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Abstract: Metallic nanostructures (MNs) and metal-organic frameworks (MOFs) play a pivotal role by
articulating their significance in high-performance supercapacitors along with conducting polymers
(CPs). The interaction and synergistic pseudocapacitive effect of MNs with CPs have contributed
to enhance the specific capacitance and cyclic stability. Among various conjugated heterocyclic
CPs, polypyrrole (PPy) (prevalently knows as “synthetic metal”) is exclusively studied because of
its excellent physicochemical properties, ease of preparation, flexibility in surface modifications,
and unique molecular structure–property relationships. Numerous researchers attempted to im-
prove the low electronic conductivity of MNs and MOFs, by incorporating conducting PPy and/or
used decoration strategy. This was succeeded by fine-tuning this objective, which managed to get
outstanding supercapacitive performances. This brief technical note epitomizes various PPy-based
metallic hybrid materials with different nano-architectures, emphasizing its technical implications in
fabricating high-performance electrode material for supercapacitor applications.

Keywords: conducting polymers; cyclic voltammetry; electrode materials; metal oxides; polypyrrole;
supercapacitors; synthetic metal

1. Background

Modern advancements in the field of flexible electronics have been actively involved in
design strategies to replace conventional inorganic semiconductors by organic and hybrid
inorganic materials [1]. In this context, conjugated organic polymers, along with comple-
mentary metallic nanostructures (MNs), have been receiving much attention as promising
hybrid components for flexible electronics [2]. It was an exciting moment for the scientific
community in December 2000, as the pioneering joint research works of three scientists,
namely Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa, collectively received
the Nobel Prize in Chemistry for the discovery and the development of conductive poly-
mers (CPs), [3]. Due to ease of fabrication, mechanical robustness, chemical resistance,
excellent electrochemical properties, and comparatively high conductivity (>103 S cm−1),
these CPs have crucial importance in emerging energy storage device applications as an
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active material. In particular, to construct advanced energy storage systems (ESSs), such as
batteries and supercapacitors, functional CPs are directly incorporated as one of the energy
storage active materials in addition to inorganic hybrid nanocomposites [4,5].

Depending on the charge transfer mechanism, supercapacitors can be technically
categorized into two major types, namely (i) electric double layer supercapacitors (EDLCs)
and (ii) pseudocapacitors. In the former case, there is no redox process (non-Faradaic
charge transfer) involved, i.e., the charges are stored progressively in the electric double
layer formed at the electrode’s and electrolyte’s interface, whereas in the latter type, a series
of reversible and fast sequence of redox reactions (see Equation (1), note: n = integer and
e− = electron) (Faradaic charge transfer) can be noticed on the electroactive surfaces:

Oxidation product + n e− ↔ Reduction product (1)

Comparatively, pseudocapacitors can accumulate greater electrochemical storage elec-
tricity and demonstrate higher energy density than EDLCs (for an illustration, see Figure 1).
Accordingly, the synergistic and tunable complimenting properties of diverse nanoarchi-
tecture metal-organic frameworks (metal oxides/phosphides/sulfides) with conjugated
organic polymers, especially polypyrrole (PPy) derivatives, have found widespread appli-
cation in fabricating electrochemical sensors and energy storage technologies [6–9].

Figure 1. Schematic illustration of (a) electric double layer supercapacitors (EDLCs) and (b) redox
pseudocapacitors.

