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Abstract: Unmanned aerial vehicles (UAV) provide a new platform for monitoring crown-level
leaf phenology due to the ability to cover a vast area while offering branch-level image resolution.
However, below-crown vegetation, e.g., understory vegetation, subcanopy trees, and the branches of
neighboring trees, along with the multi-layered structure of the target crown may significantly reduce
the accuracy of UAV-based estimates of crown leaf phenology. To test this hypothesis, we compared
UAV-derived crown leaf phenology results against those based on ground observations at the
individual tree scale for 19 deciduous broad-leaved species (55 individuals in total) characterized by
different crown structures. The mean crown-level green chromatic coordinate derived from UAV
images poorly explained inter- and intra-species variations in spring leaf phenology, most probably
due to the consistently early leaf emergence in the below-crown vegetation. The start dates for
leaf expansion and end dates for leaf falling could be estimated with an accuracy of <1-week
when the influence of below-crown vegetation was removed from the UAV images through visual
interpretation. However, a large discrepancy between the phenological metrics derived from UAV
images and ground observations was still found for the end date of leaf expansion (EOE) and
start date of leaf falling (SOF). Bayesian modeling revealed that the discrepancy for EOE increased
as crown length and volume increased. The crown structure was not found to contribute to the
discrepancy in SOF value. Our study provides evidence that crown structure is a pivotal factor to
consider when using UAV photography to reliably estimate crown leaf phenology at the individual
tree-scale.

Keywords: drone; leaf phenology; individual tree level; species variations; cool temperate forest

1. Introduction

Plant phenology, which covers the annual developmental dynamics in plants (e.g.,
from bud burst in the spring to leaf falling in the autumn), has long been recognized as a
critical driver of ecosystem processes such as carbon assimilation and evapotranspiration.
It has also been suggested to be heavily influenced by climate [1]. Therefore, assessing and
monitoring phenological dynamics are key requirements to improving our understanding
of how plants respond to climate change and how this influences forest ecosystems. The leaf
phenology of large trees (i.e., crown leaf phenology) has been traditionally evaluated with
ground-based, visual observations, such as determining crown leaf cover (e.g., [2,3]).
Although this approach is useful for individual tree-level monitoring, it is labor intensive,
prone to human error and difficult to employ in tall, dense and multi-layered forests
where an observer cannot see the upper part of the crown. Near-surface remote sensing,
such as tower-mounted cameras (“phenocams”), provides the next step for individual-level
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phenology monitoring because phenocams can continuously capture images of multiple
crowns at high frequency and fixed viewing geometry without being obscured by clouds.
Furthermore, this approach enables researchers to objectively quantify leaf phenology
by calculating time series of crown “greenness” or “redness” based on the phenocam
images [4,5]. The discrete phenological transition dates derived from these time series
(e.g., start and end dates of leaf expansion and falling) have been used to explain temporal
changes in surface-atmosphere CO2 exchange (e.g., [6,7]), improve the parameters of
phenology models [8], and serve as a benchmark for determining the accuracy of results
provided by satellite-based phenology quantification methods [9]. However, in species-
rich forests, the limited area covered by phenocams cannot provide a sufficient sample
size for studying intra- and inter-specific variation in crown leaf phenology. In addition,
trees located closest to the phenocam dominate the field of view and are, hence, over-
represented, while more distant trees are under-represented. This may cause bias in the
phenology estimates of mixed forests with complex structures. Furthermore, the oblique
angle of tower-mounted cameras has been suggested to result in biased estimations of the
timing of canopy maturity when compared to ground observations of leaf phenology and
leaf area index (LAI) [10].

Drones, also referred to as unmanned aerial vehicles (UAVs), have been increasingly
used as a new option for monitoring crown leaf phenology. This recent application of
drones to phenology studies can be explained by their ability to produce aerial images
at the same spatial resolution as phenocams, yet cover vast areas -ranging from hectares
to multiple square kilometers—that will provide sufficient sample sizes for various tree
species. By combining structure-from-motion (SfM) photogrammetry and precise geospa-
tial information, undistorted and georeferenced nadir (downward-looking) images of the
canopy (i.e., orthophoto) can be developed from UAV photographs. This enables the
identification and analysis of extensive numbers of individual crowns across seasons and
years with the same spatial standard. In addition, trees in the orthophoto can be linked
with those on the ground so that data on species identity, stem diameter, growth rate,
physiological measurements, and micro-environmental conditions can be associated with
each crown in the image [3]; this characteristic enables analyses of phenology in relation to
these factors.

Despite these advantages, the application of UAV to vegetation phenology is still
a young field and, as such, a number of challenges still need to be addressed. One
of the main challenges is decoupling the influence of below-crown vegetation, such as
understory vegetation, subcanopy trees and branches of neighboring trees, from analyses,
as downward-looking imaging from the sky will inevitably include below-crown vegetation
through gaps within the crown. This differs from tower-mounted phenocams, which—due
to a near-horizontal view angle—include a substantially smaller share of below-crown
vegetation [9,11]. In temperate deciduous forests, understory species and subcanopy trees—
relative to canopy trees—tend to show earlier leaf expansion in the spring and/or later
leaf senescence in the autumn to enhance carbon gain [12–16]. In Japan, evergreen dwarf
bamboo dominates the understory layer of cool temperate forests. Therefore, in these types
of forests, the below-crown vegetation can be expected to significantly reduce the accuracy
of phenological metrics derived from UAV images. However, only a limited number of
studies have shown how below-canopy vegetation influences UAV-derived leaf phenology
(e.g., [17]), knowledge which is highly important for appropriately estimating inter- and
intra-species variation in crown leaf phenology.

