly used physicochemical treatment processes (e.g., Electro-
dialysis, membrane filtration, coagulation, precipitation, and adsorption) to remove PO4

3−

from water and wastewater treatment plants [9]. These techniques are not appropriate to
the full-scale water and wastewater treatment plants due to the high operating costs and
energy consumption [10], and the generated sludge may cause secondary environmental
pollution in subsequent treatment processes [11]. However, the adsorption process has
been used in the water and wastewater treatment plants due to low operation and main-
tenance costs [12]. The various types of PO4

3− adsorbents, such as clay minerals [13], fly
ashes [14], and metal oxides [15], have been investigated. Das et al. have demonstrated
the high PO4

3− adsorption on clay minerals, including layered double hydroxides [13].
Chen et al. reported the efficient PO4

3− adsorption on fly ashes [14]. Zhang et al. have
fabricated activated carbon fiber with metal oxides for PO4

3− adsorption [15]. Despite
the advantage of these adsorbents, including high efficiency and environment-friendly
properties, they were difficult to be applied the full-scale wastewater treatment plant for
PO4

3− adsorption due to the high treatment cost (e.g., recycle and regeneration). Therefore,
it was necessary to develop an alternative adsorbent to remove PO4

3− in water [16].
Biochars, alternative adsorbents, are carbon-rich substances obtained through biomass

pyrolysis, such as fruit peels and rice bran, under oxygen-limited conditions. The utiliza-
tion of biochar shows significant environmental advantages in reducing greenhouse gas
emissions and resource recycling technology of agriculture and food residues [17]. The
agricultural residues represent an important potential source of reusable products [18,19].
Tangerine peels are common agricultural residues in Korea. The amount of tangerines
produced in Jeju Island was 125,343 tons as of 2005, representing approximately 18% of
the total global tangerine production. Annually, over 55,000 tons have been discarded
as tangerine peels [20]. Tangerine peels can be highly applicable as a raw material for
biochars because they are mainly composed of pectin, hemicellulose, and cellulose sub-
stances [21,22]. The negative surface charge of pristine biochar has limited their adsorption
affinity towards anions, including PO4

3− [23,24]. Therefore, their adsorption capacities
might be considerably enhanced after modification, including chemical activation, surface
functionality modification, and biochar impregnated with metals (e.g., CaCl2, MgCl2, FeCl3,
and AlOOH) [24–28]. Fang et al. have demonstrated the high PO4

3− adsorption on MgCl2
modified ground corn biochar [27]. Zhang and Gao. have reported the efficient PO4

3−

adsorption on AlOOH modified cottonwood biochar [24]. Despite the effective adsorption
capacities of metal-loaded biochar for PO4

3−, these biochars preparation demanded high
energy for pyrolysis, and the adsorption ability of biochars reduced due to coalescence with
water [24,27]. CaCl2 and FeCl3, which are a type of chemical coagulants, are commonly
used in the adsorption of PO4

3− in water. Thus, the modification of biochars with CaCl2
and FeCl3 could significantly improve the adsorption capacities of PO4

3− in water.
The primary purpose of this study is to evaluate the effect of pretreatment with CaCl2

and FeCl3 on the PO4
3− removal of biochars made from tangerine peels. Thus, the effects

of various conditions, such as the biochar dosage, pH, ionic strength, and temperature,
on PO4

3− removal were evaluated using the pristine tangerine peel biochar (TB), and
CaCl2 (CTB) and FeCl3 (FTB) activated tangerine peel biochars. In addition, the PO4

3−

adsorption mechanisms of TB, CTB, and FTB were investigated through adsorption kinetics
and adsorption isotherm models.

2. Materials and Methods
2.1. Chemicals and Reagents

Potassium dihydrogen phosphate (KH2PO4, 99.0%), CaCl2 (>99.0%), FeCl3 (>99.0%),
sodium chloride (NaCl, 99.0%), sodium hydroxide (NaOH, 99.0%), and hydrochloric
acid (HCl, 35%) were purchased from Daejung Chemicals (Siheung-si, Gyeonggi-do,
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Korea). All chemicals were used without further purification. Deionized (DI) water
(resistivity > 18.2 MΩ cm−1, Barnstead Nanopure Water System, Lake Balboa, CA, USA)
was applied to make the PO4

3− stock solution (concentration = 10 mg L−1).