The pioneering research works on PPy from chemical, electrochemical routes by Boc-
chi and coworkers [10] and Gardini [11] was a remarkable invention, and it contributed
exceptional impact to PPy chemistry. Subsequently, plentiful research works are docu-
mented on PPy derivatives. In 2006, Akar and coworkers [12] documented optimized
polymerization parameters to achieve PPy and its block copolymers with conductivities
up to 4000 S cm−1. The authors claim that the properties of these block copolymers of
α,ω-diamine polydimethylsiloxane (DA·PDMS) and PPy can be regulated by adopting
ratio parameters to attain unique morphology with ceric ammonium nitrate as an oxidizing
agent [12]. Pyrrole is a sensitive organic compound known for its rapid aerial oxidation
to form autoxidized red tar compounds. The rapidity of aerial oxidation is even quicker
when the electronic donating groups are its substituents [13]. Despite its sensitiveness and
reactivity, pyrroles can skillfully be oxidized to achieve PPy. The unique electronic proper-
ties and conductivities of PPy were enough to share the title as “organic metal/synthetic
metal/metallic polymer” among other prominent conducting polymers [14].
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The literature survey reveals that PPy exists as conducting salt. Deprotonation reaction
is feasible after treatment with base, resulting in less conducting or insulating PPy base.
The researchers proposed that the molecular structure of deprotonated PPy could encompass
both reduced and oxidized forms of pyrrole subunit. Although the presence of polarons and
unpaired spins are identified using electron spin resonance (ESR) spectroscopy along with
localized positive charges on PPy, the hypothesis about conduction mechanisms is still in
contention. The molecular structures of conducting/insulating PPy and rearrangement of
electrons in PPy salt for the probable creation of polarons are sketched in Figure 2 [15–18].
Despite semiconducting properties, other CP families, such as polyaniline (PANi),
polythiophene (PT) and poly(3,4-ethylene dioxythiophene) (PEDOT), are also well-exhibited
pseudocapacitance behaviors. The controlled physicochemical/electrical properties and
ease of synthesis make them an ideal material for energy storage applications. To the
best of our knowledge, we are the first reporting a concise report that specifically reveals
PPy-based metal nanocomposite electrode materials for high-performance supercapacitors.

Figure 2. Deprotonation reaction of conducting PPy salt under alkaline conditions and rearrangement
of electrons in PPy, generation of bipolarons/polarons by delocalization over PPy chain. Note: HX = ar-
bitrary acid, X− = corresponding counter ion, polarons = acts as charge carriers.

Concerning device construction strategies, both batteries and electrochemical capaci-
tors follow similar prototypes but differ in energy storage mechanisms and applications.
In brief, an electrical insulator (separator) often separates two electrodes (current collectors).
The design strategy for electrolytic capacitors is usually represented as parallel plate ca-
pacitors; dielectric materials often separate the electrodes. The energy storage capability is
because of polarization in the existence of an external electric field. Since the energy storage
mechanism of electrochemical capacitors is in the capacitor of the electric double layer (an
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interface between an electrode and an aqueous/non-aqueous electrolyte), the capacitance
and energy density of these devices are compatibly larger than electrolytic capacitors.
Although electrolytic capacitors have larger cycling efficacy, they suffer from low energy
density. Hence, nanostructured CP electrodes with high surface area exhibiting a pro-
nounced pseudocapacitance behavior are widely used to construct electrochemical capaci-
tors [19–21]. Along with metal-organic frameworks (metal oxides/phosphides/sulfides),
these nanostructured CPs display synergistic interaction, resulting in contributing superior
supercapacitive properties. Figure 3 represents the device prototype of an electrochemical
capacitor made of a CP electrode and its equivalent circuit illustration. Bryan et al. [22]
recently briefly outlined the construction of electrochemical capacitors from various CPs
and their device engineering strategies. The authors predominantly emphasized the pseu-
docapacitive performance of PPy with synthetic chemical doping strategies [22].

Figure 3. (a) Schematic illustration of a pseudocapacitor cell and (b) its equivalent circuit diagram that models the electrical
behavior of the cell. Adopted with permission from [22], ACS, 2016.

Compared to EDLCs, ion transport in pseudocapacitors is indolent because of faradaic
processes. Since CPs possess high electrochemical capacitance and conductivity, it must fa-
cilitate facile kinetics, charge carriers, charge mobility, and accessible counterions. By chem-
ical reduction process (n-doping), the insertion of electrons to the conduction band will
be carried out. Removal of electrons from the valence band was done by oxidation pro-
cess (p-doping), which eventually upsurge the concentration of charge carriers [23,24].
Consider the ionization of CPs, there will be a difference in the equilibrium geometry of the
ionized state and its respective ground state. The ionized state of CPs possesses lower equi-
librium geometry than its ground state. This lattice distortion causes the highest occupied
molecular orbital (HOMO) to swing upwards, and the lowest unoccupied molecular orbital
(LUMO) shifts downwards, forming new energy bands in the bandgap. These newly
created energy bands are delocalized over the polymer chain, results in the creation of
a charge “island.” When the polymer chain is chemically doped, it results in ionization
of polymer chains, and the overlapping and delocalization of these islands facilitates the
conducting behavior of the polymers [25,26]. Since the conjugated sp2 carbons are the key
frameworks of CPs, the semi-metallic properties of CPs resemble the conductivities of 2D
graphene or 3D graphite materials. Conversely, a Jahn−Teller-like relaxation (or Peierls
transition) will ensure the separation among unfilled and filled portions of the sp2 band.
When graphene is chemically doped, it will also exhibit a bandgap. In contrast to graphene
electronic conductivity, to demonstrate increased electronic conductivity in the case of CPs,
new energy levels are essential, and they must be added to the gap via doping (see Figure 4
for a schematic illustration). The charge island formation in the case of CPs (especially PPy)
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is a more divergent doping technique than that of conventional semiconductors [18,27,28].
Over the past few decades, the research works on metal-organic frameworks (MOFs)
have gained increased importance in conventional gas separation and storage, catalysis,
electrochemical sensors, and rechargeable batteries due to their unique surface charac-
teristics, tunable porosities, and electrochemical properties. However, the application of
MOFs in supercapacitor’s electronic components is diminutive because of its high electrical
resistivity. To fix this issue, decorating MOFs with a well-known conductive polymer,
PPy (prevalently knows as “synthetic metal”), can contribute favorable solicitations in the
construction of electrochemical energy storage devices [29–33].