Furthermore, there is limited empirical evidence concerning whether the phenolog-
ical metrics derived from UAV images are comparable to in situ ground observations.
This knowledge is crucial for advancing our understanding of phenology monitoring
with UAVs and bridging the current gap between the traditional approach and next
generation, UAV-based monitoring. Although only a handful of studies have explicitly
compared UAV-based approaches with in situ ground observations [2,17], research includ-
ing tower-mounted phenocams has revealed that canopy-level green chromatic coordinate
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(GCC) can be used to successfully estimate the start date of leaf emergence. Neverthe-
less, GCC-based estimates yielded an earlier end date of leaf expansion than what was
determined from ground observations [10,18,19]. Keenan et al. [10] concluded that the
earlier spring GCC peak should be attributed to the oblique angle of the phenocam, as the
near-horizontal phenocam captures more layers of leaves when compared to nadir pho-
tography approaches (e.g., UAV), which can lead to an earlier saturation of effective LAI,
and thus, GCC. However, the nadir photography approach may also lead to the earlier
detection of the spring peak, especially in mature forests, because late-successional and
shade tolerant species, the major component of the mature forest, tend to form a thick and
dense crown [20,21]; as such the leaves organize to fill gaps both within and outside of
the crown for efficient light harvesting. The same logic can also be applied to autumn leaf
falling, i.e., nadir imaging approaches will report that leaves fall later than they actually do.
This is because even if a significant proportion of leaves falls, the leaves within the crown
will compensate for the gaps in the nadir crown images. These dynamics underlie the hy-
pothesis that the accuracy of the nadir photography approach varies with crown structure,
such as crown thickness, volume and leaf density. Since crown structure largely varies
according to age, growth environment, competition and species [20–22], it is important to
clarify how crown structure impacts the ability of UAV-derived phenological metrics to
accurately predict individual tree-scale variations in leaf phenology.

This article assesses the potential of the UAV-based approach to track individual-level
crown leaf phenology across 19 tree species in a cool-temperate deciduous forest in Japan.
The specific objectives are: (1) to clarify the influence of below-crown vegetation on crown
leaf phenology; and (2) to test the hypothesis that crown structure affects the leaf phenology
metrics derived from UAV images. To achieve these objectives, we compared the UAV re-
sults against the metrics derived from ground-based visual observations for 55 individuals
representing 19 species which have contrasting crown structures. With respect to evalu-
ating the influence of below-crown vegetation, we removed the influence from the UAV
images via visual interpretation, and then compared the metrics excluding below-crown
vegetation against crown-level GCC, which included below-crown vegetation.

2. Materials and Methods
2.1. Study Site

This study was conducted in a 1.5-ha permanent plot in a cool temperate forest on the
eastern side of Mt. Sobatsubu in Shizuoka Prefecture, Japan (35◦8′2.5′ ′ N, 138◦2′43.1′ ′ E;
1400 m above sea level). The mean annual temperature and precipitation in 2019 were
9.7 ◦C and 4099 mm, respectively. The plot comprises 43 tree species (39 deciduous
broadleaf, two evergreen broadleaf and two evergreen-coniferous trees), including a total
of 1100 trees with diameter at breast height (DBH) greater than 5 cm. The canopy trees have
an average height of about 18 m, the total basal area is 51.3 m2 ha−1, and the stand leaf area
index (estimated by the litter trap method) is 4.1 m2 m−2. The study plot faces southeast
and has moderate relief with slopes most frequently between 10 and 30%. The canopy
and subcanopy layers (ca. >15 m and 5–15 m, respectively) are predominated by Acer
shirasawanum (40.2% of the total basal area), with other overstory trees species, such as
Fagus crenata (7.4%), Betula grossa (5.7%), Fraxinus spp. (5.6%), and Acer nipponicum (4.5%).
The understory layer (<5 m) is predominated by shrub species, such as Lindera praecox,
Pieris japonica, Pourthiaea villosa, and Symplocos coreana. Vegetation on the forest floor is
generally sparse as a result of continuous excessive browsing by Sika deer since 2007.
It should be noted that the Sika deer have also killed canopy and subcanopy trees such as
Abies homolepis and Phellodendron amurense by frequent bark stripping, which has created
multiple canopy gaps. Although the study plot was surrounded with a fence in 2016,
the vegetation has not recovered completely as of 2019. Additionally, the population
of dwarf bamboo (Sasa borealis), which generally predominates the understory layer of
cool temperate forests, was exceptionally small because—in addition to excessive deer
browsing—mass flowering and die-off events occurred across the study region in 2016,
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and the population has not yet recovered. Therefore, the study site has substantially sparser
vegetation than could be expected under normal conditions, i.e., lack of excessive deer
browsing and mass flowering and die-off events.