2.2. Preparation of Tangerine Peel Biochars

Tangerine peels were purchased from a local food store on Jeju Island (Jeju-do, Korea).
After dried tangerine peels were crushed to 0.5–1.0 mm using a blender, they were several
rinsed (ten times) with DI water to remove impurities and then dried in an oven at
105 ◦C for 12 h. The crushed tangerine peels were immersed in 200 mL solutions of 1 M
CaCl2 and 1 M FeCl3, respectively. They were then stirred at 80 ◦C for 1 h and dried
in an oven at 105 ◦C for 24 h. The pristine and chemical activated tangerine peels were
pyrolyzed at 800 ◦C for 1 h using a tubular furnace (PyroTech, Namyangju, Gyeonggi-
do, Korea) under N2 gas (the flow rate = 0.25 L min−1) atmospheric conditions (heating
rate = 5 ◦C min−1) [29]. After cooling to room temperature (20 ± 0.5 ◦C), the fabricated
tangerine peel biochars were rinsed using DI water until no impurities were observed and
dried in an oven at 80 ◦C for 24 h. The dried tangerine peel biochars (i.e., TB, CTB, and
FTB) were sieved to obtain a homogenized particle size of 150 µm and then stored in a
desiccator prior to use.

2.3. Characteristics of Tangerine Peel Biochars

Total carbon (C), nitrogen (N), and hydrogen (H) contents of the pristine and chemical
activated tangerine peel biochars were analyzed using a CHN element analyzer (Flash 2000,
Thermo Fisher, Waltham, MA, USA). The average pore size (nm) and specific surface
area (m2 g−1) were measured using a Brunauer–Emmett–Teller (BET; BELSORP-mini
II, Microtrac BEL, Osaka, Japan) analyzer. An X-ray diffractometer (XRD; D/Max-2500,
Rigaku, Tokyo, Japan) was used to analyze the surface crystallinity of TB, CTB, and
FTB. The surface morphologies of TB, CTB, and FTB were observed using a ultra-high
resolution scanning electron microscope (UH-SEM; S-4800, Hitachi, Tokyo, Japan), and the
atomic-resolution chemical mapping of calcium and iron ions were identified using energy-
dispersive X-ray spectroscopy (EDX; Link ISIS 300, Oxford Instruments, Abingdon, UK).

2.4. Adsorption Experiments
2.4.1. Optimal Dosage

The adsorption of PO4
3− was examined to determine the optimal adsorbent dosages

of TB, CTB, and FTB. Each adsorbent dosage (TB = 0.2–2.0 g L−1; CTB = 0.2–12 g L−1;
FTB = 0.2–2.0 g L−1) was added to Erlenmeyer flasks containing 25 mL of the PO4

3− solu-
tion (initial concentration = 1 mg L−1, pH = 7.0) The sample solutions were stirred at 25 ◦C
and 150 rpm for 24 h using a shaking incubator (VS-8480, Vision Scientific, Daejeon-Si,
Korea). Upon completing the adsorption experiment, the sample solutions were filtered
using a glass fiber filter (GF/F, Whatman, Maidstone, UK) with a nominal pore size of
0.7 µm to remove adsorbents. The PO4

3− concentration was analyzed at UV absorbances
of 880 nm using the ascorbic acid method (UV-Vis Spectrophotometer, UV-1280, Shimadzu,
Kyoto, Japan) [30]. The experiment was performed in triplicate to minimize errors.

2.4.2. Adsorption Kinetics

The adsorption kinetics was conducted by adding the optimal dosage of each TB,
CTB, and FTB to Erlenmeyer flasks containing 25 mL of the PO4

3− solution (initial
concentration = 1 mg L−1, pH = 7.0). The sample solutions were stirred at 150 rpm during
a certain period (0.5–48 h) at 25 ◦C in a shaking incubator. After the adsorption kinetics
experiment, the sample solutions were filtered using GF/F. The concentrations of PO4

3− at
the initial and equilibrium states were measured using a UV-Vis spectrophotometer. The
experiment was performed in triplicate to minimize errors. All adsorption experiments
are repeated three times to minimize errors. The amount of PO4

3− adsorbed per unit mass
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of the TB, CTB, and FTB at equilibrium, Qe (mg g−1), was calculated using the following
Equation (1):

Qe =
(C0 − Ce)V

M
(1)

where V is the volume of the solution (L). C0 and Ce are the initial and equilibrium
concentrations of PO4