Figure 4. Unlike 2D graphene or 3D graphite, polypyrrole (PPy) has a distinct band gap leading to its semiconducting
properties. In the chemical doping procedure of PPy, two electrons are removed from the polymer chain, creating a
carbodication, or bipolaron, balanced by dopant counterions [23]. As the polymer is doped to its saturation limit, progressive
bipolaronic states are formed. Their energy bands overlap, creating intermediate band structures that facilitate electronic
transport throughout the PPy chain [24]. Adopted with permission from [22], ACS, 2016.

Depending on the peaks obtained from cyclic voltammograms, the specific capacitance
(Cs) at different scan rates can be calculated by Equation (2):

Cs =

∫
IdV

v×m× ∆V
(2)

where I is the response current in A, v is the scan rate in V s−1, ∆V is the potential window
in V and m is the mass of two active electrode material in g. In addition, from cyclic voltam-
mograms of the charge/discharge curves, the specific capacitance (Cs) can be calculated
from Equation (3):

Cs = 4
I × ∆t

∆V ×M
(3)

where I is the charge/discharge current in A, ∆t is the discharge time in s, ∆V is the
potential window in V and M is the total mass of active electrode material in g [34–37].

2. Polypyrrole-Based Hybrid Metallic Nanostructures as Electrode Materials for High
Performance Supercapacitors

Hybrid metallic nanostructures embedded with PPy can exert noteworthy effects
on the physico-chemical properties and the electrochemical properties due to the unique
characteristics of both PPy and metallic nanostructures [38,39]. Since the booming progress
in fabricating supercapacitor electrode materials from carbonaceous network structures has
been proposed and studied by various researchers to accomplish the performances beyond
the limitation of carbonaceous materials [40–42], Feng et al. [43] proposed nitrogen-doped
porous carbon matrix complexed with PPy. The uniformly grown PPy nanospheres on
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porous carbon matrix surface showed remarkably specific capacitance reaching a value
of 237.5 F g−1 with 88.53% discharge after 1000 cycles. The complimenting characteristics
of notable mechanical flexibility and high capacitance of PPy was utilized to develop
wearable supercapacitors by growing nanotubular arrays with carbon nano-onions on
fabric material [44]. These PPy-based hybrid nanostructures grown on fabric materials
exhibited stretchable characteristics with superior energy storage capacitance (specific
capacitance of 64.0 F g−1). In addition, 99.0% capacitance was retained even at a strain of
50.0% after 500 stretching cycles [44].