To construct a digital surface map (DSM) and orthophoto of the study plot from the
UAV images, seven ground control points (GCPs) were positioned in canopy gaps across
the plot in 2018, and the coordinates of these GCPs were determined with a real-time
kinematic, global navigation satellite system (TOPCON Inc., Tokyo, Japan) with precision
of less than several centimeters.

2.2. Measurements of Crown Leaf Phenology

Crown leaf phenology was monitored using ground-based visual observations and
UAV images for 55 individual trees representing 19 deciduous broad-leaved species in the
canopy layer (Table 1). Ground observation and UAV image acquisition were conducted
on the same day from late April to mid-November in 2019, at a roughly weekly to biweekly
frequency depending on weather conditions. Measurements were taken across 21 distinct
occasions. Although in situ visual observation is a widely used approach for monitoring
crown leaf phenology, it is prone to human error, especially in multi-layered forests as
the study site used in the present research. To minimize such error, we selected target
trees for which the upper part of the crown was not only visible from the sky, but also
from the ground through gaps around the trees. Additionally, the ground observations
were performed by the same person throughout seasons to minimize any error associated
with different observers. With respect to UAV observations, two phenological metrics
were quantified from the images to evaluate the influence of below-crown vegetation,
such as understory vegetation, subcanopy trees and neighboring trees on the UAV-derived
phenology. These metrics were percent of crown leaf cover determined by visual inter-
pretation of UAV images (CLCUAV), and mean crown-level green chromatic coordinate
(GCCcrown). The same observer also estimated CLCUAV during each of the measurement
points. Although two different observers estimated crown leaf cover from the ground
observations and UAV images, both had been trained by the same expert and checked the
definition of crown leaf cover before starting the research to reduce any error associated
with different observers. Since our hypothesis for the variations between ground and UAV
observations was established during the process of data analysis, the hypothesis neither
affected the criteria for ground observations nor the visual interpretation of UAV images.
The entire workflow of data acquisition and analysis is represented in Figure 1.

Figure 1. Workflow of data acquisition and analysis (details in Section 2).



Forests 2021, 12, 425 5 of 18

Table 1. List of species, including crown structure and successional type, used in the research. The species successional type
was determined based on the regeneration status of seedlings in the canopy gaps at the study plot (personal observation)
and the database for shade tolerance by Niinemets and Valladares [23]. Species for which regeneration status could not be
confirmed in the study plot were classified as “Unknown”. Abbreviations: DBH—the diameter at breast height; H—tree
height; CA—crown projection area; CL—crown length.

