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Abstract: This paper describes artificial neural network (ANN) based prediction of the 
response of a fiber optic sensor using evanescent field absorption (EFA). The sensing 
probe of the sensor is made up a bundle of five PCS fibers to maximize the interaction of 
evanescent field with the absorbing medium. Different backpropagation algorithms are 
used to train the multilayer perceptron ANN. The Levenberg-Marquardt algorithm, as 
well as the other algorithms used in this work successfully predicts the sensor responses. 
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1. Introduction 
 
Evanescent field absorption (EFA) has been widely employed by some researchers for sensing of 

chemical and biological parameters over the past two decades [1, 2]. Typical applications include 
sensing of chemical species such that pH [3,4], concentration [5], humidity [6], gas [7], combustible 
liquids [8] and as biosensors [9]. 

EFA sensing mechanism utilized by fiber optic sensors is based on the absorption of the light 
carried by the evanescent field that coexists in the fiber cladding. In EFA fiber sensors the core is 
surrounded by an absorptive cladding that consists of a liquid [10, 11] or a sol-gel material [3, 12] that 
include an absorbing dye, since most chemical materials are not able to absorb the optical power 
directly. The effect to be sensed can be related to the power change because absorbing dye causes 
attenuation in the optical power. 
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In the last decade, ANNs became popular because they have ability to learn, fast real-time 
operation and ease of implementation features [13-15]. These features made ANNs useful for optical 
fiber technology especially to extend measurement range [16-18], calibration [19], signal processing 
[20, 21] and development of intelligent fiber optic sensors [22]. 

In this work, we have used the output power of an EFA fiber sensor made up a PCS fiber bundle. 
Then we have used a canonical variable incorporating the sensor’s and absorbing dye’s parameters to 
predict the response of the sensor by the aim of ANN because it can produce proper outputs for given 
inputs without any necessity to mathematical formulations between input and output data. 
 
2. EFA Sensor Measurements 

 
The sensing process based on EFA has been performed by using the arrangement in Figure 1 [23]. 

The sensor is adopted from a spectrophotometer, WPA S105, in which white light is created by a pre-
focusing incandescent lamp and reaches a diffraction grating by reflecting off a mirror. The diffraction 
grating is attached to a rotating rod and acts as a monochromator to set the wavelength required. Thus, 
a wavelength selectable sensor is obtained.  

 
Figure 1. The arrangement for evanescent field absorption sensor [23]. 
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The sensing element was a bundle that consists of five plastic cladding silica (PCS) fibers as 

shown in Figure 2. The PCS fibers are especially suitable for evanescent field applications in chemical 
sensing because plastic claddings can easily be removed by mechanically or chemically and replaced 
by a suitable medium. The use of the bundle for sensing purposes doesn’t affect the sensitivity because 
the input and output power of the sensor will increase a factor of the fiber number in the bundle. 
However, the bundle not only improves the coupling of the light into the fibers, but also increases the 
interaction surface, and makes the detection of the light at the bundle output better. The fibers in the 
bundle are separated at the sensing region to allow the whole of the evanescent field of each fiber in 
the bundle is accessed by the external solution. In this work, claddings of the PCS fibers in the bundle 
were mechanically removed in order to maximize the interaction between the evanescent field, which 
is created by the total internal reflection, and the chemical to be sensed. A fiber in the bundle, forming 
the sensing region, is shown in Figure 3. 
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Figure 2. The PCS fiber in the bundle (PCS200A, Quartz&Silice, France). 
 
 
 
 
 
 
 
 
 
 
 
For absorption measurements, Bromophenol Blue (BPB) indicator dye filled into the cuvette was 

used for absorbing cladding material. BPB is an indicator dye whose color is blue near pH 7 and varies 
by changing the pH. The monochromator was adjusted at a wavelength of 590 nm since the BPB 
solution has an absorption peak near this wavelength. 

 
Figure 3. The geometry of the sensing region. 
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The sensor response (Pout /Pin) has been measured for different BPB concentrations by using the 
arrangement given in Figure 1 and results are given in Figure 4. In the figure, γ  is a canonical variable 
incorporating the sensor parameters and given by [24, 25], 

 
V

lαγ 2
=  (1) 

where α is the bulk absorption coefficient of the chemical solution, l is the interaction length of the 
light with the chemical solution, and V, the normalized frequency, is a dimensionless waveguide 
parameter of the fiber. 
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Figure 4. The sensor response (Pout /Pin) in terms of γ [23]. 
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The normalized frequency of the fiber is an important parameter for sensitivity purposes in EFA 

sensors because it plays an important role the amount of the evanescent field. Simply, the smaller the 
normalized frequency, the more evanescent field the fiber has. Therefore, in order to ensure a 
detectable interaction between the evanescent field and the indicator dye, the normalized frequency 
must be as small as possible. This can be achieved by the longer wavelength, the smaller fiber core 
diameter and the smaller relative refractive-index difference between the core and cladding [24, 25].  

