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Abstract: Masson pine (Pinus massoniana) is a major fast-growing timber species planted in
southern China, a region of seasonal drought. Using a drought-tolerance genotype of Masson pine,
we conducted large-scale transcriptome sequencing using Illumina technology. This work aimed to
evaluate the transcriptomic responses of Masson pine to different levels of drought stress. First, 3397,
1695 and 1550 unigenes with differential expression were identified by comparing plants subjected to
light, moderate or severe drought with control plants. Second, several gene ontology (GO) categories
(oxidation-reduction and metabolism) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (plant hormone signal transduction and metabolic pathways) were enriched, indicating that
the expression levels of some genes in these enriched GO terms and pathways were altered under
drought stress. Third, several transcription factors (TFs) associated with circadian rhythms (HY5
and LHY), signal transduction (ERF), and defense responses (WRKY) were identified, and these
TFs may play key roles in adapting to drought stress. Drought also caused significant changes in
the expression of certain functional genes linked to osmotic adjustment (P5CS), abscisic acid (ABA)
responses (NCED, PYL, PP2C and SnRK), and reactive oxygen species (ROS) scavenging (GPX, GST
and GSR). These transcriptomic results provide insight into the molecular mechanisms of drought
stress adaptation in Masson pine.

Keywords: Pinus massoniana Lamb.; drought stress; transcriptome; transcription factor;
defense response

1. Introduction

Drought is one of the world’s most severe environmental stresses. It represents an increasing
threat to the productivity of agriculture and forestry as it has negative impacts on plant growth and
development [1]. To adapt to unfavorable conditions of water deficit, plants activate a variety of
complex regulatory mechanisms by altering gene expression levels [2] and by activating complex
cross-talk between biochemical and molecular processes [3]. The involved genes are typically divided
into genes encoding functional proteins and those encoding regulatory proteins. Functional proteins
directly protect plants and include scavengers of ROS (reactive oxygen species) [4], aquaporins [5],
dehydrins [6] and others. In contrast, regulatory proteins control gene expression networks and
signal transduction pathways involved in stress responses [2]. Many regulatory proteins, such as
MYB and WRKY, play key roles in plant drought stress responses. In addition, ABA (abscisic acid),
a crucial hormone that is often involved in signaling and stress responses, generally accumulates under
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drought conditions and can initiate signal transduction that results in the up-regulation of several
genes involved in drought stress responses [7].

Masson pine (Pinus massoniana), a major coniferous tree widely distributed in southern China, is
not only an economically important species that is commonly used for timber, wood pulp and rosin but
also an ecologically important species in forest ecosystems [8]. Seasonal soil drought in southern China
is a major natural phenomenon that constrains the production and growth of Masson pine. Therefore,
it is of interest to cultivate genotypes that are resistant to drought conditions. Most studies investigating
the drought tolerance of Masson pine have focused on the plant’s morphology and physiology.
These studies have described certain important morphological adaptations to xeric environments,
such as alterations to root development [9]. Moreover, some analyses of the physiological
responses of this plant have uncovered traits related to drought resistance, such as changes in
MDA (malondialdehyde) and PRO (free proline) content [9] as well as changes in the activities
of POD (peroxidase), SOD (superoxide dismutase) and CAT (catalase). In addition, several important
drought-stress-induced genes have been identified using reverse transcription-polymerase chain
reaction (RT-PCR), including F-box, Ribosomal RNA Processing 8 (RRP8), auxin response factors
(ARFs), and EF1b [10]. However, despite the importance of drought resistance in Masson pine, a
more comprehensive understanding of the molecular response mechanisms underlying resistance
remains lacking. NGS (next-generation sequencing), a technology that provides deep sequencing
sufficient to cover the entire transcriptome of an organism, has contributed greatly to studies in model
and non-model plants. Expanding transcriptome information is extremely useful for the exploration
of differential gene expression and key responsive factors in conifer species subjected to drought
stress, such as Pinus pinaster [11] and Pinus menziesii [12]. In this study, the transcriptome of Masson
pine under different drought stress conditions was evaluated using the Illumina Hi-Seq sequencing
platform. The transcriptome data were used to identify genes that may be involved in the response
to drought and to clarify the possible molecular mechanisms involved in Masson pine’s adaptation
to different drought stress conditions. The results improve our understanding of environmental
acclimation mechanisms in Masson pine and will serve as an invaluable molecular-level reference to
inform future work on the enhancement of drought tolerance in Masson pine.