No. Species Name Species
Code

Number of
Samples DBH (cm) H (m) CA (m2) CL (m) Successional

Type

1. Acer nipponicum An 5 20.13–53.81 14.75–20.40 14.63–80.90 4.93–10.90 Unknown

2. Acer rufinerve Ar 4 41.80–52.87 14.25–20.85 20.30–51.54 4.85–11.85 Mid

3. Acer shirasawanum As 3 42.44–76.60 17.15–21.10 53.10–83.15 9.40–10.50 Late

4. Betula grossa Bg 3 31.80–34.90 17.35–18.97 37.44–81.59 8.30–11.17 Early

5. Carpinus japonica Cj 1 26.75 15.45 27.67 6.5 Mid

6. Carpinus tschonoskii Ct 3 30.78–37.48 14.35–27.8 24.29–45.44 5.00–13.10 Mid

7. Chengiopanax sciadophylloides Cs 3 34.62–41.50 16.65–19.90 16.51–39.82 7.30–9.15 Mid

8. Cornus controversa Cc 2 22.63–55.21 13.50–20.95 5.55–111.77 3.20–11.35 Mid

9. Fagus crenata Fc 3 45.75–59.46 23.00–32.35 71.35–132.09 14.10–23.10 Late

10. Fraxinus lanuginosa Fl 3 23.22–32.47 14.35–16.05 27.73–52.09 4.05–6.45 Mid

11. Kalopanax septemlobus Ks 3 29.39–37.44 12.95–17.73 21.62–45.32 3.95–8.83 Mid

12. Magnolia obovata Mo 2 49.14–59.78 14.65–17.15 29.45–53.36 6.85–10.10 Unknown

13. Phellodendron amurense Pa 3 24.90–39.39 11.80–22.60 11.89–65.37 3.65–9.07 Early

14. Prunus grayana Pg 3 35.24–49.86 13.55–22.00 40.37–90.07 4.40–11.15 Mid

15. Pterostyrax hispidus Ph 3 21.83–31.34 10.00–12.20 13.58–30.59 5.10–6.40 Early

16. Stewartia monadelpha Sm 3 21.62–29.16 14.70–17.43 5.87–21.66 7.20–7.80 Unknown

17. Stewartia pseudocamellia Sp 3 22.04–28.70 15.70–16.65 6.74–15.53 6.40–6.85 Unknown

18. Styrax japonicus Sj 3 18.03–30.57 10.80–18.65 6.06–25.90 4.40–9.40 Mid

19. Tilia japonica Tj 2 40.22–58.90 22.70–23.90 36.44–131.33 12.85–13.65 Late

2.2.1. UAV-Based Observation

The aerial photographs were taken by a commercial drone (DJI Phantom 4 pro;
DJI-Innovations Inc., Shenzen, China) equipped with a high-resolution camera. Prior to
each UAV flight, the camera was configured for continuous shooting with the following
settings: infinity focus; minimum focal length of 9 mm; and 16-megapixel resolution with
super-fine compression. To minimize the effect of variable illumination on UAV image due
to the solar incidence angle and cloud cover, the flights were conducted during midday
(between 10 a.m. and 1 p.m.) on fine days. The UAV was flown at a height of about 15 m
above the canopy surface (i.e., 35 m to 40 m above the ground surface) with manual opera-
tion. To achieve 80% of longitudinal and 50% of lateral overlapping for constructing an
orthophoto by structure from motion (SfM) and multi-view stereopsis techniques, the UAV
was operated at roughly 1.2 m s−1, with the camera taking images every 2 s. At least five
flights were conducted over the 1.5 ha plot (25 min per flight) that collected between 2000
and 3000 JPEG images during each measurement occasion.

Each acquired image set was processed into a 5-cm resolution, georeferenced or-
thophoto using the Bentley ContextCapture software package (Bentley Systems Inc., Exton,
PA, USA). The processing steps included automatic aerial triangulation, noise filtering,
DSM and orthophoto creation. All of the processes were performed under default settings
and in a fully automated way. As GPS information from the UAV was not accurate, the DSM
and orthophoto was generated using the seven GCPs to enhance accuracy. However,
during three occasions in November, orthophotos could not be created due to mechanic
trouble with the UAV camera. Consequently, CLCUAV was estimated directly from the
aerial JPEG image. The original JPEG images with a similar perspective as orthophotos
were carefully chosen to minimize the error associated with using a JPEG image; thus,
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the same visual interpretation procedure (explained below) was applied in these instances
(Figure S1).

We then made a crown polygon map for all of the individual trees in the canopy
layer of the study plot with ArcGIS software (version 10.7, ESRI, Redlands, CA, USA).
The boundaries of all crowns in the orthophoto were manually delineated based on the
ground survey, and then linked each crown polygon to inventory data of the study plot,
such as tree ID, species name, and diameter at breast height. The total number of digitized
crowns was 650, but only 55 of these crowns were analyzed in the presented research.

With respect to CLCUAV, the percentage of leafy part in the target crown space was
visually quantified at 5% intervals and then was classified using one of the following seven
categories: 0%; 10% (1~19%); 30 % (20~39%); 50% (40~59%); 70% (60~79%); 90% (80~99%);
and 100%. To facilitate the visual assessment, a time series of crown images was created by
extracting the relevant area from each orthophoto (Figure S1). The leafy part of the target
crown was carefully distinguished from that of the below-crown vegetation based on differ-
ences in phenology, brightness, color, and texture. Even in the study plot, which includes a
multi-layered canopy structure, a human interpreter could easily identify the leafy part of a
target crown in a fine-resolution UAV image (Figure S2). Therefore, the estimated CLCUAV
values were not influenced by below-crown vegetation and represents the leaf phenology
of the target crown.

The mean crown-level green chromatic coordinate (GCCcrown) for the 55 target crowns
was calculated as:

GCCcrown = G/(R + G + B) (1)

where R, G, and B are the mean values of red, green, and blue digital numbers in the target crown
space, respectively. In contrast to CLCUAV, GCCcrown is influenced by below-crown vegetation.

While the SfM approach has a number of advantages, crowns with a complex struc-
ture are difficult targets for accurate feature matching and architectural reconstruction.
Although failed areas of reconstruction (indicated by a gray color in the orthoimage) were
found in several images during leaf expansion and falling, the areas were generally small
(Figure S1) and we excluded such areas from CLCUAV and GCCcrown calculations.

2.2.2. Ground-Based Observations

The observer looked at the target crowns from various directions with binoculars,
and estimated the percentage of unfolding leaves and mean leaf size as the percentage
of mature leaf size. The observer calculated crown leaf cover (CLCground) as a product of
these two factors (Figure S3), and then categorized the result into one of the seven classes
presented for CLCUAV. Since mature leaf size cannot be determined during leaf expansion
based solely on ground observations, in situ visual estimates of the mean crown-level
leaf size may be prone to human error. Therefore, photographs of the target crown were
taken from the exact location where the observer had been on each occasion, and the mean
leaf size derived from in situ visual observations was checked with that derived from the
photographs after full-leaf expansion. Although we made adjustments to the leaf size for
several trees, the visual estimates of observers were generally consistent with those derived
from the photographs.