Our main aim is to focus and provide a comprehensive inventory on PPy-based hybrid
metallic nanostructures as supercapacitor electrodes; a systematic survey was carried out,
and comparative metal-based PPy nanocomposite electrode parameters concerning super-
capacitor applications are documented. By using electrospinning technique, Li et al. [45]
successfully fabricated the hollow V2O5 fibers by the emulsion of vanadyl acetylacetonate,
polyvinylpyrrolidone and polystyrene in N, N-dimethyl formamide followed by sintering
in air at 430 ◦C for 30 min. Furthermore, in order to achieve hollow, capsular PPy fibers
on V2O5, two-step vapor-phase polymerization technique was adopted and the electrodes
showed appreciable specific capacitance of 203.0 mV s−1 with over 90.0% capacitance
retention after 11,000 cycles at 10.0 A g−1 [45]. Dubal et al. [46] reported an inexpen-
sive and straightforward electrodeposition protocol to synthesize nano-brick structures
of PPy on stainless steel (SS) substrate. The deposition of PPy nano-bricks was achieved
potentiostatically at +0.9 V/SCE for 2 min. These 3D nano-brick PPy structures showed
appreciable electrochemical reversibility and a large specific capacitance of 476.0 F g−1 [46].
Shinde et al. [47] put forward a new cost-effective chemical bath deposition (CBD) method
to synthesize PPy thin film on SS substrate. These instantly grown additive-free and binder-
less PPy thin films showed maximum achieved specific capacitance value 329.0 F g−1 at
5.0 mV s−1. Furthermore, the low equivalent series resistance (Rs = 1.08 Ω) value reflects
negligible ohmic potential drop during the discharge process [47]. Since smartly tailored
SS mesh shows superior stretchability, Huang et al. [48] fabricated PPy-based solid-state
supercapacitors by electrochemically polymerizing pyrrole monomer. The fabricated su-
percapacitors showed an initial capacitance of 170.0 F g−1 at a relaxed state and 214.0 F g−1

at a 20% strain (at a specific current of 0.5 A g−1) [48].
The fabrication of silver nanoparticles/nanoclusters-decorated hybrid PPy (Ag@PPy)

nanocomposites were done by Gan et al. [49]. The hybrid Ag@PPy nanocomposites
demonstrated an enhanced specific capacitance of 414 F g−1 compared to that of the
pure PPy electrode (273 F g−1). Fine-sized (2–4 nm) silver nanoparticles were initially
distributed homogeneously on PPy, which effectually improved the electron hopping
system PPy, thus enhancing the capacitance of the PPy. Medium-sized silver nanoparticles
(55–100 nm) adhered to the PPy surface, acting as a spacer that minimizes the restacking
of PPy. Furthermore, the transport pathway for electrons was shortened by this unique
morphology, leading to improved cycling stability and specific capacitance of hybrid
Ag@PPy nanocomposites [49]. Iqbal et al. [50] performed the oxidative chemical poly-
merization of pyrrole monomer in FeCl3 as an oxidant. The authors also prepared the
binary (Co3O4@PPy) and ternary (Ag/Co3O4@PPy) nanocomposites, in situ synthesis of
Co3O4 nanograins and silver nanoparticles along with PPy. The authors revealed spheri-
cal, tubular and globular appearances of PPy with Co3O4 and silver nanoparticles (some
nanoparticles were also embedded inside the PPy structures). The authors showed that the
ternary nanocomposites (Ag/Co3O4@PPy) demonstrated highest specific capacitance of
355.64 C g−1 compared to binary (Co3O4@PPy) nanocomposite (280.68 C g−1) and pure
PPy (143.28 C g−1) [50].

Although the high theoretical capacity of pseudocapacitive transition-metal
oxides/hydroxides is promising for supercapacitor electrodes, they suffer severely from
lower electrical conductivity and specific capacitance; this is why they are not often
used in practical applications [51–53]. In concern to this, Mao et al. [50] designed one-
dimensional silver nanowires (AgNWs) with hierarchical nanostructured Ni(OH)2 archi-
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tecture. Thesecoaxial hierarchical core-shell structured AgNW@Ni(OH)2@PPy hybrid
electrode materials exhibited outstanding specific capacitance of 3103.5 F g−1 at 2.6 A g−1.
To date, this comprehensive performance has been reported to belong dedicatedly to the
hybrid Ni(OH)2 systems with PPy [54].

A thin-film electrode composed of ceramic oxide and yttrium aluminum garnet (YAG:
Al5Y3O12) with PPy was developed by Ehsani et al. [55]. This new type of film elec-
trode was fabricated using pulse electrochemical deposition technology, and the electrodes
showed enhanced specific capacitance (254.0 F g−1) compared to a pure Ppy electrode
(109.0 F g−1). The authors also discussed the stability advantages of these thin-film elec-
trodes in aqueous electrolytes over commonly used ruthenium-based perovskites [55].
Previous investigations by Ariyanayagamkumarappa and Zhitomirsky showed that chro-
motropic acid (CHR) is an auspicious dopant material for the preparation of PPy. The PPy
films synthesized using CHR dopant showed the highest specific capacitance of 343.0 F g−1

at 2.0 mV s−1 [56]. With these inspiring results, Zhu et al. [57] studied the influence of 2,7-
Bis(2-sulfophenylazo)chromotropic acid tetrasodium salt (CHR-BS) on the supercapacitor
behavior of fabricated PPy electrodes. The CHR-BS doped PPy electrodes showed elite
capacitive retention of 109.9% even after 1000 cycles [57] (for the chemical structures of
CHR and CHR-BS dopants, please see Figure 5).