3− solution (mg L−1), and M (g) is the mass of the used adsorbent.
The PO4

3− removal efficiency was calculated using Equation (2):

Removal e f f iciency o f phosphate ions (%) =
(C0 − Ce)V

C0
× 100 (2)

The PO4
3− adsorption characteristics and adsorption capacity of each TB, CTB, and

FTB were investigated using the following Equations (3) and (4) [31]:

Pseudo-first-order model : Qt = Qe

(
1− e−k1t

)
(3)

Pseudo-second-order model : Qt =
k2Q2

e t
1 + k2Qet

(4)

where Qt (mg g−1) is the amount of the adsorbed PO4
3− on the TB, CTB, and FTB at the

time t, t (min) is the adsorption time. k1 (min−1) is the constant of the pseudo-first-order
model and k2 (g mg−1·min) is the constant of the pseudo-second-order model.

2.4.3. Adsorption Isotherm

To investigate the adsorption isotherm of PO4
3− by TB, CTB, and FTB, the ad-

sorption isotherm experiment was performed by adjusting the PO4
3− concentrations

(0.5–10 mg L−1) and adding each optimal adsorbent dosage under controlled conditions
(agitation speed = 150 rpm, contact time = 24 h, pH = 7.0, and temperature = 25 ◦C). The
adsorption isotherm results were analyzed using the Langmuir isotherm and Freundlich
isotherm models [32].

Langmuir Isotherm : Qe =
QmaxKLCe

1 + KLCe
(5)

where Qmax (mg g−1) is the maximum adsorption capacity in the Langmuir isotherm model,
and KL (L mg−1) is the equilibrium constant of the linearized Langmuir isotherm model.
RL = 1/(1 + KLC0), derived from KL, can be used to compare the adsorption affinity of
Langmuir isotherms [33]:

Freundlich isotherm : Qe = KFC1/n
e (6)

where KF (mg−1/nL1/n g−1) is the Freundlich isotherm adsorption constant related to the
relative maximum adsorption capacity, and n is the dimensionless adsorption intensity.

2.4.4. Effects of pH and Ionic Strength

The effects of pH and ionic strength on the adsorptions of the PO4
3− by the TB, CTB,

and FTB were evaluated by adjusting solution pH (pH = 3.0–9.0) and ionic strengths
(ionic strength = 0–0.5 M) using 0.1 N HCl and 0.1 N NaOH, and NaCl, respectively
(initial concentration of PO4

3− solution = 1 mg L−1, agitation speed = 150 rpm, contact
time = 24 h). The removal efficiencies of PO4

3− using TB, CTB, and FTB were calculated by
Equation (2).

2.4.5. Effects of Temperature

The effects of the temperature of the solution on the PO4
3− removal efficiency of the

TB, CTB, and FTB were performed under various temperature (15–35 ◦C) conditions (initial
concentration of PO4

3− solution = 1 mg L−1, agitation speed = 150 rpm, contact time = 24 h,
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and pH 7.0). The removal efficiencies of PO4
3− using TB, CTB, and FTB were followed by

Equation (2).
The thermodynamic parameters of the PO4

3− adsorption are calculated using the
following Equations (7)–(9) [34]:

Kd =
Qe

Ce
(7)

∆G
◦
= −RTln(1000Kd) (8)

ln(1000Kd) =
∆S

◦

R
− ∆H

◦

RT
(9)

where Kd (L g−1) is the partition coefficient. ∆G◦ in (kJ mol−1), ∆H◦ in (kJ mol−1), and ∆S◦

in (J mol−1·K) are the Gibbs free energy, enthalpy, and entropy, respectively. R is the ideal
gas constant (8.314 J mol−1·K), and T is the absolute temperature (K). ∆H◦ and ∆S◦ were
calculated as the slope and intercept in the linear graph of ln Kd and 1/T, respectively.