2.3. Crown Structural Traits

To analyze the effect of crown structure on the variations between CLCground and
CLCUAV, crown height (CH), lowest foliage height (LH) and crown projection area (CA)
were quantified for the 55 individual trees (Table 1). CH and LH were measured with a
vertex hypsometer (Vertex IV, Haglöf, Sweden) in November 2019. CA was calculated from
the digitized crowns in the orthophoto using ArcGIS software and, thus, represents the
sunlit part of the crown. Crown length (CL) was calculated by subtracting LH from CH,
and crown volume (CV) was calculated as a product of CA and CL. The ratio of CA and
CL (CA/CL) was also determined as an index of relative crown length.



Forests 2021, 12, 425 7 of 18

2.4. Data Analysis

To determine phenological transition dates (i.e., the start and end dates of leaf ex-
pansion and leaf falling) for each target tree, we fit the logistic curves to CLCground and
CLCUAV data over time, respectively, representing both leaf expansion and leaf falling
(108–212 DOY and 224–332 DOY, respectively), and defined the days that represented 5%
and 95% of the maximum values of the fitted results as the start and end dates of leaf ex-
pansion, respectively (SOE and EOE, respectively) [9,24]. Moreover, the start and end dates
of leaf falling (SOF and EOF, respectively) were determined to be the days representing
95% and 5% of the maximum values, respectively.

Growing season length was calculated as the difference between SOE and EOF.
GCCcrown was only used to determine the phenological transition dates for the spring
period, as the transition dates during leaf falling period were generally unclear across
all of the studied species (Figure S4) and because orthophotos could not be constructed
in November due to mechanical trouble with the UAV camera. Additionally, since most
trees demonstrated a gradual decrease in GCC during the summer period (Figure S4),
the logistic curve was fitted to data from 108 to 157–165 DOY, a time period when the
decrease in GCC was not evident yet.

Multivariate associations between the crown structural traits (CH, CL, CA, CV,
and CA/CL) were analyzed with a principal component analysis (PCA) using an in-
dividual tree to provide data points (Figure S5). The first two axes explained 94.7% (axis 1:
73.9%, axis 2: 20.8%) of the overall variation. CH, CL, CA, and CV were closely related
to the first axis (Pearson correlation: CH: r = 0.84; CL: r = 0.91; CA: r = 0.95; CV: r = 0.96,
all p < 0.001), while CA/CL was significantly related to the second axis (r = 0.80, p < 0.001).
PCA was conducted with R version 3.6.2 (R Core Team 2019).

We adapted the hierarchical Bayesian framework to quantify the extent to which crown
structure contributes to the variation between CLCUAV and CLCground. The relationship
between CLCUAV and CLCground was first described using a simple linear model:

Logit (CLCUAVt) = a t, s · Logit (CLCgroundt) + b t, s (2)

where:
Logit (CLC) = ln (CLC/ (100 − CLC))

CLC = 1, if CLC = 0

CLC = 99, if CLC = 100

Since CLC is discrete variable with a range between 0 and 100, logit transformation was
applied. The parameters a and b describe the slope and intercept of the model, respectively.
The subscripts of each variable and coefficient, namely, t and s, refer to individual tree and
season (i.e., leaf expansion period in spring and leaf falling period in autumn), respectively.
In this analysis, leaf expansion period was defined as the period when CLCground increases
from 0% to 100% during the spring. Similarly, leaf falling period was defined as the
period when CLCground decreases from 100% to 0% during the autumn. Instances in which
both CLCUAV and CLCground were either 0% or 100% were excluded from the analysis.
Number of data used in this analysis were 263 and 319 for leaf expansion period and leaf
falling period, respectively. Secondly, since we hypothesize that the variations between
CLCUAV and CLCground can be attributed to variation in the crown structures of individual
trees (cf. the Introduction section), the slope and intercept of the linear model (Equation (2))
are described as;

a t, s = c s · PC1 + d s · PC2 + e sp, s (3)

b t, s = f s · PC1 + g s · PC2 + h sp, s (4)

where PC1 and PC2 are the first and second axes of the PCA of crown structure, respectively
(Figure S5). Each of the explanatory variables in Equations (3) and (4) was normalized
to evaluate the relative contribution of each variable to the variations between CLCUAV
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and CLCground. The letters c~h are coefficients of the equations. Since other species-
specific crown structure characteristics, such as leaf density and orientation, may also
contribute to the variations between CLCUAV and CLCground, the coefficients e and h (i.e.,
intercepts of Equations (3) and (4)) were assumed to vary by species (subscript sp) in
the full model. All coefficients were interconnected in this model framework and were
obtained as probability distributions (hereafter, posterior distributions) at season, species,
and individual tree level. Sampling from the posterior distributions of all parameters was
performed using the Markov chain Monte Carlo (MCMC) method. We ran 40,000 iterations
per each of the three independent MCMC chains after a warm-up of 20,000 iterations,
with the chains thinned every five iterations to yield a posterior sample size of 12,000.
The convergence of the Markov chains for each parameter was checked using R-hat values
by comparing variance within each chain and among chains.