Figure 5. The chemical structures of (a) chromotropic acid (CHR) disodium salt and (b) 2,7-Bis(2-sulfophenylazo)chromotropic
acid tetrasodium salt (CHR-BS).

By combining solvothermal reaction and electrodeposition technique, Yang et al. [58]
developed hybrid nanosheet arrays having Co3O4 as a core and PPy as a shell. The electrode
(Co3O4@PPy) made of Co3O4 and PPy showed unique synergistic effects and exhibited a large
capacitance of 2.11 F cm−2 at a current density of 2.0 mA cm−2. Furthermore, the equivalent
series resistance value of the Co3O4@PPy hybrid electrode (0.238 Ω) is pointedly inferior
to that of the new Co3O4 electrode (0.319 Ω) [58]. The ternary nanocomposites developed
by Wei et al. [59] were done by electropolymerizing PPy onto flower-like cobalt oxide
(f-Co3O4) morphological structures coating uniformly on carbon paper (CP). These ternary
nanocomposites demonstrated more extended stability in 2.0 M aqueous KOH with a
specific capacitance of 398.4 F g−1 [59]. To improve the electrochemical performances,
Wang et al. [60] proposed the ternary core-shell hetero-structured composites composed
of Co3O4 @PPy@MnO2, which show a remarkable specific capacitance of 782.0 F g−1

at 0.5 A g−1. The hybrid composites made of MWCNTs with PPy and Co3O4 show
high electrochemical performances, with only 2.9% loss of their initial capacitance after
5000 cycles [61]. Since metal sulfides are promising electrode materials for supercapacitor
applications, Cheng et al. [62] considered individual synergistic effects of Co3S4 and PPy to
construct a hybrid with tangled conductive networks of Co3S4 hollow nanocages (HNCs)
with PPy and studied its merits as supercapacitor electrodes. The Co3S4-HNCs@PPy hybrid
nanocomposites showed extendable durability with an outstanding specific capacitance of
1706.0 F g−1 at 1.0 A g−1 [62].

Diverse research reports have demonstrated the representative metal nanoarchitec-
tures hybrid composites with PPy network including oxides, phosphides, sulfides etc.
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The appreciable specific capacitance demonstrated by these PPy-Metal hybrid nanocomposites
signifies that these electrode materials are the primary choice for supercapacitor applications.
The research contribution involving a variety of hybrid nanocomposites along with PPy were
succinctly tabulated in Table 1 with its electrode parameters [41,45–50,55,57–122].

Table 1. Partial list of polypyrrole (PPy)-based fabricated metal nanocomposite electrodes and its parameters for high-
performance supercapacitor applications.

Fabricated Electrode Electrolyte Specific
Capacitance

Current
Density/Scan Rate

Capacitance
Retention/Cycling Stability References

PPy on hollow V2O5 fibers 1.0 M H2SO4 203.0 F g−1 2.0 mV s−1 >90.0% after 11,000 cycles at
10.0 A g−1 [45]

PPy nanobricks on SS
substrate 0.5 M H2SO4 476.0 F g−1 5.0 mA cm−2 89.0% charge/discharge

efficiency [46]

PPy thin film on SS substrate 0.5 M H2SO4 329.0 F g−1 5.0 mV s−1 - [47]
PPy on a knitted SS mesh a H3PO4-PVA b 214.0 F g−1 0.5 A g−1 98.0% after 10,000 cycles [48]

Ag@PPy 1.0 M H2SO4
c 414.0 F g−1 0.2 A g−1 98.9% after 1000 cycles at

0.5 A g−1 [49]

PPy 1.0 M KOH 143.28 C g−1 1.4 A g−1 - [50]
Co3O4@PPy 1.0 M KOH 280.68 C g−1 1.4 A g−1 - [50]

Ag/Co3O4@PPy 1.0 M KOH 355.64 C g−1 1.4 A g−1 153.67% after 3000 cycles [50]
AgNW@Ni(OH)2@PPy 6.0 M KOH 3103.5 F g−1 2.6 A g−1 92.18% after 20,000 cycles [50]

