
Review

Use of Genomic Resources to Assess Adaptive Divergence and
Introgression in Oaks

Desanka Lazic 1 , Andrew L. Hipp 2 , John E. Carlson 3 and Oliver Gailing 1,4,*

����������
�������

Citation: Lazic, D.; Hipp, A.L.;

Carlson, J.E.; Gailing, O. Use of

Genomic Resources to Assess

Adaptive Divergence and

Introgression in Oaks. Forests 2021, 12,

690. https://doi.org/10.3390/

f12060690

Academic Editors: Mary Ashley and

Janet R. Backs

Received: 30 April 2021

Accepted: 24 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen,
37007 Göttingen, Germany; desanka.lazic@uni-goettingen.de

2 Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA; ahipp@mortonarb.org
3 The Schatz Center for Tree Molecular Genetics, Pennsylvania State University, University Park,

State College, PA 16802, USA; jec16@psu.edu
4 Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen,

37073 Göttingen, Germany
* Correspondence: ogailin@gwdg.de

Abstract: Adaptive divergence is widely accepted as a contributor to speciation and the maintenance
of species integrity. However, the mechanisms leading to reproductive isolation, the genes involved
in adaptive divergence, and the traits that shape the adaptation of wild species to changes in climate
are still largely unknown. In studying the role of ecological interactions and environment-driven
selection, trees have emerged as potential model organisms because of their longevity and large
genetic diversity, especially in natural habitats. Due to recurrent gene flow among species with
different ecological preferences, oaks arose as early as the 1970s as a model for understanding how
speciation can occur in the face of interspecific gene flow, and what we mean by “species” when
geographically and genomically heterogeneous introgression seems to undermine species’ genetic
coherence. In this review, we provide an overview of recent research into the genomic underpinnings
of adaptive divergence and maintenance of species integrity in oaks in the face of gene flow. We
review genomic and analytical tools instrumental to better understanding mechanisms leading to
reproductive isolation and environment-driven adaptive introgression in oaks. We review evidence
that oak species are genomically coherent entities, focusing on sympatric populations with ongoing
gene flow, and discuss evidence for and hypotheses regarding genetic mechanisms linking adaptive
divergence and reproductive isolation. As the evolution of drought- and freezing-tolerance have
been key to the parallel diversification of oaks, we investigate the question of whether the same or
a similar set of genes are involved in adaptive divergence for drought and stress tolerance across
different taxa and sections. Finally, we propose potential future research directions on the role of
hybridization and adaptive introgression in adaptation to climate change.

Keywords: Quercus; ecological speciation; genetic mosaic of speciation; introgression; reproductive
isolation; species concepts

1. Introduction

Darwin’s [1] account of the role of natural selection in speciation is arguably the
most unifying principle in evolutionary biology. Yet remarkably, the mechanisms by
which it may lead to reproductive isolation in the face of ongoing gene flow and the
affected genes are still largely unknown [2–5]. Ecological speciation—the evolution of
reproductive isolation between populations by adapting to different environments [2]—has
in the past two decades become widely recognized as an important source of species
diversity [6–10]. This perspective was accepted by many evolutionary biologists, building
off the biological species concept even before evidence mounted in support of ecological
speciation; but increasing evidence for environmental selection as separable from other
divergence mechanisms [10] has rendered the concept of ecological speciation a unifier for
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speciation drivers as diverse as climate, resource competition, and predation [10]. It has
become increasingly clear that the early focus on allopatric speciation, in which post-zygotic
incompatibilities evolved in separated populations with no or limited gene flow [11,12],
accounts for only a portion of the diversity of life [3,13]. To know the tree of life fully
requires studying barriers to gene flow in populations that are not completely diverged
and not yet reproductively isolated, before genetic changes contributing to reproductive
isolation become confounded with other differences that accumulate after speciation [3].

One difficulty in studying genetic signatures of sympatric speciation has been techni-
cal: studying the maintenance of species integrity in the face of gene flow relies strongly on
identifying enough molecular markers to tease apart the effects of genes that are driving
divergence from those that are homogenized by gene flow [2,14–16]. Leaning on this con-
cept of speciation in the face of gene flow, Via & West [17] coined the term “genetic mosaic
of speciation”, based on evidence that divergent selection affects the genes of adaptive
key traits while the rest of the genome can remain similar between species [18,19]. The
related metaphor of “genomic islands of divergence” describes genomic heterogeneity in
differentiation resulting from divergent selection [8,20]. Genomic regions under direct
selection—the “islands”—or loci linked to them are expected to show signatures of rela-
tively high interspecific differentiation in comparison to the genome as a whole. These
“islands” form and then grow in size due to “divergence hitchhiking” [3,17], a reduction in
gene flow in regions adjacent to selected genes that allows alleles involved in reproductive
isolation to accumulate in the face of interspecific gene flow [3,8,21]. Due to divergence
hitchhiking and a genomically localized reduction in interspecific gene flow, linkage dis-
equilibrium is expected to be higher in those regions that are under divergent selection
when compared to control regions [3,14,15,17].