The contribution of crown structure to the variation between CLCUAV and CLCground
was evaluated based on the Bayesian credible intervals (CIs) for the parameters c, d, f and
g; i.e., if the 95% CI of the parameters did not cross zero, the parameter was regarded as sig-
nificant. In addition, if the interquartile range of the posterior distribution of the parameter
did not include zero, the parameter was considered to have a marginal significant effect.
We compared a total of 32 models by removing the explanatory variables in Equations (3)
and (4), and species variation of the coefficients e and h individually from the full model,
and selected the best model that provided the lowest values of Watanabe–Akaike’s infor-
mation criterion (WAIC). The Bayesian framework and related analyses were run in R
version 3.6.2 using the rstan package.

3. Results
3.1. Inter-Species Differences in the Phenological Transition Dates Derived from the Ground
Observations and UAV Images

Spring leaf phenology derived from crown leaf cover based on ground observation
(CLCground) differed markedly among the species (Figure 2A). The mean start date of leaf
expansion (SOE) varied by roughly three weeks among species, with Carpinus japonica
showing the earliest SOE (DOY 127.2) and Phellodendron amurense showing the latest SOE
(DOY 147.8). The mean end date of leaf expansion (EOE) showed larger inter-species
variation than SOE, ranging from DOY 139.8 for Acer shirasawanum to DOY 178.4 for P.
amurense (mean ± SD: 154.4 ± 9.9 DOY). As the studied species had different rank orders
for EOE and SOE, the leaf expansion period (i.e., the difference between EOE and SOE)
also varied between species, ranging from a minimum value of seven days for Kalopanax
septemlobus to 34 days for Pterostyrax hispidus (mean ± SD: 18.1 ± 10.3 days). Autumn leaf
phenology generally showed larger inter-species variation than spring leaf phenology
(Figure 2B). More specifically, the mean start date of leaf falling (SOF) varied by six weeks
among the species (mean ± SD: 279.1 ± 18.0 DOY); A. nipponicum had the earliest SOF
(DOY 256.9), while Magnolia obovata had the latest SOF (DOY 300.2). The mean end date of
leaf falling (EOF) also varied by six weeks across the species, ranging from DOY 285.3 for
Pterostyrax hispidus to DOY 328.0 for Stewartia monadelpha. The species showed different
rank orders for SOF and EOF, and the performed analysis revealed that the leaf falling
period (i.e., the difference between EOF and SOF) was longer than the leaf expansion
period, ranging from a minimum of 20 days for K. septemlobus to a maximum of 54 days
for C. japonica (mean ± SD: 31.9 ± 16.2 days). Intra-species variations in the phenological
transition dates were generally smaller than the inter-species variations, with the exception
of Prunus grayana in the autumn.
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Figure 2. Inter-species differences in the phenological transition dates derived from the three different
metrics: (A,B) crown leaf cover based on ground observations (CLCground); (C,D) crown leaf cover
determined by visual interpretation of the UAV images (CLCUAV); and (E) mean crown-level green
chromatic coordinate calculated from the UAV images (GCCcrown). Each data point represents the
mean value (±SD) of the phenological transition date. Other abbreviations: SOE—start date of leaf
expansion; EOE—end date of leaf expansion; SOF—start date of leaf falling; EOF—end date of leaf
falling. Species abbreviations are shown in Table 1. The x-axis of each panel is sorted by either SOE
or SOF.

Overall, the phenological transition dates derived from crown leaf cover determined
by the visual interpretation of UAV images (CLCUAV) showed similar trends with those
derived from CLCground (Figure 2C,D). Consequently, significant correlations between
CLCUAV- and CLCground-derived transition dates were consistently found throughout the
growing seasons, with the best matches occurring for SOE (RMSE = 6.4, Figure 3A–D).
However, the RMSE values of the relationships for EOE and SOF were larger than those
for SOE and EOF by approximately six days. Consequently, although the CLCUAV-derived
growing season period (the difference between EOF and SOE) was closely associated with
the CLCground-derived growing season period, large mismatches were found for the period
of leaf expansion and leaf falling (Figure 3E–G).
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Figure 3. Comparison of phenological transition dates and periods derived from crown leaf cover based on ground
observation (CLCground) and UAV data (i.e., crown leaf cover determined by visual interpretation of UAV images; CLCUAV,
and mean crown-level green chromatic coordinate calculated from the UAV images; GCCcrown). Each point represents data
for an individual tree. Other abbreviations: SOE—start date of leaf expansion; EOE—end date of leaf expansion; SOF—start
date of leaf falling; EOF—end date of leaf falling. The dotted line indicates a 1:1 relationship, and thick lines are regression
equations (details in the lower part of each panel).

The SOE and EOE derived from mean crown-level green chromatic coordinate
(GCCcrown) generally occurred at an earlier time point than those derived from CLCground ir-
respective of species (Figure 2E). Additionally, the inter-species variations in the GCCcrown-
derived transition dates were substantially smaller than those in the CLCground-derived
transition dates (mean ± SD: 126.6 ± 3.5 and 140.5 ± 6.4 DOY, respectively). Consequently,
the phenological transition dates and leaf expansion periods derived from GCCcrown were
poorly correlated with those derived from CLCground (Figure 3A,B,E).