 
3. Artificial Neural Networks (ANNs) 

 
Artificial neural networks (ANNs) are one of the popular branches of artificial intelligence [13-15, 

26]. They have very simple neuron-like processing elements (called nodes or artificial neurons) 
connected to each other by weighting. The weights on each connection can be dynamically adjusted 
until the desired output is generated for a given input. An artificial neuron model consists of a linear 
combination followed by an activation function. Different types of activation functions can be utilized 
for the network; however the common ones, which are sufficient for most applications, are the 
sigmoidal and hyperbolic tangent functions. In most of the application, hyperbolic tangent transfer 
function is a better representation compared to sigmoid transfer function.  

Amongst the different types of connections for artificial neurons, feed forward neural networks are 
the most popular and most widely used models in various applications reported in the literature. They 
are also known as the multilayered perceptron neural networks (MLPNNs). In an MLPNN, neurons of 
the first layer send their output to the neurons of the second layer, but they do not receive any input 
back from the neurons of the second layer. 

The general structure of an MLPNN is given in Figure 5 and consists of three layers: an input 
layer, with a number of neurons equal to the number of variables of the problem, an output layer, 
where the Perceptron response is made available, with a number of neurons equal to the desired 
number of quantities computed from the inputs, and an intermediate or hidden layer. While an 
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MLPNN consisting of only the input and the output layers provide satisfaction for linear problems, 
additional intermediate layers are required in order to approximate nonlinear problems. For example, 
all problems which can be solved by a perceptron can be solved with only a hidden layer, but it is 
sometimes more efficient to use two (or more) hidden layers. 
 

Figure 5. General structure of an MLPNN. 

 
The only task of the neurons in the input layer is to distribute the input signal xi to neurons in the 

hidden layer. Each neuron j in the hidden layer sums up its input signals xi after weighting them with 
the strengths of the respective connections wji from the input layer and computes its output yj as a 
function f of the sum, given by 

 ( )∑= ijij xwfy  (2) 

where f can be a simple threshold function such as a sigmoid, or a hyperbolic tangent function. The 
output of neurons in the output layer is computed in the same manner. Following this calculation, a 
learning algorithm is used to adjust the strengths of the connections in order to allow a network to 
achieve a desired overall behavior. 

There are many types of learning algorithms in the literature [13-15, 26]. However, it is very 
difficult to know which training algorithm will be more efficient for a given problem. The algorithms 
used to train ANNs in this study are Levenberg–Marquardt Backpropagation (LM), Scaled Conjugate 
Gradient Backpropagation (SCG), Broyden Fletcher Goldfarb Shanno Quasi-Newton Backpropagation 
(BFGS), Bayesian Regularization Backpropagation (BR), and Conjugate Gradient Backpropagation 
with Polak-Ribiére updates (CGP). 

The LM algorithm is an iterative technique locating a local minimum of a multivariate function 
that is expressed as the sum of squares of several non-linear, real-valued functions and updates weight 
and bias values according to Levenberg-Marquardt optimization. The SCG which is a member of the 
class of conjugate gradient methods is a supervised learning algorithm for feedforward neural 
networks. The BFGS is one of the most powerful and sophisticated quasi-Newton methods and has the 
advantage over Newton’s method that the second partial derivatives are not needed. The BR algorithm 
updates the weight and bias values according to LM optimization and minimizes a combination of 
squared errors and weights, and then determines the correct combination so as to produce a network 
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that generalizes well. The CGP algorithm is a network training function that updates weight and bias 
values according to the conjugate gradient backpropagation with Polak-Ribiere updates. More details 
about the ANNs and learning algorithms can be found in the literature [13-15, 26]. 
 
4. Application of ANN and Results 

 
An MLPNN consisting of one input, two hidden layers and one output was used to predict the EFA 

sensor response. The input and output variables of the network are γ and Pout/Pin, respectively and the 
prediction process can be defined as follows: α is a measurable coefficient for a given solution. l is an 
adjustable length for a sensor configuration and V can be calculated by using optical fiber parameters 
and the wavelength of the optical source. Consequently, γ  is a known parameter and can be used for 
the prediction of the sensor response. A training dataset consisted of randomly selected γ  vs. Pout/Pin is 
applied to the network and the network is trained. By using the weights obtained after training, the 
new responses are then estimated for unseen γ  values. 

 
Figure 6. An example of the networks proposed in this work. 

 

 
 
Figure 6 shows an example of the networks, the model with LM algorithm, proposed in this work. 