PPy 0.1 M H2SO4 109.0 F g−1 25.0 mV s−1 30.0% after 20,000 cycles [55]
PPy-Al5Y3O12 0.1 M H2SO4 254.0 F g−1 25.0 mV s−1 85.0% after 20,000 cycles [55]

CHR-BS doped PPy 0.5 M Na2SO4 7.2 F cm−2 2.0 mV s−1 109.9% after 1000 cycles at
0.7 A g−1 [57]

Co3O4@PPy core-shell 1.0 M KOH 2.11 F cm−2 2.0 mA cm−2 85.0% after 5000 cycles [58]
d PPy/f-Co3O4/CP 2.0 M KOH 398.4 F g−1 0.2 A g−1 Negligible loss after 1000

cycles [59]

Co3O4@PPy@MnO2 1.0 M KOH 782.0 F g−1 0.5 A g−1 97.6% after 2000 cycles at
5.0 A g−1 [60]

Co3O4/MWCNT/@PPy 6.0 M KOH 609.0 F g−1 3.0 A g−1 97.1% after 5000 cycles [61]
Co3S4-HNCs@PPy 2.0 M KOH 1706.0 F g−1 1.0 A g−1 82.8% after 10,000 cycles [62]

PPy-CPSC 1.0 M H2SO4 168.0 F g−1 2.0 mA cm−2 Stable after 2000 cycles [63]

PPy-CuCo 0.1 M LiClO4 556.0 F g−1 1.0 A g−1 90.0% after 2000 cycles at
20.0 A g−1 [64]

PPy/CuO 0.5 M H2SO4 20.78 F g−1 5.0 mV s−1 48.39% after 500 cycles at
100 mV s−1 [65]

PPy 1.0 M H2SO4 174.0 F g−1 1.0 A g−1 62.83% after 3000 cycles [66]
PPy/CuO/Eu2O3 1.0 M H2SO4 320.0 F g−1 1.0 A g−1 92.89% after 3000 cycles [66]

CuS@PPy 1.0 M KCl 427.0 F g−1 1.0 A g−1 88.0% after 1000 cycles [67]
PPy/CuS/BC 2.0 M NaCl 580.0 F g−1 0.8 mA cm−2 73.0% after 300 cycles [68]

f-CNFs/PPy/MnO2 1.0 M KCl 409.88 F g−1 25.0 mV s−1 86.30% after 3000 cycles [69]
PPy@Fe 0.3 M C2H2O4 2280.0 F g−1 3.0 mA cm−2 - [70]

T-Fe2O3/PPy NAs e PVA-LiCl 382.4 mF cm−2 0.5 mA cm−2 97.2% after 5000 cycles [71]

PPy@Fe2O3 3.0 M KCl 560.0 F g−1 5.0 A g−1 97.3% after 20,000 cycles at
40.0 A g−1 [72]

PPy/GNS/Eu3+ 1.0 M H2SO4 238.0 F g−1 1.0 A g−1 - [73]
PPy/GO-HT 1.0 M H2SO4 198.0 F g−1 20.0 A g−1 92.0% after 3000 cycles [41]

WO3/PPy/G 0.5 M H2SO4 513.0 F g−1 5.0 mV s−1 87.3% after 1000 cycles at
10.0 A g−1 [74]

PPy-H4[PVMo11O40] 0.1 M H2SO4 561.1 F g−1 0.2 A g−1 95.0% after 4500 cycles [75]
MgCo2O4@PPy/NF 2.0 M KOH 1079.6 F g−1 1.0 A g−1 97.4% after 1000 cycles [76]

PPy@MnCo2O4 6.0 M KOH 2364.0 F g−1 5.0 mV s−1 85.5% after 10,000 cycles [77]
PPy@MnMoO4 6.0 M KCl 374.8 F g−1 0.2 A g−1 80.6% after 10,000 cycles [78]

PPy@MnMoO4/CFs 0.6 M H2SO4 302.0 F g−1 1.0 A g−1 83.0% after 10,000 cycles at
2.0 A g−1 [79]

MnO2@PPy coaxial
nanotubes 1.0 M Na2SO4 380.0 F g−1 50.0 mV s−1 90.0% after 1000 cycles [80]

MnO2/PPy nanotubular 2.0 M KCl 337.0 F g−1 0.5 A g−1 90.6% after 1000 cycles [81]
PPy/MnO2 1.0 M Na2SO4 141.6 F g−1 2.0 mA cm−2 73.0% after 500 cycles [82]
MnO2/PPy 1.0 M KCl 273.0 F g−1 0.5 A g−1 - [83]
MnO2/PPy 1.0 M Na2SO4 205.0 F g−1 2.0 mV s−1 96.5% after 400 cycles [84]
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Table 1. Cont.