3.2. Direct Comparison of the Phenological Metrics Derived from UAV Data and
Ground Observations

In general, CLCUAV increased earlier than CLCground during spring leaf expansion
(Figure 4). However, the degree of variation between CLCUAV and CLCground markedly
differed among species; e.g., considerable variations were found for Acer rufinerve, A. shira-
sawanum, and Fagus crenata, while the variations were relatively small for Cornus controvesa,
Fraxinus lanuginosa, P. amurense, and P. hispidus. A similar discrepancy between CLCUAV
and CLCground was also found in autumn, but the variation was generally smaller than what
was observed in the spring, especially for late successional species, such as A. shirasawanum,
F. crenata, and T. japonica (Figure 4B). Relative GCCcrown showed similar trends with
CLCUAV in the spring, but increased more rapidly than CLCUAV for some species, such as
Acer nipponicum and P. amurense (Figure 4A). The differences between CLCground-derived
SOE and GCCcrown-derived SOE were positively correlated with CLCground-derived SOE
(Figure 5), indicating that GCCcrown errors are larger for species with a later SOE.
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Figure 4. Direct comparison of crown leaf cover based on ground observation (CLCground) with the phenological metrics
derived from UAV data during: (A) leaf expansion in the spring (108–212 DOY); and (B) leaf falling in the autumn
(224–332 DOY). Each point represents raw data from a single tree at each measurement occasion. Jitter was added to data
points that lay on the same percentage, with the dotted line showing a 1:1 relationship. Abbreviations: CLCUAV—crown leaf
cover based on visual interpretation of UAV images; GCCcrown—mean crown-level green chromatic coordinate calculated
from the UAV images. Abbreviations of the species names are clarified in Table 1. GCCcrown was converted to the same
scale as crown leaf cover to enable direct comparisons, i.e., the minimum GCCcrown before bud break was set to 0% and
the spring GCCcrown peak was set to 100% (relative GCCcrown). Seasonal pattern of each phenological metric is shown in
Figure S4.

Figure 5. Association between the start date of leaf expansion (SOE) derived from crown leaf cover
based on ground observation (CLCground) and the difference between mean crown level green
chromatic coordinate (GCCcrown) and CLCground-derived SOE. Each point represents an individual
tree, and the solid line denotes the regression relationship.
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3.3. Contribution of Crown Structure to the Discrepancy between CLCUAV and CLCground

The extent to which crown structure contributed to the discrepancy between CLCUAV
and CLCground was examined through the selection of a hierarchical Bayesian model
(Equations (2)–(4)) based on WAIC. The top five models with the best results, as well as
one model including inter-species variations, are shown in Table 2. The median value of
coefficient h in Equation (4) was about two-fold higher in the spring than in the autumn
irrespective of the model. This can be explained by the fact that variations between
CLCUAV and CLCground were generally larger in the spring than in the autumn (Figure 4).
In contrast, the median value of coefficient e in Equation (3) was fairly constant at around
1.0 irrespective of the season. Both coefficients e and h were assumed to vary with species
(No.6); the median value of coefficient h varied markedly across species whereas the value
of coefficient e was stable at around 1.0 for all species. However, since the interquartile
ranges of coefficient h for the studied species showed a certain degree of overlap (results
not shown), the model including species variation showed higher WAIC values than
the model that did not include this variation. This result implies that variation between
CLCUAV and CLCground occurs at the individual tree-level but not at the species-level.
In the model with the best fit, the first PCA axis (PC1, Figure S5) exerted a significantly
positive effect on the parameter b in the spring, but this significant effect was not detected
in the autumn. Although marginally significant effects were found for both parameters a
and b in the autumn, they demonstrated opposing effects, indicating that crown structure
had only a minor influence on the variation between CLCUAV and CLCground in the autumn.
The significant positive effect of PC1 on parameter b was consistently found in the top
five models.

Table 2. Results of the Bayesian model analysis. The five models that showed the best performance
from a total of 32 models (No. 1~5) and the best model when species variations were included in
the coefficients e and h (No. 6). The comparison of models was based on the Watanabe–Akaike
information criterion (WAIC). a~h are coefficients of the Bayesian model (Equations (2)–(4)), and the
values are medians of the posterior distribution of each coefficient. The black-colored cells represent
coefficients that exerted a significant effect on the discrepancy between crown leaf cover determined
based on UAV data and ground observations (i.e., the 95% Bayesian credible interval did not include
zero), whereas the gray-colored cells represent coefficients that exerted a marginally significant
effect on the discrepancy between crown leaf cover determined based on UAV data and ground
observations (i.e., the interquartile range did not include zero). With respect to model No. 6, species
variations were considered in coefficients e and h, and thus, the median values included inter-
species variations.