While the role of environmental selection in speciation is widely recognized, the
genetic mechanisms linking adaptive divergence and reproductive isolation are still un-
clear [2,22–24]. The majority of adaptive divergence studies have been performed in model
organisms [25,26]. Only a few “speciation” genes, especially causing hybrid inviability and
sterility, have been identified, and mainly in model species [8,13,27–29]. As a consequence,
little is known about the locations and distribution of regions/loci involved in adaptive
divergence and reproductive isolation [30], especially in plants [24,29,31].

The high genetic diversity in tree species, especially in their natural habitats, makes
them particularly well suited to research into adaptive divergence in response to chang-
ing environments [32]. There are other advantages to choosing trees as models for the
study of genome-wide adaptive variation, including their limited history of domestication;
their large, open-pollinated native populations [33]; their predominantly random mating
systems; and their large effective population sizes [34]. Advances in next-generation se-
quencing technologies and bioinformatics in the last 15 years have greatly impacted our
understanding of forest tree diversity and biology [35]. Tree genomics has benefited from
the sequencing of several whole genomes [36–41], which have enabled studies of evolu-
tionary history [32] and the potential roles of tens of thousands of genes on diversification,
adaptation, and tree biology generally [35,38].

Oaks have long been recognized as important models for understanding ecological
controls on speciation and gene flow, as edaphic and climatic factors shape patterns
of distribution and introgression [42–46]. This may make oaks particularly well suited
to understanding the genomic mosaic of introgression. A recent population genomic
study using whole-genome sequencing in oaks has confirmed that divergence between
hybridizing species is limited to a subset of the genome, maintaining species integrity in
the divergent portions while the rest of the genome is permeable to gene flow: high levels
of differentiation (FST > 0.8) were found at narrow regions distributed across the genome
with an average width of 10 kb, indicating that selection in these regions counteracts
the homogenizing effect of gene flow [47]. In this context, a question of interest to our
understanding of the longevity and persistence of species is whether species evolved in
allopatry or sympatry, and whether and in which period there was potential gene flow
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between them, including whether introgression has been ongoing through the lifespan of
the species or initiated after secondary contact [48]. Because divergent selection in strictly
allopatric species proceeds unaffected by homogenizing effects of gene flow, the genetic
mosaic is less pronounced in species that have diverged in allopatry [8]. In this respect, too,
oaks present themselves as an ideal study subject, as the high diversity of oaks growing
in sympatry across most of North America and much of western Europe and east Asia
serve as replicated natural experiments in oak diversification. At an estimated 435 species,
Quercus is one of the most diverse and most widespread woody plant genera in the northern
hemisphere [44,49–52], and whole genomes of Quercus robur [53] and Q. lobata [54], as well
as draft genome of Q. suber [41] position oaks as a model genus for understanding the
evolution of reproductive isolation and divergence in the face of gene flow.

2. Oaks as a Model to Study Adaptive Divergence between Species

Oaks are important both economically and ecologically, not just for human use, but
also as a shelter and food source for wild animals [55]. As far back as the colonization of
early Homo sapiens of the Middle East and Europe [56], oaks are entangled in human history,
symbolism, tradition, economics, and livelihoods [57–61]. Acorn findings in caves suggest
that oaks fed humans in their early settlements and have long served as both a “famine
food” and a chosen food, even when other options are available [59,62]. Oaks have also
been valuable in cultural and religious life, from association with important gods (e.g., [58])
to becoming a national symbol for such modern countries as Germany, the UK, Poland,
Portugal, and, in 2004, the USA [31]. In a review by Leroy et al. [31], the symbolism of oak
trees and their significance for humans was connected with attributes of the oak genome.
For example, longevity, cohesiveness, and robustness of oaks are three pillars on which the
symbolism of oaks stands. As a genetic consequence of longevity, accumulation of heritable
mutations is expected. However, Leroy et al. [31] summarized recent findings [38,63]
that independently reported only small numbers of somatic mutations (17 and 46 single-
nucleotide polymorphisms) at the whole-genome level. Their robustness was supported by
Plomion et al. [38], revealing patterns of immune system diversification with an expansion
of resistance (R) genes accounting for 9% of the gene catalogue [31]. Thus, the importance
of oaks to humans is deeply rooted in their diversification history and biology.

Oaks have been described as a thorny problem [31] and a “worst case scenario”
for the biological species concept [13], and they have been included among “botanical
horror” taxa [64]. Oaks are problematic for classical biological or morphological species
concepts because of weak interspecific boundaries and high intraspecific variation relative
to interspecific differentiation [65–70]. Due to these observations, it has been suggested
that speciation in oaks may be driven by ecological factors, as reflected in their occur-
rence in different micro-environments, rather than by strong post-zygotic reproductive
isolation [71,72]. Oaks, however, are not unique in the difficulties they pose for delimiting
species in light of hybridization. They do exhibit introgression, but many other taxa do
as well. Perhaps more important is the fact that oaks are particularly well studied and
extremely rich in species, with many occurring in sympatry and thus subject to multispecies
introgression [42,73]. Oaks are, for these reasons, among the most famous syngameons
(groups of species that maintain their distinctions despite sympatry and regular introgres-
sive hybridization [73–76]).