The model consists of one neuron in the input layer, three and five neurons in the first and the second 
hidden layers, respectively, and one neuron in the output layer. Each network is trained with nine 
dataset normalized between -1 and +1 before the training. A hyperbolic tangent transfer function is 
used as activation function in hidden layers and a linear one is used in output layer. The performance 
of the algorithms used in the network is compared in terms of their mean square errors (MSEs). 
Training times of the all networks used in this work are shorter than three seconds. The network types 
and resulted MSEs are given in Table 1. Training results given in Table 1 show that the ANN model 
with the BR algorithm has the best performance with the smallest MSE value although it has the 
minimum number of the neurons. 

The prediction performances of the ANN models are tested with five experimental points obtained 
from the sensor described in Section 2. The comparisons of the sensor responses and the network 
outputs are given in Table 2. It can be seen from the table that the ANN model with the LM algorithm 
has the smallest MSE value. The best (LM) and the worst (SCG) ANN outputs with respect to MSEs 
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are graphically compared with the experimental results in Figure 7. The figure points out that there is a 
measurement error at the 0.4288 of γ.  

 
Table 1. The training algorithms, artificial neuron numbers and resulted MSEs. 

 

Algorith
m 

Number of Artificial Neurons 
MSE Input 

Layer 
Hidden 

Layer - I 
Hidden 

Layer - II 
Output 
Layer 

LM 1 3 5 1 1.85E-07 
SCG 1 2 5 1 9.98E-07 
BFGS 1 5 4 1 6.25E-07 
BR 1 2 2 1 1.10E-07 
CGP 1 4 4 1 3.55E-07 

 
Table 2. Comparisons of the sensor responses and the network outputs. 

 

γ 
Sensor 

Response 
ANN Model Outputs 

LM SCG BFGS BR CGP 
0.7328 0.84 0.83269 0.84053 0.84139 0.83967 0.84130 
0.4288 0.88 0.86355 0.85874 0.87051 0.85924 0.86277 
0.2035 0.90 0.89983 0.90008 0.89909 0.90004 0.90058 
0.1290 0.92 0.92003 0.91987 0.91944 0.91996 0.92030 
0.0653 0.94 0.93748 0.93000 0.92248 0.93843 0.93089 
 MSE 0.04389 0.07333 0.05316 0.05762 0.05072 

 

Figure 7. Comparisons of the best and the worst ANN outputs with the sensor responses. 
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If the percentage errors with respect to the experimental results are calculated for another 
performance comparison, it can be seen that the models with BR and LM have the smallest maximum 
percentage, errors being smaller than 2.0 (the maximum errors of the other models are smaller than 
2.5).  

For the discussion of influence of neuron numbers in the hidden layers on MSE and the sensor 
response, we trained the networks with the same neuron numbers and the same initial weights by using 
the model given in Figure 6. The network outputs and resulted MSEs are given in Table 3. As can be 
seen from the table, the BR algorithm produces improper outputs for these conditions. It can be said 
that the network parameters such as the neuron numbers, the number of hidden layers, the activation 
functions and the initial weights are peculiar to the algorithm and a change in one of these parameters 
can cause important changes at the outputs. 

 
Table 3. Performance comparisons of the networks for the model given in Figure 6. 

 

γ 
Sensor 

Response 
ANN Model Outputs 

LM SCG BFGS BR CGP 
0.7328 0.84 0.83269 0.83450 0.83705 0.87837 0.83797 
0.4288 0.88 0.86355 0.86220 0.85763 0.87837 0.85642 
0.2035 0.90 0.89983 0.90040 0.89922 0.87837 0.89999 
0.1290 0.92 0.92003 0.91970 0.91939 0.87837 0.91948 
0.0653 0.94 0.93748 0.92560 0.92164 0.87837 0.92300 
 MSE 0.04389 0.0738 0.1125 0.9929 0.1129 

 
 
5. Conclusions 

 
An artificial neural network approach has been introduced in this paper to predict the response of 

an evanescent field absorption fiber sensor. Performance comparisons show that all of the neural 
models used in this work can predict the sensor responses with considerable errors. It is useful to note 
that, the neural network approaches can tolerate measurement errors. In conclusion, the artificial 
neural network approaches can play an important role in the design and development of intelligent 
sensors. 
 
References 
 
1.    DeGrandpre, M.D.; Burgess, L.W. Long path fiber-optic sensor for evanescent field absorbance 

measurements. Anal. Chem. 1988, 60, 2582-2586. 
2.    Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors. Anal. Chem. 2006, 78, 3859-3874. 
3.    Gupta B. D.; Sharma D. K. Evanescent wave absorption based fiber optic pH sensor prepared by 

dye doped sol-gel immobilization technique. Opt. Comm. 1997, 140, 32-35. 