3. Results and Discussions
3.1. Characterization of TB, CTB, and FTB
3.1.1. Elemental Composition and Functionality Analyses

The elemental composition (i.e., C, H, O, and N) and surface properties (i.e., specific
surface area pore volume and average pore size) of TB, CTB, and FTB associated with the
adsorption capacity of PO4

3− are presented in Table 1. Although the H (TB: 1.50%, CTB:
1.94%, and FTB: 1.63%) and N (TB: 2.09%, CTB: 1.31%, and FTB: 1.05%) contents of TB, CTB
and FTB were similar, CTB and FTB had lower C (CTB: 69.42% and FTB: 53.81%) content
and higher O (CTB: 7.61% and FTB: 8.39%) content than those of TB (C content = 81.12%,
O content = 4.40%). The atomic ratios of H/C, O/C, and (O + N)/C are generally distin-
guished for carbonization, surface hydrophobicity, and polarity, respectively [35]. The CTB
and FTB showed higher values of the H/C (CTB: 0.34 and FTB: 0.36), O/C (CTB: 0.08 and
FTB: 0.12), and (O + N)/C (CTB: 0.10 and FTB: 0.12) ratios compared to the TB (H/C = 0.22,
O/C = 0.04, and (O + N)/C = 0.06). These results showed that FTB contained relatively less
aromatic functional groups than those of TB and CTB [36]. Furthermore CTB and FTB exhib-
ited larger specific surface areas (TB = 9.21 m2 g−1; CTB = 342.11 m2 g−1; 558.71 m2 g−1),
larger pore volumes (TB = 0.01 cm3 g−1; CTB = 0.36 cm3 g−1; FTB = 0.18 cm3 g−1), and
smaller average pore sizes (TB = 6.07 nm; CTB = 3.67 nm; FTB = 3.64 nm) compared
with TB, indicating that activation process with CaCl2 and FeCl3 was effective in improv-
ing the physicochemical characteristics of the tangerine peel biochars related to PO4

3−

adsorption [37].

Table 1. The physicochemical properties of TB, CTB, and FTB.

Properties TB CTB FTB

C (%) 81.12 69.42 53.81
H (%) 1.50 1.94 1.63
O (%) 4.40 7.61 8.39
N (%) 2.09 1.31 1.05

Ash (%) 10.89 19.72 35.12
H/C 0.22 0.34 0.36
O/C 0.04 0.08 0.12
N/C 0.02 0.02 0.02

PO4
3− (mg L−1) a 0.019 ± 0.001 0.047 ± 0.001 0.009 ± 0.002

SBET (m2 g−1) 9.21 342.11 558.71
Pore volume (cm3 g−1) 0.01 0.36 0.18

Pore size (nm) 6.07 3.67 3.64
a: n = 3.

The functional groups of TB, CTB, and FTB are revealed by FT-IR analysis (Figure 1).
The main differences between TB and chemical activated TB (i.e., CTB and FTB) are the
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existence of C=O stretching of esters and -COO carboxylates. These functional groups
might enhance the adsorption capacities of the phosphate ions using CTB and FTB by
working as an electron acceptor [38,39].
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Figure 1. The FT-IR spectra of TB, CTB, and FTB.

3.1.2. UH-SEM-EDX and XRD Analyses

The surfaced morphologies of TB, CTB, and FTB are shown in Figure 2. The surfaces
of the CTB (Figure 2b) and FTB (Figure 2c) exhibited much coarser compared to the surface
of TB (Figure 2a). These observations are in agreement with the result of measuring the
specific surface area using BET. Figure 3 shows the EDX mapping images of the TB, CTB,
and FTB surfaces. The surface of TB was mostly composed of carbon (Figure 3a), whereas
calcium and iron salts were evenly distributed on the surfaces of CTB and FTB (Figure 3b,c).
Moreover, the results of EDX mapping were in good agreement with the atomic percentage
of elements in TB, CTB, and FTB (Table 2). These observations indicate that calcium and
iron salts were successfully impregnated in the surface of the tangerine peel biochars
through pretreatment with CaCl2 and FeCl3.
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Table 2. Atomic percentage of elements in TB, CTB, and FTB.

Element
Atomic (%)

TB CTB FTB

C 69.85 55.68 72.26
Ca 29.67 42.71 -
Fe - - 21.38
Cl - 1.61 6.36

Mg 0.48 - -
Total 100.00 100.00 100.00

The crystallinities of TB, CTB, and FTB were analyzed using XRD (Figure 4). The
XRD peaks of TB related to graphite and quartz (SiO2) were found at 2θ = 23◦ and 43◦,
respectively [40]. The XRD peaks of CTB and FTB related to calcium and iron species (e.g.,
CaCO3, MgFe2O4) were found (CaCO3 at 2θ = 35◦, 57◦, and 65◦; MgFe2O4 at 2θ = 30◦, 35◦,
43◦, 57◦, and 63◦) [41]. These findings were in good agreement with the SEM-EDX analysis
results of TB, CTB, and FTB.
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Figure 4. The XRD of TB, CTB, and FTB.