3. The Reality of Oak Species and Oak Introgression

Species boundaries in oaks are often genetically and morphologically ambiguous [55,66,77,78].
Still, different species typically form genetically disjunct clusters [66,78–83] and maintain
ecological distinctions, with ecologically divergent oaks commonly growing together in
the same forest but in different micro-environments [84–87]. Oaks hybridize readily within
sections, but hybrids between different sections are exceptionally rare in botanical gardens
and have not been recorded in nature [55,88,89], though ancient introgression has been
detected between sections Quercus and Ponticae [90] and sections Quercus and Protobal-
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anus [91,92]. Good examples of species pairs that occur in sympatry but differ in local
adaptations (for example to drought) include Q. rubra and Q. ellipsoidalis in North Amer-
ican red oaks (section Lobatae), Q. robur and Q. petraea in European white oaks (section
Quercus) [93–95], and Q. virginiana and Q. geminata in the North American live oaks (section
Virentes) [96]. These and many other species pairs are known to hybridize where their
ranges overlap [70,77,97,98], with introgression shifting over time in many cases as climate
and habitats change [45,46,99]. Assessing levels of hybridization is necessary in studying
the effects of interspecific gene flow and divergent selection of species [100].

Until the 1980s, hybrids were characterized purely based on morphological charac-
teristics such as leaf morphology [67,101–106], and later based on genetic markers that
helped distinguishing species of the same taxonomic section [81,100,107,108]. Some studies
have combined morphometric and molecular approaches to identify hybrids [68,109–111].
While understanding morphological and functional variation in combination with molec-
ular variation is key to understanding how introgression shapes species evolution and
ecology, molecular genetic markers are more useful for identifying hybrids and quantifying
introgression, because molecular markers generally show higher discriminatory power
and accuracy in species assignment than morphological characteristics and directly sample
the genomic background that is most often the target of studies.

Hybridization rate and introgression can be estimated based on identification of
hybrids and introgressive forms across species ranges or in sympatric stands using genetic
assignment analyses in adult trees, seeds or seedlings; or using paternity analysis, which is
limited to sympatric stands [89]. In either case, analyses are based on species-discriminating
markers (fixed or nearly fixed within species; e.g., [75,112] or markers polymorphic in all
species (e.g., [113])). Several studies of contemporary interspecific gene flow using paternity
analysis have been conducted in multi-species stands of European white oaks [98,114,115].
A comparatively high level of interspecific gene flow and introgression was found in the
contact zone of species in each example. Using a set of six polymorphic microsatellite
loci and paternity analysis in 320 acorns from four oak species, Curtu et al. [98] found
an overall hybridization rate of 35.9%, with first generation hybrids present at a rate of
8.4%. Similarly, by means of paternity analysis, a comparable rate of F1 hybrids (9.0%) was
found in 623 acorns by Lepais and Gerber [114] using 10 microsatellite markers in four oak
species. Comparable overall proportions of hybrids between Q. petraea and Q. pubescens
(26%) were revealed by paternity analysis of acorns by Salvini et al. [115]. Microsatellite
markers were used also in contemporary gene flow studies in North American oaks [70,77].
Paternity analysis of Q. coccinea, Q. rubra, Q. velutina and Q. falcata demonstrated more than
20% of seedlings in two mixed-species stands to be potential hybrids [70]. Interspecific
gene flow was also confirmed by Khodwekar and Gailing [77] based on parentage analysis
of 466 seeds collected from 15 genetically assigned seed parents in sympatric stands of
Q. rubra and Q. ellipsoidalis, which revealed that 3.9% of the seedlings (0–25% for individual
seed parents) were derived from interspecific matings.

Genetic assignment analyses are more commonly used to estimate introgression rates. An-
alyzing five nuclear microsatellite markers with both multivariate discriminant and Bayesian
clustering methods implemented in STRUCTURE [116], Valbuena-Carabana et al. [87] quanti-
fied genetic differentiation and introgression in 176 adult trees of Q. petraea and Q. pyrenaica.
They found reliable minimum estimates of introgression between species to be relatively
low, identifying only 8.5% of adult trees as putative first and later generation hybrids.
Similar results were found in a Romanian oak stand comprising the four interfertile species
Q. petraea, Q. robur, Q. pubescens, and Q. frainetto [80]. Using genetic assignment analy-
sis in adult trees, introgression rates between pairs of species varied, with the highest
value between Q. pubescens and Q. frainetto (16.2%) and the lowest value between Q. robur
and Q. frainetto (1.7%). Comparatively low percentages of adult trees (2.1%–4.6%) and
acorns (1.5%) with hybrid ancestry were found in mixed stands of Q. lobata and Q. dou-
glasii [108,117]. While hybrids are often comparatively frequent in direct contact zones of
interfertile species, they rarely occur in pure stands (e.g., [81]). Despite this preponderance
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of gene-conduits in the contact zones of species, we still observe long-term maintenance
of species. A range-wide study of four interfertile oak species—Q. ellipsoidalis, Q. coccinea,
Q. rubra, and Q. velutina—demonstrated that genetically intermediate individuals or puta-
tive F1 hybrids were present in contact zones between species, where they were inferred to
act as a bridge for recurrent gene flow [83]. The same four species were studied by Zhang
et al. [118] using maternally inherited chloroplast DNA markers for the first time in red
oaks. At three chloroplast microsatellite markers, a total of 23 haplotypes were observed.
In all cases, neighboring interspecific population pairs shared haplotypes, indicating con-
temporary interspecific gene flow. Using a set of 58 unlinked SNPs from coding regions,
Reutimann et al. [65] assessed the extent of admixture in three presumably mixed popu-
lations of the white oak species Q. robur, Q. petraea, and Q. pubescens across Switzerland.
The Bayesian STRUCTURE method and a machine learning approach (support vector ma-
chine) recovered admixture levels of 35–36%. Levels of admixture varied across the species
pairs, but the highest degree was detected in mixed stands of Q. petraea and Q. pubescens,
indicating high levels of gene flow between these two species. Since no fixed alleles were
recovered in any of the taxa, levels of interspecific heterozygosity could not be quantified.
This may be a general issue in oaks, in which pure stands (lacking admixture) and fixed
alleles are nearly impossible to find (though cf. [112], in which apparently fixed SNPs were
identified using RAD-seq and then used to genotype range-wide samples in [75]).