2. Material and Methods

2.1. Plant Material and Experimental Setup

An elite pure line of Masson pine, named the 83rd family of Masson pine, obtained from the
seed orchard of Guangxi Province (P. R. China) (20◦36′ N, 107◦28′ E) was used in this study. This line
exhibited rapid growth and strong drought resistance in our previous study [9]. In April 2015,
one-year-old seedlings of this elite line were cultured in pots in a ventilated nursery at the College
of Forestry, Guizhou University, with a day/night room temperature of approximately 20 ◦C/10 ◦C
and a light/dark photoperiod of 14 h/10 h. Each pot had a 300-mm top diameter, a 200 mm bottom
diameter and a 250 mm depth and was filled with yellow soil that had developed from quaternary red
clay and was collected from a Masson pine forest. The soil had a pH of approximately 5.0. Its total
contents of N, P, and K were 0.16 g/kg, 0.36 g/kg and 1.50 g/kg, respectively, and its available contents
of N, P, and K was 65.77 mg/kg, 10.99 mg/kg and 164.26 mg/kg, respectively. In May 2016, the
two-year-old seedlings in each pot were approximately 65 cm in height. At this time, the seedlings
were divided evenly into four groups, with 3 seedlings per pot and 15 pots per group. The four
groups corresponding to four levels of field moisture capacity were as follows: well-watered control
(CK, ≥70%), light drought (LD, 55–70%), moderate drought (MD, 45–55%), and severe drought (SD,
30–45%). The water content was controlled by potted planting [13], and the soil moisture content
was measured by weighing each pot and was regulated by artificial irrigation. The seedlings were
sampled after a one-month period of drought treatment, and the stem apex needles of the seedlings
were selected for RNA extraction.
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2.2. Total RNA Isolation, Sequencing Library Preparation and Transcriptome Assembly

RNA was extracted from four treatment seedlings with two biological replicates for each treatment
and then used to construct 8 cDNA libraries. Total RNA was extracted using a Plant RNA Isolation
Kit (Invitrogen, Carlsbad, CA, USA). Sequencing library construction and Illumina deep sequencing
were performed using the method described by Ma et al. [14], and 150-bp paired-end reads were
generated. De novo transcriptome assembly was conducted using Trinity [15]. The raw data and
sequences can be found online at the NCBI Sequence Read Archive (SRA) database (accession number
SRP092298) and the GenBank Transcriptome Shotgun Assembly (TSA) database (accession number
GFHB00000000), respectively.

2.3. Gene Expression Quantification and Differential Expression Analysis

Gene expression was estimated using RSEM [16] for FPKM (expected number of Fragments
Per Kilobase of transcript sequence per Millions base pairs sequenced) values. Differential gene
expression analyses of different water conditions were conducted using the R package DESeq (http:
//www.bioconductor.org/packages/release/bioc/html/DESeq2.html). p values were adjusted to
control for logFC > 1 and FDR < 0.05 using the BH (Benjamini–Hochberg) approach.

2.4. Functional Annotation and Enrichment Analysis

Gene function was annotated using the NCBI blast (http://www.ncbi.nlm.nih.gov/) [17] for Nr
(NCBI non-redundant protein sequences), Nt (NCBI non-redundant nucleotide sequences), Swiss-Prot
(A manually annotated and reviewed protein sequence database) and KOG/COG (Clusters of
Orthologous Groups of proteins); the BLAST parameters of NR, NT and Swiss-Prot were controlled
for using an e-value = 1 × 10−5, and KOG/COG was controlled for using an e-value = 1 × 10−3.
Gene function was annotated on the Pfam (Protein family) database using hmmscan software with an
e-value = 0.01; GO annotation was accomplished using blast2go software with an e-value = 1 × 10−6;
and KEGG annotation was performed using KAAS software with an e-value = 1 × 10−10 [18].