Fabricated Electrode Electrolyte Specific
Capacitance

Current
Density/Scan Rate

Capacitance
Retention/Cycling Stability References

PPy/MnO2 1.0 M Na2SO4 325.0 F g−1 0.2 A g−1 96.0% after 1000 cycles
1.0 A g−1 [85]

MnO2/PPy 0.5 M Na2SO4 625.0 F g−1 0.5 A g−1 96.4% after 1000 cycles [86]
PPy/MnO2/CNTs 1.0 M Na2SO4 402.7 F g−1 1.0 A g−1 96.2% after 1000 cycles [87]

PYMG-HT (PPy/MnO2/GT) 0.5 M Na2SO4 821.3 F g−1 0.5 A g−1 - [88]

MnO2/PPy/TSA 0.5 M Na2SO4 376.0 F g−1 3.0 mA cm−2 90.0% after 500 cycles at 5.0
mA cm−2 [89]

MoO3/PPy 1.0 M Na2SO4 129.0 F g−1 1.0 A g−1 90.0% after 200 cycles at
0.67 A g−1 [90]

PPy/MoS2/PTFE 1.0 M KCl 553.7 F g−1 1.0 A g−1 90.0% after 500 cycles [91]

MoS2/PPy 0.5 M Na2SO4 462.0 F g−1 1.0 A g−1 82.0% after 2000 cycles
3.0 A g−1 [92]

PPy-MOx 0.1 M H2SO4 463.0 F g−1 - - [93]
Ni(Cu)PPy 1.0 M KOH 659.52 F g−1 5.0 mV s−1 87.0% after 1000 cycles [94]

Ni(OH)2/PNTs 6.0 M KOH 864.0 F g−1 1.0 A g−1 91.1% after 2000 cycles at
5.0 A g−1 [95]

PPy-Ni(OH)2) nanowires 1.0 M LiSO4 and
0.19 M DHB 75.0 F cm−2 20.0 mV s−1 87.0% after 100 cycles [96]

Ni1/3Co2/3(CO3)0.5OH0.11H2O/PPy 2.0 M KOH 964.8 F g−1 1.0 A g−1 80.2% after 5000 cycles at
5.0 A g−1 [97]

PPy/Ni2P 1.0 M Na2SO4 476.5 F g−1 1.0 A g−1 89.0% after 3000 cycles [98]

PPy@NiCo(OH)2
f PVA-KOH 1469.25 F g−1 1.0 A g−1 95.2% after 10,000 cycles

30.0 A g−1 [99]

CF@NiCo2O4@PPy core-shell 3.0 M KOH 1.44 F cm−2 2.0 mA cm−2 85.0% after 5000 cycles at 10.0
mA cm−2 [100]

PNTs@NiCo2S4 6.0 M KOH 911.0 F g−1 1.0 A g−1 93.2% after 4000 cycles at
5.0 A g−1 [101]

PPy@NiCo2S4 2.0 M KOH 908.1 F g−1 1.0 A g−1 87.7% after 2000 cycles [102]

NiCo2S4@PPy/NF 3.0 M KOH 9.781 F cm−2 5.0 mA cm−2 80.64% after 2500 cycles at
50.0 mA cm−2 [103]

NiFe2O4/PPy 1.0 M H2SO4 721.66 F g−1 10.0 mV s−1 97.24% after 1000 cycles [104]

NiMn-LDH/PPy/BC 2.0 M KOH 1427.0 F g−1 1.0 A g−1 66.75% after 2000 cycles at
10.0 A g−1 [105]

CoAl-LDH/PPy/Graphene 30 wt % KOH 864.0 F g−1 1.0 A g−1 90.1% after 10,000 cycles [106]
PPy@CoNi-LDH/RGO 1.0 M KOH 2342.0 F g−1 1.0 A g−1 115.4% after 20,000 cycles [107]

NiAl-LDH@GO-PPy 1.0 M KOH 845.0 F g−1 2.0 mV s−1 92.0% after 5000 cycles [108]
Ni-MOF@PPy 3.0 M KOH 715.6 F g−1 0.3 A g−1 80.0% after 10,000 cycles [109]