The weight of evidence thus demonstrates two important facts. First, oak species
cohere genetically. When DNA data are directed at oaks, for the most part they are found
to cluster in genetic space (going back to the foundational study of [119]). The published
exceptions we are aware of (e.g., [70,120,121]) involve relatively small numbers of mi-
crosatellites, and studies using larger numbers of markers on the same taxa (e.g., [66,75])
have generally found the species to separate in molecular genotypic space. Second, numer-
ous studies (cited in paragraphs above) demonstrate that introgression is ongoing at a fairly
high rate, and consequently that conduits for gene flow between species may be present
on the landscape at rates of 9–20% or higher, depending on the species pair. Assuming
that these rates are representative of the long-term histories of gene flow between oak
species, these two findings in combination strongly suggest that oaks cohere genetically
in spite of ongoing gene flow. Thus, the data support the existence of a syngameon of
interconnected oak species, evolving both separately and together, as hypothesized in the
mid-1970s [71,72].

4. Evidence for Selection against Hybrids

While the number of hybrids and introgressive forms seems to be low in adult
trees [80,81,87,89], gene flow analyses suggest frequent interspecific gene flow [70,78,98,115],
which may suggest selection against hybrids from seedling to adult stage. Thus, Curtu et al. [98]
found a much higher proportion of hybrids in the seed generation as determined by pater-
nity analysis (35.9%) when compared to the adult trees (20.1%) in a multi-species oak stand,
suggesting selection against many or perhaps most hybrid genotypes may be a mechanism
for the maintenance of species identity. On the other hand, Abraham et al. [117] found low
numbers of hybrids in both adults (2.1%) and acorns (1.5%) in Q. lobata and Q. douglasii
stands. It is important to note that these observational studies cannot distinguish between
selection and stand-level historical changes in species composition and structure, climate,
or management that might result in inter-generational differences in introgression rate.
While they are strongly suggestive, direct evidence of selection against hybrids would
require the assessment of hybrids and parental species over time, ideally from seed to
juvenile and adult stage. To our knowledge, such long-term experiments have not been
performed yet. In their absence, the sum of observational studies in independent mixed-oak
stands showing consistently higher introgression rates in the acorn/seedling generation
relative to the adults nonetheless gives credence to the hypothesis that selection against
most but not all hybrid genotypes contributes to the observed genomic heterogeneity of
introgression observed in adult trees.
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Experimental evidence for selection against hybrids was provided by the comparison
of non-germinated but viable seeds and germinated seedlings from a hybrid zone between
Q. rubra and Q. ellipsoidalis in a greenhouse common garden experiment [122]. Using genetic
assignment analyses at microsatellite markers, Gailing and Zhang [122] characterized and
compared the number of hybrids and “pure” species between non-germinated acorns and
seedlings of two interfertile sympatric species, Q. rubra and Q. ellipsoidalis. Hybrids and
introgressive forms in non-germinated acorns showed a frequency of 43.6% while they
had a much lower frequency of 9.3% in the seedlings, indicating early selection against
hybrids possibly as result of intrinsic incompatibilities between species [122]. However,
direct evidence for environment dependent selection against hybrids is still missing.

5. Distribution of Hybrids and Species Indicates Environmental Selection

Curtu et al. [80,98] found in a multi-species stand in central Romania that the white oak
species Q. robur, Q. petraea, Q. pubescens, and Q. frainetto were distributed according to their
soil preferences and environmental requirements, and that interspecific hybrids occurred in
environmentally intermediate contact zones between species. This result is in accordance
with several other findings in oaks [46,70,77,86] and a long history of expectations about
the effect of “hybridization of the habitat” on distribution of plant hybrids [123,124]. For
example, Khodwekar & Gailing [77] found that the distribution of species and hybrids
was significantly associated with soil properties (i.e., soil water holding capacity, nutrient
availability). Additionally, closely related oaks have been found to co-occur less frequently
at the plot scale than distantly related oaks due to convergence on traits under strong
environmental filtering [84,125]. The rapid evolution of fine-scale habitat differentiation
seems, in fact, to be a hallmark of oak diversification [126] that contributes to the separation
of potentially introgressing species both among and within forest stands.