Gene ontology (GO) enrichment analysis of the differentially expressed genes (DEGs) was
performed using the GOseq R package based on Wallenius’ noncentral hypergeometric distribution [19].
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs was
conducted using KOBAS [20].

2.5. qRT-PCR (Quantitative Real-Time PCR) Validation

The total RNA isolated as described above was used to synthesize cDNA using the RNA LA
PCR Kit (TaKaRa, Shiga, Japan) following the manufacturer’s instructions. Gene-specific primers
(Table S1) were designed for 9 unigenes using Primer Premier 5.0 (Premier, Canada). Three
biological replicates for each reaction and three technical replicates for each biological replicate
were analyzed using SYBR Premix ExTaq (TaKaRa) on a 7500 fast real-time PCR system (Applied
Biosystems, Waltham, MA, USA) with the following PCR procedure parameters: 95 ◦C for 120 s
followed by 40 cycles of 95 ◦C for 10 s, 61 ◦C for 30 s, and 72 ◦C for 30 s; and an additional
procedure for dissociation (95 ◦C for 15 s, 60 ◦C for 60 s, and 95 ◦C for 15 s). qRT-PCR was
performed in 20.0 µL reactions containing 10.0 µL of SYBR mix, 1.0 µL of template cDNA, 0.4 µL
of forward primer (10.0 µM), 0.4 µL of reverse primer (10.0 µM), and 8.2 µL of deionized water.
Amplification of three internal control genes (UBC, ubiquitin-conjugating enzyme-like protein; 18 s
RNA; and GAPDH, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase) [21] was used to
normalize the qRT-PCR data. Quantification was achieved using comparative cycle threshold (Ct)
values, and gene expression levels were calculated using the 2−∆∆Ct method [22].

http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.ncbi.nlm.nih.gov/
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3. Results

3.1. Variations in Phenotypes during Drought Stress

Seedling phenotypes were evaluated throughout the experiment (Figure 1). Although the
well-watered control seedlings displayed normal growth, the shoot tips of seedlings showed mild wilt
under LD, and the wilting became increasingly severe with increasing drought stress.
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Figure 1. Phenotypic variation of Masson pine seedlings under different soil moisture conditions. CK,
well-watered control; LD, light drought; MD, moderate drought; and SD, severe drought.

3.2. Transcriptome Sequencing and De Novo Assembly and Annotation

A total of 390,320,648 raw reads were generated to assemble 197,612 non-redundant unigenes,
which had a length range of 201–15,800 bp, an N50 of 1227 bp, and an average length of 695 bp
(Figure 2).
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The sequenced unigenes were validated and annotated by alignment with public databases,
including the NT (NCBI nucleotide sequences), NR (NCBI non-redundant protein sequences),
Swiss-Prot (a manually annotated and reviewed protein sequence database), PFAM (protein family),
GO, KEGG and KOG (EuKaryotic Orthologous Groups) databases (Table S2). Of the 197,612 unigenes,
66,825 (33.81%) and 49,085 (24.83%) had significant matches in the NR and NT databases, respectively.
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In addition, 64,943 (32.86%), 35,880 (18.15%), and 30,882 (15.62%) unigenes had annotations in the GO,
KOG, and KO databases, respectively. A total of 101,806 unigenes (51.51%) were successfully annotated
in at least one of the above databases, and 11,874 unigenes (6%) were annotated in all seven databases.