3.2. Effects of Tangerine Peel Biochar Dosage

The adsorbent dosage is one of the critical factors which affect the adsorption of PO4
3−.

Figure 5 presents the effects of the dosages of TB, CTB, and FTB on the removal efficiency of
PO4

3−. In the case of TB, the removal efficiency of PO4
3− decreased as the adsorbent dosage

was increased beyond 0.6 g·L−1. These results indicated that the decreased adsorption
capacity of TB for PO4

3− was caused by reducing the total number of binding sites on
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TB surfaces due to the aggregation of TB particles as increasing adsorbent dosage [42].
However, the removal efficiencies of the PO4

3− by CTB and FTB increased with the dosage
increase. These results indicated that the activated binding sites of the adsorbents capable
of PO4

3− adsorption increased with increasing dosage [43]. Furthermore, FTB was more
effective in removing PO4

3− than that of CTB because the binding capacity of iron salts
is higher than that of calcium [44]. Based on these experiments on the PO4

3− removal
efficiency according to the TB, CTB, and FTB dosages, 0.6 g·L−1 was selected as the optimal
dosage and applied to subsequent experiments.
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Figure 5. The effects of adsorbent doses on the removal efficiency of PO4
3− by (a) TB, (b) CTB and (c) FTB (PO4

3− = 1 mg L−1;
agitation speed = 150 rpm; temperature = 25 ◦C; contact time = 24 h; pH = 7.0).

3.3. Adsorption Kinetics

Figure 6 shows the adsorption kinetics of PO4
3− by TB, CTB, and FTB. The adsorption

process of PO4
3− is comprised of fast and slow reaction stage. The fast adsorption reaction

was completed in about 0.5 h for TB, CTB, and FTB as the activated sites on the surface of
the biochars were saturated.
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Figure 6. The adsorption kinetics of PO4
3− onto the TB, CTB, FTB (adsorbent dose = 0.6 g L−1;

PO4
3− = 1 mg L−1; agitation speed = 150 rpm; temperature = 25 ◦C; contact time = 24 h; pH = 7).

The fast adsorption reaction was completed in about 0.5 h for TB, CTB, and FTB as the
activated sites on the surface of the biochars were saturated. The TB (Qe,exp = 0.104 mg g−1)
and CTB (Qe,exp = 0.354 mg g−1) with relatively low removal efficiency compared to FTB,
adsorption equilibrium was reached after 2 h. However, the adsorption equilibrium
of FTB (Qe,exp = 1.655 mg g−1) was completed in 18 h due to many activated sites on
the surface [45]. Table 3 presents the results of calculating the constant and correlation
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coefficient of adsorption kinetics. The adsorption of PO4
3− by TB, CTB, and FTB was well

fitted for the pseudo-second-order model (R2 = 0.999) than the pseudo-first-order model
(R2 ≥ 0.929). These results indicated that the adsorption of TB, CTB, and FTB is caused by
chemical adsorption [46].

Table 3. The kinetic parameters for the removal of the PO4
3− using TB, CTB, and FTB.

Adsorbents
Qe, exp

(mg g−1)

Pseudo-First-Order Pseudo-Second-Order

Qe, cal
(mg g−1) k1 R2 Qe, cal

(mg g−1) k2 R2

TB 0.104
±0.004

0.020
±0.002

0.115
±0.012 0.990 0.105

±0.020
19.73
±4.420 0.999

CTB 0.354
±0.002

0.103
±0.003

0.186
±0.012 0.975 0.357

±0
5.25
±0.620 0.999

FTB 1.655
±0.001

0.579
±0.001

0.131
±0.002 0.929 1.679

±0.024
0.734
±0.120 0.999

3.4. Adsorption Isotherms

The adsorption behaviors of PO4
3− by the TB, CTB, and FTB were examined using

the Langmuir and Freundlich adsorption isotherm models (Table 4). The adsorption of
PO4

3− by TB was well fitted to the Freundlich isotherm model with the high R2 values
(R2 of Langmuir isotherm = 0.887; R2 of Freundlich isotherm = 0.975). This is evidence
that the multilayer adsorption played a critical role in removing the PO4