These results suggest that pre-zygotic [97,100,114] and post-zygotic [98,122] isola-
tion mechanisms play complementary roles in the maintenance of species identity in
oaks. Findings of Gailing and Zhang [122] together with species distribution according
to environmental requirements and observed lower hybrid frequencies in ancient hybrid
zones [127,128] serve as indirect evidence for selection as an important post-zygotic iso-
lation mechanism in oaks. Experimentally disentangling pre-zygotic and post-zygotic
isolation mechanisms might include (1) observations of the number of produced seeds
and seedling survival derived from intra- and interspecific crosses, accompanied by (2)
an assessment of hybrid survival in transplant experiments. Significantly lower hybrid
survival as compared to “pure” species in each parental environment but higher survival
in intermediate environments would indicate environmental selection (Figure 1). Alterna-
tively, lower hybrid survival across all three environments would be indicative of selection
against hybrids as result of intrinsic incompatibilities between species. While field studies
are most appropriate for directly estimating selective effects, the axes of environmental
variation affecting hybrid performance in intermediate and parental environments might
be distinguished under controlled greenhouse conditions, for example with contrasting
watering regimes. Whatever their form, experimental studies are an important next step
toward a more nuanced understanding of the role of selection in oak species cohesion.
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tal selection in favor of hybrids in ecological transition zones. Scenario 2: Hybrids show low survival in each of the three 
environments, suggesting selection against hybrids. Created with BioRender.com, accessed on April 1st 2021. 
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interspecific gene flow, but introgression of Q. ellipsoidalis-specific alleles at a species-dis-
criminating outlier locus (CONSTANS-like 1) into Q. rubra occurred at a lower rate than the 
introgression of Q. rubra-specific alleles into Q. ellipsoidalis [129]. Sympatric populations in 
dry outwash plains exhibited a similar discrepancy between symmetrical genome-scale in-
trogression and asymmetrical outlier-locus introgression. However, outlier introgression 
from the drought adapted species Q. ellipsoidalis into Q. rubra was more prevalent in these 
dry outwash plains [77], concordant with the predictions of adaptive introgression [130]. 
Different directions of outlier alleles introgression in sympatric and parapatric populations 
suggests shifting selection regimes on these outliers in different spatial and environmental 
contexts. As these two species have different environmental preferences and outlier allele 
introgression seems to be related to environmental contrasts, the maintenance of genetic 
differences between these two species is likely dependent at least in part on environmental 
selection [77]. 

Clinal variation consistent with the geographic variation of introgression from Q. robur 
into Q. petraea displayed by some genes associated with phenological divergence in Q. pet-
raea indicated adaptive introgression in outlier regions [44]. Quercus robur-like alleles, for 
example SNPs located in two important genes controlling stomatal responses, RopGEF1 and 
PBL10 (=APK1b) [131,132], were found with higher frequency in Q. petraea populations grow-
ing at higher altitudes in cooler and/or wetter environments, indicating that introgressed 
alleles from Q. robur serve as a source of phenotypic and potentially adaptive variation in 
Q. petraea [44]. These findings mirror and move beyond the findings of an earlier study 

Figure 1. Outline of suggested transplant experiment. Hybrids and parental species are planted in each parental environment
and in an intermediate environment. Environmental selection suggests the highest survival rate of parent species A and B in
their respective environments. Two different scenarios may be expected for hybrids. Scenario 1: Hybrids show low survival
in each parental environment, but higher survival in the intermediate environment, suggesting environmental selection in
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6. Adaptive Introgression

The introgression of potentially adaptive alleles can have a large impact on adapta-
tion to different environmental conditions. Evidence for adaptive introgression of outlier
alleles was provided by the comparison of hybrid numbers and outlier allele frequencies
in sympatric and parapatric populations of Q. rubra and Q. ellipsoidalis [77,129]. In neigh-
bouring parapatric populations of the two species, genetic assignment analysis indicated
symmetric interspecific gene flow, but introgression of Q. ellipsoidalis-specific alleles at a
species-discriminating outlier locus (CONSTANS-like 1) into Q. rubra occurred at a lower
rate than the introgression of Q. rubra-specific alleles into Q. ellipsoidalis [129]. Sympatric
populations in dry outwash plains exhibited a similar discrepancy between symmetrical
genome-scale introgression and asymmetrical outlier-locus introgression. However, outlier
introgression from the drought adapted species Q. ellipsoidalis into Q. rubra was more
prevalent in these dry outwash plains [77], concordant with the predictions of adaptive
introgression [130]. Different directions of outlier alleles introgression in sympatric and
parapatric populations suggests shifting selection regimes on these outliers in different
spatial and environmental contexts. As these two species have different environmental
preferences and outlier allele introgression seems to be related to environmental contrasts,
the maintenance of genetic differences between these two species is likely dependent at
least in part on environmental selection [77].