3.3. Exploration of Gene Expression in Seedlings under Drought Stress

To elucidate the molecular activities that occurred across the different water content conditions,
differential expression analyses were performed on samples collected from the three treatments (LD,
MD and SD). In total, 4300 genes were differentially expressed (q ≤ 0.05) between the samples from
the three drought treatments and the well-watered control samples (Table S3). Of these, 3397, 1695
and 1550 genes were differentially expressed between the LD and CK, MD and CK, and SD and CK
treatments, respectively (Table S3). Among the DEGs, 1656, 611 and 651 were found to be up-regulated
(q ≤ 0.05) in the LD, MD and SD treatments, respectively, and 1741, 1084 and 899 were found to be
down-regulated (q ≤ 0.05) in the LD, MD and SD treatments, respectively (Table S3, Figure 3).
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Figure 3. Venn diagram and cluster analysis of differentially expressed genes in three comparisons.
(A) Venn diagram showing that a total of 4300 unigenes were identified as differentially expressed
in the three comparisons (LD, MD and SD versus CK); the number of DEGs in each comparison are
shown in each circle; the number of overlapping regions represent the 687 DEGs that were found in
each comparison. (B) A cluster analysis of differentially expressed genes is shown in the right panel;
red indicates up-regulated genes and blue indicates down-regulated genes.

The overlap among these comparisons showed that 687 genes were identified as differentially
expressed under the three drought conditions (Figure 3). Of these, only 341 unigenes were
identified by GO analysis, whereas 209 unigenes had no known function (Table S3). Among the
former, 156 unigenes were annotated in the biological process category and were linked to
signal transduction, defense response, transcriptional regulation, photosynthesis, transmembrane
transport, biosynthetic processes, metabolic processes, oxidation-reduction processes, and protein
phosphorylation. Our findings suggest that these biological processes may participate in the
drought response.

3.4. Gene Ontology Enrichment Analysis

Enrichment analysis of GO terms derived from DEGs after drought stress was conducted to
reveal the GO terms that were common among all drought samples and those that were unique to
each drought sample (Table S4). Enriched (q ≤ 0.05) GO terms were observed in the foundation
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categories of metabolism, oxidation-reduction, and photosynthesis, and these terms were significantly
over- or underrepresented in different drought stress treatments. These results suggest that the
expression of proteins associated with these GO terms was strongly affected by drought. In the
category of metabolism, differential representation was found for the molecular functions of chitinases,
transferases, pectinesterases, peptidases, kinases, synthases, hydrolases, peroxidases, oxidases and
catalytic activity. The enriched GO terms for biological processes included hormones, single-organism,
chitin, amino sugar, starch, glucose and cellular carbohydrate. It is noteworthy that lipid, cellular lipids,
isoprenoids and glycosylation were affected in the lipid metabolism category, suggesting that changes
in membrane lipids may have occurred. In the oxidation-reduction category, the following GO terms
were significantly overrepresented: biological processes of oxidation-reduction and the molecular
functions of oxidoreductase activity, including acting on peroxide as an acceptor, acting on the
CH-OH group of donors, acting on paired donors, acting on single donors with the incorporation of
molecular oxygen, and incorporation or reduction of molecular oxygen. These findings indicated that
oxidation-reduction reactions and oxidoreductase activity were enhanced. In the categories related to
photosynthesis, the down-regulated GO terms included the biological process photosynthesis and the
cellular components of photosystem, photosystem I, photosystem I reaction center, photosystem
II and photosystem II oxygen-evolving complex, indicating that photosynthetic functions were
inhibited. Not unexpectedly, GO terms for biological processes that occur in response to stress
(obsolete peroxidase reaction and response to oxidative stress) and negative regulation of catalytic
activity and molecular function were highly enriched. Enriched GO terms for molecular function
included chitin binding, ion binding, heme binding, ribonucleotide binding, tetrapyrrole binding and
ADP binding. In the category of cellular components, the three major enriched GO terms were cell
wall, apoplast, and external encapsulating structure.