NiO@NMWCNT/PPy 2.0 M KOH 395.0 F g−1 0.5 A g−1 90.0% after 5000 cycles [110]
NiO/CS-PPy nanotube 1.0 M KOH 934.11 F g−1 1.0 A g−1 84.90% after 10,000 cycles [111]

PPy/NiS/BC 2.0 M NaCl 713.0 F g−1 0.8 mA cm−2 - [112]
MoS2-rGO/PPy NTs (ITO

coated glass) 1.0 M KCl 1561.0 F g−1 1.0 A g−1 72.0% after 10,000 cycles at
10.0 A g−1 [113]

MoS2-rGO/PPy NTs
(irradiated, 100.0 MeV O7+) 1.0 M KCl 1875.0 F g−1 1.0 A g−1 91.0% after 10,000 cycles at

10.0 A g−1 [114]

PPy/RGO/Fe2O3 1.0 M KCl 125.7 F g−1 0.5 A g−1 81.3% after 200 cycles [115]
RuOx-PPy 0.1 M H2SO4 681.0 F g−1 1.0 mA cm−2 87.2% after 1000 cycles [116]

PPy/Sm2O3 1.0 M NaNO3 771.0 F g−1 20.0 mA cm−2 47.0% after 800 cycles [117]
PPy/SWCNT/TiO2 1.0 M KCl 282.0 F g−1 10.0 mV s−1 63.9% after 1000 cycles [118]

PPy/TiO2 1.0 M KCl 247.0 F g−1 1.0 mA cm−2 - [119]
V2O5−PPy 5.0 M LiCl 412.0 F g−1 4.5 mA cm−2 80.0% after 5000 cycles [120]

ZnCo2O4/PPy 3.0 M KOH 1559.0 F g−1 2.0 mA cm−2 90.0% after 5000 cycles at 10.0
mA cm−2 [121]

ZnO/PPy 1.0 M LiClO4 131.22 F g−1 - 88.0% after 5000 cycles [122]

PPy = Polypyrrole, DHB = 1,4-dihydroxybenzene, SS = stainless steel, CHR-BS = 2,7-Bis(2-sulfophenylazo)chromotropic acid tetrasodium
salt, CP = carbon paper, HNCs = hollow nanocages, MWCNT = multiwall carbon nanotube, f-CNFs = functionalized carbon nanofibers,
CPSC = conductive polymer-based supercapacitor, CF = carbon fibers, NF = nickel foam, NAs = nano arrays, BC = bacterial cellulose,
CS = chitosan, HT = hydrothermal, PNTs = polypyrrole nanotubes, SWCNT = single-wall carbon nanotube, MOF = metal-organic-
framework, RGO = reduced graphene oxide, LDH = layered double hydroxides, TSA = p-toluenesulfonic acid, PTFE = polytetrafluoroethy-
lene, a = gel electrolyte made of 6.0 g H3PO4 and 6.0 g PVA in 60.0 mL deionized water (also serving as a separator), b = at a 20% strain,
c = specific capacitances increased from 273.0 to 414.0 F g−1 when the AgNO3 concentration was increased from 0 to 0.05 M, d = ternary
composites composed of PPy, flower such as Co3O4, and CP, e = 4.24 g of LiCl and 2.0 g of PVA were added in 20 mL deionized water and
heated at 85 ◦C to make a gel electrolyte, f = 3.0 g KOH was dissolved in 30 mL purified water then 3.0 g polyvinyl alcohol (PVA) was
slowly added in to form a gel solution.
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3. Concluding Remarks

To curtail the environmental and economic effects instigated by the exhaustion of
non-renewable energy sources, the use of the most demanding green renewable energy
storage devices is intensified, expressly supercapacitors. To summarize, there are several
advantages encountered experimentally by using PPy with metal nano architectures as
supercapacitor electrode materials that can be helpful in practical device applications.
With suitable methods (hydrothermal, in situ polymerization along with metallic nanos-
tructures) and successful implementation of synthetic strategies, this would provide access
to develop various nano architectures with diverse physico-chemical properties. In recent
years, supercapacitors have attracted a great deal of interest and have emerged as an
embedded system for Internet of Things (IoT) applications [123]. Due to its unique high
energy density and remarkable power efficiency characteristics, supercapacitors could hold
a very high electrical charge, replacing the use of batteries in tiny portable devices.
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