Clinal variation consistent with the geographic variation of introgression from Q. robur
into Q. petraea displayed by some genes associated with phenological divergence in
Q. petraea indicated adaptive introgression in outlier regions [44]. Quercus robur-like al-
leles, for example SNPs located in two important genes controlling stomatal responses,
RopGEF1 and PBL10 (=APK1b) [131,132], were found with higher frequency in Q. petraea
populations growing at higher altitudes in cooler and/or wetter environments, indicating
that introgressed alleles from Q. robur serve as a source of phenotypic and potentially
adaptive variation in Q. petraea [44]. These findings mirror and move beyond the find-
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ings of an earlier study that used range-wide genome scans of AFLPs in Californian red
oaks [42] to show that the movement of introgressed loci beyond the natural range of
their source species was predicted by climate, but without identifying the genes involved.
With ongoing climate change, we may expect to find additional opportunities to study
adaptive introgression. It is anticipated, for example, that Mediterranean oaks (Q. pyrenaica
and Q. pubescens) will migrate north into the distribution area of temperate oak species
(Q. petraea and Q. robur), providing a chance to study evolutionary processes in action at the
present time [24]. Beginning these studies now may give us the opportunity to understand
the roles of hybridization and adaptive introgression in climate change adaptation [47].

7. Oak Reference Genome Sequences

A full appreciation of all of the genetic components of variation underlying the capac-
ity for adaptive divergence, speciation, reproductive isolation, and individual quantitative
adaptive traits ultimately requires high-quality genome sequence assembly references [133].
Reference chromosome-scale genomes support investigations into variations in the coding
sequence, chromosome structure at the macro (whole-genome) and micro (indel) levels,
regulatory elements, non-coding RNAs, and positional effects (such as repetitive DNA
environs). The approach initially available for assembling draft genome references was the
de novo assembly of contigs and scaffolds, which for oak species included pedunculate
oak, Q. robur (17,910 scaffolds) [53], and valley oak, Q. lobata (18,512 scaffolds) [54], both
in the Quercus section of the genus and Q. suber (cork oak, (23,347 scaffolds) [41]) in the
section Cerris. The Q. robur de novo assembly scaffolds were then anchored (ordered)
by reference to a high-density genetic linkage map [134], providing chromosome-scale
sequences for Q. robur covering 96% (716.6 Mb) of the haploid genome size [38]. The
contiguous chromosome-scale genome for Q. robur contains 90% of the consensus set of
25,808 annotated protein-coding genes predicted in the de novo genome. Certain features
of oak genomes, discovered from the chromosome-scale genome assembly of Q. robur,
may impact studies on hybridization, introgression, and adaptation, including a high
level (35.6%) of proximal tandem duplications of genes and inheritance of somatic mu-
tations arising during the long lifespan of oak trees [38]. The extent to which tandem
duplication of genes is consistent across the genus, or specific to lineages within oaks, will
require chromosome-scale genome assemblies for representatives of the other sections of
the oak genus. Recent technology advancements for enabling chromosome-scale genome
assemblies, such as Hi-C and nanopore, are now widely in use. A contiguous chromosome-
scale genome assembly for northern red oak (Q. rubra), in the Quercus section Lobatae, has
recently been completed and will soon be released on the Joint Genome Institute’s Phyto-
zome 13 (https://phytozome-next.jgi.doe.gov/, accessed on 28 April 2021). The northern
red oak genome, and anticipated additional chromosome-scale oak genomes for oaks, will
enable detailed comparative studies at the whole-genome level on pan-genome organiza-
tion, phylogeny, maintenance of species integrity, hybridization, and adaptations among
oaks genus-wide.

8. Genomic Distribution and Architecture of Differentiation

As already pointed out, selection may direct interspecific gene flow between sympatric
oak species. However, outliers exist because effective gene flow is in at least some loci
reduced, potentially accelerating the accumulation of alleles involved in reproductive
isolation [21]. Genome scans in both European white oaks (section Quercus in part) and
North American red oaks (section Lobatae), each of which is composed of ecologically
divergent but interfertile oak species, have revealed strong divergent selection on only
a few so-called outlier loci [14,44,79,135,136]. Outlier loci exhibit high allele-frequency
divergence and are presumed in many cases to be affected by selection in the genomic
region in which they occur, due either to direct selection or selection on closely linked
loci. They are referred to as “outliers” because they exhibit differentiation that deviates
significantly from neutral expectations [136]. Methods that are widely used to detect these

https://phytozome-next.jgi.doe.gov/
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loci are FST-based neutrality tests, where the FST values of individual loci are tested against
a simulated null distribution that is derived from a neutral island model of migration [137].
Another method widely used is the Bayesian method as implemented in BAYESCAN [138].
Alternative methods use environmental variables for outlier detection, implemented in
software such as BAYENV2 [139] and BAYESCENV [140]. There are some constraints
of FST outlier detection methods that should be considered, such as number of sampled
demes [141] and population structure [142], and it does not display absolute differentiation,
but differentiation relative to the total variation (see [143]). The menagerie of genomic
tests for selection is the subject of a specialized literature (e.g., [144–146]) that is well
beyond the scope of our review. In concert, these methods comprise a suite of tools,
in some cases complementary, in others redundant. Overall, however, these methods
are crucial to answering a question central to understanding the genomic architecture
of differentiation and adaptive introgression in oaks and other species: which loci are
exchanged between species, which are not, and under what spatial and environmental
conditions does differentiation give way to introgression? Once identified, divergent loci
can be localized in the genome using high resolution genetic linkage maps anchored to
scaffolds of sequenced genomes [33,89,134].