Certain enriched GO terms were discovered only for a particular level of drought stress, suggesting
that proteins with important specific functions are expressed in response to specific level of drought
stress (Table S4). First, several phosphorylation-related GO terms were specifically enriched among
the DEGs that were down-regulated under LD relative to CK, including phosphorylation, protein
phosphorylation, phosphate-containing compound metabolic process, and phosphorus metabolic and
modification process. Second, the GO terms for transport, including drug transport, drug transporter
activity, drug transmembrane transport, and drug transmembrane transporter activity, were enriched
only among the DEGs that were up-regulated under MD relative to CK. Finally, the GO terms
for carbon utilization, obsolete electron transport, and electron carrier activity were enriched only
among the genes that were down-regulated under SD relative to CK. Taken together, the results show
that many of the GO functional categories found to be enriched were significantly inhibited in the
drought-stressed seedlings.

3.5. KEGG Pathway Enrichment Analysis

The KEGG pathways that were enriched in the DEGs were analyzed to reveal the specific
pathways involving the DEGs that were responsive to drought stress (Table S5). The four pathways of
plant hormone signal transduction, photosynthesis, phenylalanine metabolism and phenylpropanoid
biosynthesis were enriched (q ≤ 0.05) under every drought treatment. Among these pathways,
plant hormone signal transduction, phenylalanine metabolism, and phenylpropanoid biosynthesis
were enriched among the up-regulated DEGs, whereas photosynthesis was enriched among the
down-regulated DEGs. These results indicate that drought stress induced the signal transduction of
plant hormones, which had strong effects on biosynthesis and metabolism and led to a severe decline
in photosynthesis.

In addition, certain pathways enriched by DEGs occurred under the various drought treatments
(Table S5). For example, enrichment of DEGs associated with the pathways of amino sugar and
nucleotide sugar metabolism, circadian rhythm-plant and plant–pathogen interaction first appeared
in LD samples; enrichment of DEGs associated with the pathways of NF-kappa B signaling and
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glutathione metabolism first appeared in MD samples; and enrichment of DEGs associated with the
pathways of carbon metabolism, chemical carcinogenesis, and drug metabolism-cytochrome P450
appeared only in SD samples.

3.6. Validation by qRT-PCR

To verify the reliability of the RNA-Seq data, nine drought-responsive unigenes showing
significant up- or downregulation in the drought seedlings were randomly chosen for qRT-PCR
analysis (Figure 4). Among them, three unigenes (MYB (c71819_g3), NIP (c85755_g1), and MCM
(c88297_g1)) showed constitutively down-regulated expression, and one unigene (GPX (c92413_g2))
showed constitutively up-regulated expression with increasing drought stress; five unigenes (DREB
(c60672_g1), GH3 (c94987_g2), P450 (c95186_g2), P5CS (c93699_g2) and WRKY (c90841_g1)) were
up-regulated under LD, MD and SD, the relative expression levels of these unigenes were higher
under LD than under MD and SD. These results indicated that nine unigenes were induced by drought
stress, which could assist in revealing the response to drought stress in Masson pine. For six of the
unigenes (DREB, GH3, P450, GPX, MYB, and NIP), the qRT-PCR results closely matched the RNA-Seq
results. The other three unigenes (P5CS, WRKY, and MCM) showed similar trends in expression,
but the fold change in expression indicated by RNA-Seq was lower than that indicated by qRT-PCR.
Overall, the unigene expression trends revealed by the RNA-Seq data and the qRT-PCR analysis were
similar, showing that the results of the RNA-Seq analyses were valid.
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Figure 4. Expression changes of nine randomly selected unigenes as determined by qRT-PCR results
and DGE sequencing data. The x-axis values indicate the different water content conditions. The
y-axis values represent the change in expression under the various drought stress conditions relative to
the well-watered control condition. Data represent the fold changes of expression for each unigene
in the drought treatment relative to control conditions. Error bars represent standard deviations.
Blue indicates the RNA-Seq results, and red indicates the qRT-PCR results.
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4. Discussion

In this study, we observed that the tips of the seedlings were slightly wilted under LD.
The observed phenotypic changes were considered together to assist in characterizing transcriptional
responses and revealing the defense response to drought stress in conifer trees.