3− toward the
heterogeneous surfaces of the TB [47]. For the CTB and FTB, the adsorption of PO4

3−

followed both Langmuir (R2 of CTB = 0.889; R2 of FTB = 0.987) and Freundlich (R2 of
CTB = 0.955; R2 of FTB = 0.912) isotherm models. These observations could explain that
the chemical activation with CaCl2 and FeCl3 might change the adsorption mechanism
(i.e., multilayer adsorption→monolayer adsorption) of PO4

3− by the TB. A similar result
was previously observed for the removal of the pharmaceuticals with NaOH-activated
biochars [48]. The adsorption affinities of PO4

3− to the TB, CTB, and FTB were evaluated
using the n values (dimensionless adsorption intensity) of the Freundlich isotherm model:
(i) n > 1.0 (favorable), (ii) n = 1.0 (linear), and (iii) n < 1.0 (unfavorable) [49]. The adsorption
of PO4

3− by TB (n value = 0.766) was unfavorable, whereas the adsorptions of PO4
3− by

CTB (n value = 1.523) and FTB (n value = 7.530) were favorable. The RL value (maximum
adsorption capacity; RL = 1/(1 + KLC0)) of the Langmuir isotherm model: (i) RL = 0
(irreversible), (ii) 1 > RL > 0 (favorable), (iii) RL = 1 (linear), and (iv) RL > 1 (unfavorable),
was assessed to the adsorption affinities of PO4

3− toward TB, CTB, and FTB [50]. The
adsorption of PO4

3− by FTB (RL = 0.209) followed the Langmuir isotherm model and
seemed to be favorable for the monolayer adsorption [51]. Moreover, these results are
comparable to the maximum adsorption capacity (mg g−1) calculated using different
adsorbents as shown in Table 5.

Table 4. The isotherm parameters for the removal of the PO4
3− using TB, CTB, and FTB.

Adsorbents

Langmuir Freundlich

Qmax
(mg g−1)

KL
(L mg−1) R2 n KF

(mg1−1/nL1/n g−1) R2

TB 1.540
±0.035

0.080
±0.004 0.887 0.766

±0.022
0.139
±0.002 0.975

CTB 3.608
±0.011

0.173
±0.013 0.889 1.523

±0.003
0.539
±0.007 0.955

FTB 5.434
±0.035

3.786
±0.140 0.987 7.530

±0.257
3.680
±0.084 0.912



Separations 2021, 8, 32 10 of 14

Table 5. Summary of available results related to PO4
3− adsorption by biochars.

Biomass Pyrolysis
Temperature (◦C)

Application
Matrix

Modification
Method

Initial Concentration
(mg L−1)

Adsorption Capacity
(mg g−1) References

Mixed hardwood 300 Aqueous solution - 24 0.48 [52]

Corn straw 500 Aqueous solution FeSO4 7.5 7.35 [53]

Ground corn 600 Aqueous solution MgCl2 84 7.5 [27]

Cotton stalks 350 Aqueous solution FeCl3 20 0.96 [28]

Tangerine peels 800 Aqueous solution CaCl2 1
3.61 This study

FeCl3 5.43

3.5. Effects of pH on Adsorption of PO4
3−

Figure 7 illustrates the effect of pH (pH = 3–9) on the adsorption of PO4
3− using TB,

CTB, and FTB. It was presented that the removal efficiency of PO4
3− by TB, CTB, and FTB

was not significantly affected by the pH change (removal efficiency of TB = 10.9–12.1%;
removal efficiency of CTB = 25.1–29.8%; removal efficiency of FTB = 93.3–99.4%). These
results indicated that TB, CTB, and FTB could be used to effectively remove PO4

3− from
wastewater with a wide range of pH [54].
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Figure 7. The effects of pH on the removal efficiency of PO4
3− by TB, CTB and FTB (adsorbent

dose = 0.6 g L−1; PO4
3− = 1 mg L−1; agitation speed = 150 rpm; temperature = 25 ◦C; contact time = 24 h).