Sensors 2008, 8                            
 

 

1593

4.    Choudhury P.K.; Yoshino T. On the pH response of fiber optic evanescent field absorption sensor 
having a U-shaped probe: An experimental analysis. Optik-Int. J. Light Electron Opti. 2003, 114, 
13-18. 

5.    Lye P.G.; Boerkamp M.; Ernest A.; Lamb D.W. Investigating the sensitivity of PMMA optical 
fibres for use as an evanescent field absorption sensor in aqueous solutions. J. Phys. 2005, 15, 
262–269. 

6.    Khijwania S.K.; Srinivasan K.L.; Singh J.P. An evanescent-wave optical fiber relative humidity 
sensor with enhanced sensitivity. Sensors Actuat. B 2005, 104, 217–222. 

7.    Willer U.; Scheel D.; Kostjucenko I.; Bohling C.; Schade W.; Faber E. Fiber-optic evanescent-
field laser sensor for in-situ gas diagnostics. Spectrochim. Acta A: Mol. Biomol. Spectros. 2002, 
58, 2427-2432. 

8.    Santoyo A.T.; Shlyagina M.G.; Jimeneza F.J.M.; Oyarzabal L.N.R. Determination of the optimal 
wavelength for temperature independent detection of commercial gasoline with a polymer 
cladding optical fiber. Opt. Comm. 2007, 271, 386-390. 

9.    Bosch M.E.; Sánchez A.J.R.; Rojas F.R.; Ojeda C.B. Recent Development in Optical Fiber 
Biosensors. Sensors 2007, 7, 797-859. 

10. Wu Y.; Deng X.; Li F.; Zhuang X. Less-mode optic fiber evanescent wave absorbing sensor: 
Parameter design for high sensitivity liquid detection. Sensors Actuat. B 2007, 122, 127–133. 

11. Lee S.T.; Kumar R.D.; Kumar P.S.; Radhakrishnan P.; Vallabhan C.P.G.; Nampoori V.P.N. Long 
period gratings in multimode optical fibers: application in chemical sensing. Opt. Comm. 2003, 
224, 237–241. 

12. Cao W.; Duan Y. Optical fiber-based evanescent ammonia sensor. Sensors Actuat. B 2005, 110, 
252-259. 

13. Haykin, S. Neural Networks: A Comprehensive Foundation (2nd ed.); Prentice-Hall: Englewood 
Cliffs, NJ, 1999. 

14. Kröse B.; Smagt P.V.D.  An introduction to Neural Networks; The University of Amsterdam: 
Amsterdam, 1996. 

15. Christodoulou C.G.; Georgiopoulos, M. Application of Neural Networks in Electromagnetics; 
Artech House: MA, USA, 2001. 

16. Brook, T.E.; Taib M. N.; Narayanaswamy, R. Extending the range of a fibre-optic relative-
humidity sensor. Sensors Actuat. B 1997, 39 272-276. 

17. Taib M.N.; Andres R.; Narayanaswamy R. Extending the response range of an optical fibre pH 
sensor using an artificial neural network. Anal. Chim. Acta 1996, 330, 31-40. 

18. Suah F.B.M.; Ahmad M.; Taib M.N. Optimisation of the range of an optical fibre pH sensor using 
feed-forward artificial neural network. Sensors Actuat. B 2003, 90, 175-181. 

19. Taib M.N.; Narayanaswamy R. Multichannel calibration technique for optical-fibre chemical 
sensor using artificial neural network. Sensors Actuat. B 1997, 39, 365-370. 

20. Yang Q.; Butler C. Sensor signal processing using neural networks for a 3-D fibre-optic position 
sensor. Sensors Actuat. A 1994, 41, 102-109. 

21. Tu Y.; Huang S. Two kinds of neural network algorithms suitable for fiber optic sensing array 
signal processing. Opt. Engin. 1996, 35, 2196-2202. 



Sensors 2008, 8                            
 

 

1594

22. Borecki M. Intelligent Fiber Optic Sensor for Estimating the Concentration of a Mixture-Design 
and Working Principle. Sensors 2007, 7, 384-399. 

23. Saraçoğlu Ö. G.; Özsoy S., Implementation of Evanescent Field Absorption Based pH Sensing 
using Fiber Optic Bundle. Proc. Elect. Electron. Comp. Engin. Symp. (in Turkish) 2000, 275-279. 

24. Payne F.P.; Hale Z.M. Deviation from Beer’s Law in multimode evanescent field sensors. Int. J. 
Optoelectron. 1993, 8, 743–748. 

25. Saracoglu O.G.; Ozsoy S. Simple equation to estimate the output power of an evanescent field 
absorption-based fiber sensor. Opt. Engin. 2002, 41, 598-600. 

26. http://www.mathworks.com/access/helpdesk_r13/help/toolbox/nnet/nnet.html 
 
© 2008 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes. 