4.1. Resistance to Osmotic Stress at Each Level of Drought Stress

Osmotic adjustment is believed to be an adaptation to drought stress, as observed in many studies
of drought-tolerance mechanisms [5]. In the present study, the P5CS (pyrroline-5-carboxylate synthase)
gene (c93699_g2), which plays a role in stabilizing membranes and proteins under osmotic stress in
pine [5,6], was found to be up-regulated in each drought treatment. It has been reported that the
proline content is increased with increasing severity of drought conditions in this elite pure line [9].
These results suggested that Masson pine exhibits a strong capacity for osmotic adjustment via the
accumulation of proline to reduce the effects of osmotic stress caused by drought.

In addition, AQPs (aquaporins) are the main membrane proteins that regulate osmotic pressure in
water transport [5]. However, AQPs play complex roles due to their disparate functions and expression
patterns in the response to drought stress. Under drought conditions, AQPs are up-regulated in
Phaseolus vulgaris [23] but down-regulated in pine [5]. Similar to the pattern observed in pine, in our
study, three genes encoding AQPs (NIP, c85755_g1; PIP, c91691_g1; PIP, c101640_g1) were found to be
constitutively down-regulated with increasing drought stress, suggesting that drought suppresses the
expression of AQPs depending on the time and degree of stress. This response reflects a mechanism
of water conservation via down-regulation of AQP expression to reduce membrane permeability,
resulting in the minimization of water flux and scatter in the aboveground parts of Masson pine.

4.2. Transcription Factors Responding to Stress Signals under Light Drought

TFs play a key role in regulating downstream genes involved in adversity stress responses. In this
study, 142 transcription factors (TFs) were identified to be differentially expressed (q ≤ 0.05) under
drought stress, 87 were up-regulated and 55 were down-regulated (Table S6). Most of these TFs belong
to the AP2/EREBP, MYB, WRKY, NAC, and HD-ZIP families. Importantly, some of the induced TFs
were enriched in KEGG pathways involved in responses to environmental and physiological signals
under light drought (LD).

The enriched KEGG pathway “circadian rhythm-plant” (ko04712) was linked to three TFs: one
HY5 gene (c84637_g1) and two LHY genes (c85168_g1 and c91081_g2), which were down-regulated
and up-regulated, respectively, under LD but showed no variation under MD and SD, indicating
that HY5 and LHY were induced by light drought. HY5 is a bZIP TF that links hormone and
light-signaling pathways [24], which play a part in promoting the photomorphogenesis of A.
thaliana [25], and negatively regulates light-signaling pathways [26]. Another LHY protein, a TF
that is closely related to MYB, is the central oscillator component of the light input pathway [27]. Cañas
et al. [11] reported that the LHY gene of P. pinaster, which shows higher expression, might reflect
an adaptation to light conditions rather than a transcription factor that functions to regulate diurnal
rhythm. However, another analysis in Fraxinus mandshurica demonstrated that the LHY promoter
has a pivotal role in initiating systemic responses to adverse stress [28]. According to these studies,
it was suggested that HY5 and LHY might be key TFs in the light-signaling network that regulates
the circadian rhythm in response to light drought stress in our study. This hypothesis remains to be
validated in further studies; however, our findings provide insight into the potential mechanisms of
circadian rhythmic gene expression activation associated with coniferous drought conditions.