Outlier loci have been identified for different oak species with contrasting ecological
preferences, few of them showing very high interspecific differentiation as evidence for
strong divergent selection. For example, one FST outlier (FIR013, an EST-SSR [147]) was
identified when screening four Q. rubra/Q. ellipsoidalis species pairs from three different
geographic regions using nuclear microsatellite markers and expressed sequence tag EST-
SSR markers [82,136]. FIR013 was detected as an outlier in all geographic regions and
pairwise comparisons, and was almost fixed for alternative alleles in the two species with
values of interspecific FST ranging from 55% to 80%. The EST from which FIR013 was
developed was annotated as CONSTANS-like (COL) gene, a candidate gene for flowering
time and growth cessation in late summer [148]. CONSTANS-like genes are also involved
in growth/development and phenology in other species [149,150], and it is thus possible
that this gene may play a role in adaptive divergence between species through both
ecological and phenological divergence [136]. Another outlier identified between Q. rubra
and Q. ellipsoidalis included a histidine kinase 4-like gene (marker GOT021) [81], which
was also detected as an outlier between Q. pyrenaica and Q. faginea [14]. Histidine kinase is
shown to be an important part of a signaling cascade to effect stomatal closure in response
to environmental and endogenous stimuli in Arabidopsis [151]. Additionally, GOT021
underlay a QTL for leaf shape variation in a Q. robur full-sib family [152]. The fact that
it is an FST outlier in different sections suggests that this marker may be involved in the
maintenance of species integrity across a broad phylogenetic range of oaks as a result of
parallel environmental selection. The genomic architecture of such loci associated with
species differentiation may be non-random and under parallel divergence pressure across
the genus. A study of genomic coherence in eight species of the eastern North American
white oak syngameon, for example, found SNPs that are fixed or nearly fixed across species’
ranges [75]. SNPs divergent between species map back to all 12 Quercus linkage groups
(chromosomes) and are separated from each other by an average of 7.47 million bp. The
proportion of divergent SNPs separated by <10,000 bp is significantly higher than the null
distribution, suggesting that genome-wide patterns of divergence may be concentrated
on chromosomes or in regions of the genome that reflect a higher-than-average history of
among-species divergence.

An outlier screen using genomic SSR markers widely distributed across the genome
was performed in European white oaks as well [14,79,135]. Scotti-Saintagne et al. [79]
recorded a potential hotspot of interspecific differentiation between Q. robur and Q. petraea
on linkage group 12 (LG12). Goicoechea et al. [14] included related Mediterranean species,
Q. pyrenaica and Q. faginea, in the analysis. Two genomic SSRs, QrZag87 (located on LG2)
and QrZag112 (LG12), were identified as outliers in Q. pyrenaica/Q. faginea [14], as well as
in Q. robur/Q. petraea [135].
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Leroy et al. [44] performed genome-wide scans in Q. petraea populations sampled along
latitudinal and elevational gradients to study local adaptation. Additionally, reference
populations of other European white oak species were included (Q. robur, Q. pubescens
and Q. pyrenaica) [47] to detect outliers potentially discovering footprints of divergence
between these populations. To identify SNPs potentially subjected to selection within
Q. petraea, XtX statistics (analogous to FST but specifically corrected for covariance matrix
of allele frequency between populations, accounting for neutral correlations of allelic
frequencies [139]) were calculated. 761,554 SNPs deviating from neutral expectations
distributed over all chromosomes were detected, which is 2.05% of all investigated SNPs.
Outliers were strongly enriched in SNPs which differentiated Q. robur from Q. petraea:
strong correlations between intraspecific XtX values in 18 Q. petraea populations and
interspecific FST between Q. robur and Q. petraea suggested that these SNPs are potentially
under diversifying selection within and among species. Among the SNPs detected in
Q. petraea association studies between genotype and environment/phenotype, 1331 SNPs
were associated with temperature, 2932 with precipitation, and 1572 with leaf unfolding.
The largest proportion of SNPs was significantly associated with both temperature and
leaf unfolding, and those were highly enriched in SNPs strongly differentiated between
Q. robur and Q. petraea. Subsequently, 167 unique candidate genes involved in different
growth and developmental processes such as stomatal responses to water stress (e.g., ALY4,
ALMT9, PBL10, PP2AA, RopGEF1, SUS3, SCD1) and some temperature associated genes
acting as regulators of production of gibberellins were identified (e.g., GAMT2, ASPG1 or
GA2ox) [44].