3.6. Effects of Ionic Strength on Adsorption of PO4
3−

The effects of ionic strength (ionic strength = 0–0.5 M) on the adsorption of PO4
3−

by TB, CTB, and FTB are shown in Figure 8. The removal efficiency of PO4
3− by TB

was not significantly affected by the ionic strength change (the removal efficiency of
PO4

3− = 9.7%→10.5%). However, the removal efficiencies of PO4
3− using the CTB and

FTB were gradually decreased with increasing ionic strengths (CTB: the removal efficiency
of PO4

3− = 25.2%→14.8%; FTB: the removal efficiency of PO4
3− = 98.8%→55.1%). These

observations suggested that increases in ionic strength might reinforce the electrostatic
repulsion between PO4

3− and adsorbent surfaces, and activated adsorption sites on the
surface might be reduced due to the compression of the electrical double layer on the
adsorbent surfaces [55].
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Figure 8. The effects of ionic strength on the removal efficiency of PO4
3− by TB, CTB and FTB

(adsorbent doses = 0.6 g L−1; PO4
3− = 1 mg L−1; agitation speed = 150 rpm; contact time = 24 h;

pH = 7.0).

3.7. Effects of Temperature and Thermodynamic Analysis

The effects of the temperature on the removal efficiencies of the PO4
3− by TB, CTB,

and FTB are compared in Figure 9 (temperature = 15–35 ◦C). The adsorption of PO4
3− on

the CTB gradually increased with increasing temperature (Figure 9, the removal efficiency
of CTB = 18.2%→37.5%). A possible explanation for these results is that increasing tem-
perature cause more strong intermolecular motion and PO4

3− diffusion rate to the surface
of CTB, which promoted the adsorption of PO4

3− on the CTB [56]. However, the removal
efficiencies of PO4

3− by TB and FTB were not significantly affected by the temperature
change (removal efficiency of TB = 7.3–7.9%; removal efficiency of FTB = 98.2–100.0%).
Table 6 shows the values of the thermodynamic parameters (∆G◦, ∆H◦, and ∆S◦) for PO4

3−

removal by TB, CTB, and FTB according to the temperature (15–35 ◦C). The ∆G◦ < 0 and
∆H◦ > 0 suggested that the adsorption of PO4

3− on the TB, CTB, and FTB was a sponta-
neous and endothermic reaction [57,58]. Furthermore, ∆S◦ > 0 indicated that the adsorption
of PO4

3− on the TB, CTB, and FTB was irreversible, which was conducive to the adsorption
stability [56].
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Figure 9. The effects of temperature on the removal efficiency of PO4
3− by TB, CTB and FTB

(adsorbent doses = 0.6 g L−1; PO4
3− = 1 mg L−1; agitation speed = 150 rpm; contact time = 24 h;

pH = 7.0).
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Table 6. The thermodynamic parameters of PO4
3− adsorption onto TB, CTB, and FTB.

Adsorbents
Thermodynamic Parameters

Temperature
(K)

∆G◦

(kJ mol−1)
∆H◦

(kJ mol−1)
∆S◦

(J mol−1 K)

TB

288 −11.650
±0.311 0.016

±0.001
0.024
±0.005298 −12.082

±0.111

308 −12.704
±0.241

CTB

288 −14.161
±0.168 0.001

±0.0005
0.107
±0.001298 −15.322

±0.014

308 −17.688
±0.074

FTB

288 −18.996
±0.321 0.001

±0.0008
0.039
±0.015298 −27.330

±0.713

308 −30.418
±1.782

4. Conclusions

This study verified that pretreatment with CaCl2 and FeCl3 could improve the surface
characteristics of tangerine peel biochars related to the adsorption behaviors of PO4

3−.
The FTB might more effectively remove the PO4

3− (Qe, exp = 1.655 mg g−1) than TB
(Qe, exp = 0.104 mg g−1) and CTB (Qe, exp = 0.354 mg g−1) due to the considerable enhance-
ment of the physicochemical characteristics (specific surface area and surface characteris-
tics). The removal efficiencies of PO4

3− by TB (R2 = 0.975) and CTB (R2 = 0.955) were more
suitable for the Freundlich adsorption model (multilayer adsorption) and the FTB was well
fitted to the Langmuir adsorption model (R2 = 0.987, monolayer adsorption). Furthermore,
the thermodynamic analysis presented that the adsorption of PO4

3− for the FTB was more
spontaneously endothermic than that for the TB and CTB under various pH and ionic
strength conditions. These results are evidence that the chemical activation with FeCl3
might be a promising option to make the pristine tangerine peel biochar practically more
relevant for the removal of PO4

3− in the aqueous solutions.
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