In addition, we found that four unigenes in the “plant hormone signal transduction” pathway
(ko04075), encoding the TFs ERF (c76570_g1), ARF (c83733_g1), and IAA (c77087_g1 and c92989_g1),
were significantly up- or down-regulated. ERF, belonging to the AP2 family, is involved in DNA
binding, and overexpression of ERF/AP2 has been confirmed to improve plant tolerance to drought in
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transgenic Virginia pine [29]. In our study, the expression of ERF/AP2 was constitutively up-regulated
expression with increasing drought stress, with overexpression under LD versus CK, MD versus LD,
and MD versus LD. These results suggest that AP2/ERF is induced by drought stress, and it might
enhance drought tolerance in Masson pine. Moreover, several studies have reported that ARF regulates
the expression of auxin response genes in conjunction with Aux/IAA repressors [30] and that Aux
and IAA function as auxin-induced repressors and modulate the activity of DNA-binding ARFs [31].
Our results indicate that the expression of two IAA genes and an ARF gene were constitutively
down-regulated expression with increasing drought stress, with marked repression in the LD versus
CK and MD versus LD conditions. It appears that Aux/IAA and ARF may inhibit one another upon
the onset of light drought, indicating that TFs related to growth and development in Masson pine
needles begin to be inhibited upon light drought. This finding differs from a previous report showing
that water stress increased IAA concentrations, thereby inducing epinastic growth in radiata pine [32].
However, the finding agrees with our previous study in which drought stress resulted in significant
growth reduction in the aboveground portions of Masson pine, whereas the root growth and root–shoot
ratio both significantly increased [9]. The results indicate a growth strategy to reduce aboveground
growth and increase root growth, which favors water absorption from the soil and contributes to the
adaptation to drought stress [33].

4.3. Defense Response of the Plant–Pathogen Interaction Pathway under Light Drought

The systematic defense response of plants under abiotic stress is an important resistance
mechanism of coniferous forests [34]. In our study, the plant–pathogen interaction enriched pathway
shown in Figure 5 was strongly activated in Masson pine seedlings under LD (ko04626). First,
pathogenic signaling was transmitted to the cytoplasm by the recognition of FLS2 (flagellin-sensitive 2)
and EFR (EF-TU receptor). Second, the PTI response was triggered and amplified. FLS2 and EFR were
both up-regulated to activate the downstream gene encoding MEKK1 (mitogen-activated protein kinase
kinase kinase 1); subsequently, MEKK1 signaling was enhanced to activate two separate pathways for
the negative and positive regulation of immunity [35]. Finally, within the cell nucleus, defense-related
genes, including one WRKY33 gene (c83644_g4), and its downstream pathogen-resistance genes NHO1
(glycerol kinase) and PR1 (pathogenesis-related protein 1) [36], were up-regulated. To date, WRKY TFs
have occasionally been described as having a regulatory role in the defense of conifer species, although
a regulatory role for WRKY has been more widely reported that overexpression of WRKY gene
enhances the resistance to tolerance and pathogen infection to drought stress in Grapevine [37] and
Horse gram [38]. Interestingly, our findings showed that the WRKY gene (c83644_g4) was up-regulated
under LD, but showed no changes were observed under MD and SD, indicating that WRKY was
induced upon light drought stress. These results provide evidence that WRKYs might play key
roles in the signaling and transcriptional regulation of defense responses in Masson pine under mild
drought stress.
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4.4. ABA Response under Light and Moderate Drought Stress