In a companion paper, Leroy et al. [47] searched for candidate genes in regions
enriched in outliers in the same four European white oak species based on a large data
set of 31 million SNPs. In total, 227 genes were identified, from which at least 32 genes
were assigned to three major functional categories (genes underlying ecological preferences
of the four species, genes involved in biotic interactions, and those involved in intrinsic
barriers (for the list of genes see Table 2 in [47])). Among these 32 genes, 6 candidate genes
were detected as outliers for all species pairs. Four of these genes are putatively involved
in intrinsic barriers, two are involved in pollen development (Cycloartenol synthase 2), and
two in photoreceptor and UV-B tolerance. One of these—UVR8—was also detected as a
gene under positive selection in Juglans siligata [153]. The other two outliers have a putative
role in ecological barriers (regulator of root growth and role in soil-water deficit stress).
Four outlier candidate genes related to drought tolerance were present in all observed
species pairs except Q. robur–Q. petraea [47], which is consistent with the higher drought
tolerance of Q. pubescens and Q. pyrenaica than in these two species [154]. One of the genes—
VRN1, detected in all species pairs except in Q. robur–Q. petraea—plays a role in acclimation
to low temperatures, and has been identified as a candidate gene for cold tolerance in
many other plant species [155]. In general, most outlier SNPs contributing to reproductive
barriers differentiate southern from northern species, suggesting that these barriers are
driven by climate preferences [47]. Another association study on Q. robur, Q. petraea, and
Q. pubescens was conducted by Rellstab et al. [156], who identified common patterns of
SNP-environment associations across species for seven genes among 95 targeted genes,
suggesting a role in local adaptation [156]. Genes gigantea and galactinol synthase (GolS1)
from this study were also detected by Alberto et al. [157] as candidate genes for bud burst
in Q. petraea. Additional genes showing patterns of local adaptation across different oak
and related species of the beech family can be found in a recent review [158].

Whole genome outlier screens across species pairs can be used in combination with
association analysis within species sampled across environmental gradients (Figure 2) to
detect genes involved in both local adaptation within species and adaptive divergence
between species. Such outliers, present in both analyses, are candidate genes for adaptive
divergence and reproductive isolation between species [44,159]. Association analyses of
genetic variation (single nucleotide polymorphisms, SNPs) with adaptive trait variation
can be performed in segregating populations using QTL mapping approaches to detect
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associated genomic regions [79,134,160]. To narrow down these regions to individual
genes, association mapping in unstructured populations such as provenance trials is re-
quired [133]. Additionally, environmental association analyses between SNP variation and
environmental variables can be used to identify adaptive genetic variation [44,65,157,161].
Moreover, populations in extreme environments of the environmental cline can be selected
for outlier analyses [33].
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A final approach that has been illuminating in understanding the genomic architecture
of differentiation in oaks is mapping phylogenetically informative loci back to the genome
to determine whether (1) loci that recover introgression history are genomically clustered,
following population-level studies of species divergence (e.g., [79]); or (2) loci that track
divergence are replicated in different clades. Several studies have utilized phylogenomic
datasets to explicitly model divergent vs. introgressive histories in oaks [69,90,99,162–167].
Two studies have then mapped loci implicated in ancient introgression vs. divergence in
the white oaks (Quercus section Quercus) back to the genome to characterize the genomic
distribution of divergence history [49,163]. Both studies failed to find that introgressive loci
were clustered on the genome, presumably because the long history of recombination has
eroded linkage disequilibrium connecting loci in ancient introgression events. Moreover,
one of the studies [49] demonstrated that the loci recovering the divergence history in lieu
of the dominant introgression history for alternative regions of the white phylogeny are
also not related to one another. Thus, they reject the hypothesis that there are particular
genes or regions of the genome that define the oak phylogeny globally. The evolutionary
history of oaks is a mosaic history.
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9. Conclusions and Future Perspectives

As summarized above, many studies have dealt with hybridization in oaks, but the
decreasing costs and flexibility of whole genome sequencing and reduced representation
genomic sequencing make it possible to study the evolutionary implications of hybridiza-
tion and introgression at much higher genomic and spatial resolutions today [24]. To better
understand the genetic basis for the maintenance of species integrity in oaks in the face of
interspecific gene flow and the roles of genes that distinguish species, additional studies
observing outlier regions between sympatric oak species should be performed. Analyzing
oaks with different adaptations, for example to drought, might reveal whether there is a
higher number of genes associated with adaptive divergence for drought tolerance and
reproductive isolation between the ecologically divergent oak species in outlier genomic
regions than in shared regions. Comparison of outlier genes identified between species
with different environmental requirements across different sections can reveal genomic
divergence unique to oak sections, or parallel genomic divergence driven by natural se-
lection. Such outlier genes or regions detected across sections are prime candidates for
adaptive species divergence by environmental selection. Whole genome resequencing can
be used for the detection of such outliers and in combination with environmental associ-
ation analysis, genome wide association studies (GWAS), and QTL mapping, candidate
genes for speciation processes involved in adaptive divergence within and between species
can be identified.

The focus of this review is solely on oaks and their maintenance of species integrity
despite ongoing gene flow, hybridization, and introgression. Oaks, however, have the
potential to illuminate speciation patterns in complement with immensely different specia-
tion models such as sunflowers [168] and irises [169], where hybridization is a major driver
of speciation. By contrast with the other models, in which hybridization triggers speci-
ation [170], oaks exhibit a facilitation of adaptation via hybridization [44,48,69]. Equally
important, hybridization appears not to threaten species integrity in oaks, even though a
limited part of the genome—potentially a very limited portion, composed of only small
regions distributed across the genome—is responsible for maintaining species barriers [24].
Thus, oaks are an alternative model of species differentiation, maintenance, and conserva-
tion that are equally important to understanding the tangled ways of speciation.
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