The plant hormone ABA is known to have a core role in the modulation of plant adaptation to
drought stress [39]. Although ABA biosynthesis, signaling and responses are considered to be closely
related to drought-resistance mechanisms in plants [40], information regarding the pivotal genes,
specific modes and signaling pathways involved in drought resistance in conifers remains lacking. In
this study, we observed that a gene encoding NCED (9-cis-epoxycarotenoid dioxygenase) (c71048_g1),
which is a crucial enzyme for the synthesis of ABA [41] that is often overexpressed in plants under
drought stress [3], was up-regulated under LD. Quan et al. [42] reported that ABAs are important
hormones related to drought stress in Masson pine, with ABA content increasing with increasing
drought stress. Thus, both ABA accumulation and the expression of a key gene related to ABA
synthesis were found to be up-regulated under drought stress in Masson pine. It can be inferred that
this up-regulation is beneficial to the development of plant drought tolerance. Moreover, three major
components associated with ABA signal transduction were also found to be differentially expressed
in this study. A gene encoding PYL (c87460_g1), an ABA receptor that takes part in activating ABA
responses [43], was up-regulated under MD versus CK, and MD versus LD. However, a gene encoding
PP2C, a type 2C protein phosphatase (c68631_g1) that is a negative regulator that inactivates SnRK2
protein kinases [44], was obviously repressed under MD versus CK, MD versus LD, and SD versus LD.
In addition, two genes encoding SnRK2 (c85767_g1 and c85767_g2), which enhance drought tolerance
by enhancing ABA signaling [45], were activated under LD. These results indicate that many important
genes related to ABA responses, all of which are involved in the ABA signaling pathway and its
double-negative regulatory system, promote the interaction between PYL and PP2C, thereby leading
to PP2C inhibition and SnRK2 activation in Masson pine. These findings are consistent with those
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of previous studies in which drought tolerance was putatively linked to ABA signaling networks in
plants [46]. In conclusion, the ABA-mediated response pathway was markedly activated under LD
and MD; thus, ABA plays a central role in drought stress responses in Masson pine.

4.5. Responses to Oxidative Stress under Moderate and Severe Drought Stress

Drought stress results in the overproduction of ROS in plants [4]. The activation of many
antioxidants that occurs due to drought is considered to be a protective mechanism against drought
damage [47]. In our previous study, the activity of SOD was found to be markedly increased under
LD [9], providing further evidence that the oxidative system might play an essential role in the response
to drought stress by regulating antioxidase activity to defend against ROS damage in Masson pine.

Moreover, other ROS-scavenging enzymes were up-regulated in the enriched glutathione
metabolism pathway involved in the responses to stress signals under MD and SD (ko00480) in Masson
pine. Two glutathione transferases (GST) genes (c92901_g1 and c93725_g3), which play a part in generic
detoxification and cell adaptability under stress conditions [48], were constitutively up-regulated under
different levels of drought stress in Masson pine. The expression of three GPX genes, namely, c92413_g1,
c92413_g2, and c88279_g1, which can reduce H2O2 (hydrogen peroxide) and lipid hydroperoxides in
the response to oxidative stress [49], was validated to be constitutively up-regulated with increasing
drought stress, suggesting that GPX was activated to enhance abiotic stress tolerance. The expression
of a GSR gene (c83219_g1), was upregulated to enhance plant tolerance to stress conditions [50] and
was also upregulated under SD, indicating that GSR plays a role in the defense against ROS in Masson
pine, even under severe drought conditions. Overall, these results suggest that glutathione is linked to
cellular defense mechanisms against stresses caused by drought and oxidants and that GPX, GST and
GSR may be positive regulators of drought tolerance in Masson pine.

Interestingly, most of the DEGs were found for the LD treatment, with fewer DEGs observed for
the MD and SD treatments. These results suggest that this elite genotype of Masson pine exhibits a
positive character of drought resistance in which a systemic response is rapidly activated to prevent
damage under light drought stress, which then gradually returns to baseline as an adaptation to
drought conditions under moderate and severe drought stress.

5. Conclusions

In this study, biological homeostasis in the Masson pine was reestablished through the
collaborative action of physiological and molecular responses and growth under drought stress
(Figure 6). Plant growth was slowed as an adaptation to drought stress, marked by down-regulation
of the growth elements IAA and ARF. Furthermore, Masson pine exhibited an active defense and
protection response that was characterized by a strong capacity for osmotic adjustment and the
overexpression of genes related to ABA biosynthesis and signal transduction, and ROS scavenging,
and it exhibited a rapid systemic defense against pathogenic effects. In addition, we found that
drought stress is linked to the differential expression of TFs that regulate circadian rhythm, which
has not previously been described in Pinus spp. These results will serve as a foundation for future
transcriptomic research into drought tolerance in Masson pine.
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