No. Season
a b

WAIC
c d e f g h

Spring −0.05 1.16 0.42 2.55
1

Autumn 0.07 1.07 −0.13 1.31
4.036

Spring −0.04 1.17 0.43 −0.20 2.55
2

Autumn 0.06 1.08 −0.11 −0.13 1.32
4.038

Spring −0.05 −0.02 1.17 0.42 2.55
3

Autumn 0.08 −0.09 1.07 −0.13 1.31
4.038

Spring −0.01 1.16 0.45 2.55
4

Autumn −0.08 1.07 −0.13 1.32
4.043

Spring −0.04 −0.04 1.17 0.45 −0.21 2.55
5

Autumn 0.08 −0.09 1.07 −0.13 −0.15 1.32
4.045

Spring −0.05 1.03–1.19 0.24 −0.23 1.50–3.35
6

Autumn 0.06 1.05–1.17 −0.13 0.00 0.27–2.42
4.089
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4. Discussion

Ground-based observations of crown leaf phenology demonstrated clear spatial het-
erogeneity at the study site; more specifically, intra- and inter-species variations in the
phenological transition dates were up to ~20 days during the spring and ~40 days during
the autumn. This unequal leaf expansion and falling agree with shoot and crown-level
observations from other cool temperate forests in Japan (e.g., [25–28]). The start dates of
leaf expansion (SOE) and end dates of leaf falling (EOF) derived from crown leaf cover
determined by visual interpretation of UAV images (CLCUAV) were associated with those
derived from crown leaf cover based on ground observation (CLCground) across all 19 stud-
ied tree species, with an accuracy of about six days (Figure 3). This result suggests that
UAV observation is an effective method for quantifying growing season length at the indi-
vidual tree scale in deciduous forests. However, it is important to note that the influence
of below-crown vegetation, such as understory vegetation, subcanopy trees and branches
of neighboring trees, were excluded from CLCUAV by the visual discrimination of this
vegetation from the UAV images (Figure S2). When mean crown-level green chromatic
coordinate (GCCcrown)—the most commonly used metric for quantifying leaf phenology
in near-surface remote-sensing—was used to estimate the phenological transition dates,
inter- and intra-species variation in spring leaf phenology was poorly explained
(Figure 3A,B,E). This was particularly noticeable for species with a later SOE
(Figure 5), which suggests that below-crown vegetation significantly hampers the esti-
mation of crown leaf phenology with UAV imaging. The study site has rather sparse
understory vegetation relative to other cool temperate forests in Japan because of the
continuous and excessive browsing by Sika deer, along with the mass flowering and die-off
event of dwarf bamboo, which occurred three years before the experiments. However,
a certain number of shrubs and saplings which survived from bark stripping by deer still
remained in the subcanopy layer (ca. 5~15 m). These young trees of the subcanopy layer
tend to have earlier leaf emergence than mature trees in the canopy layer mainly due to
ontogenetic differences in leaf phenology [12,29]. Additionally, branches of neighboring
trees frequently invaded the crown space of the target tree, which could be expected to
increase the discrepancy between GCCcrown and CLCUAV when the neighboring trees have
an earlier SOE than the target tree (Figure S2). It can be theorized that if the study site is
not exposed to excessive deer browsing and a die-off event of dwarf bamboo, then even
more substantial discrepancies between the GCCcrown- and CLCUAV-derived SOE and EOE
would be observed. Thus, the influence of below-crown vegetation needs to be removed
first whenever a UAV-based approach is applied to a multi-layered forest, like the study
site of the present paper.

The CLCUAV-derived end date of leaf expansion (EOE) and start date of leaf falling
(SOF) were less accurate than SOE and EOF (Figure 3). On average, CLCUAV-derived
EOE preceded the result derived from CLCground by 12 days; conversely, CLCUAV-derived
SOF was 12 days later than the result derived from CLCground. With respect to the EOE
discrepancy, a similar result was reported from a study which used a tower-mounted
phenocam in a temperate deciduous broad-leaved forest; the spring peak for canopy-level
green chromatic coordinate occurred about two weeks before that of the ground-observed
leaf size and leaf area index (LAI) [10]. The authors attributed this discrepancy in the
spring peak to the oblique viewing angle of the phenocam, i.e., the near-horizontal-oriented
camera captures more leaf layers of canopy trees than the nadir viewing angle (e.g., UAV
camera), leading to higher effective LAI and a faster increase in GCC than actual changes
in LAI. However, the results presented in this paper revealed that nadir photography
approaches can also yield an earlier detection of the spring peak even when the influence
of below-crown vegetation is removed. Furthermore, Bayesian model analysis indicated
that the spring variation between values derived from CLCUAV and CLCground increase as
crown size, e.g., crown length and volume, increases (Table 2, Figure S5). This suggests that
the earlier saturation of CLCUAV and GCC is a result of leaf overlapping within the crown,
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as the nadir viewing angle of the UAV camera will capture more leaf layers for large and
thick crowns than for small and thin crowns.

The discrepancies between CLCUAV and CLCground were especially large for late-
successional, shade-tolerant species, such as Fagus crenata, A. shirasawanum, and Tilia
japonica, relative to early successional, shade intolerant species, such as Pterostyrax hispidus
and Phellodendron amurense, during leaf expansion period (Figure 4). Although the Bayesian
model analysis did not provide evidence that interspecies variation contributes to the
observed discrepancies between CLCUAV and CLCground, the result above does not con-
tradict the finding that CLCUAV error increases with crown size because late-successional,
shade-tolerant species tend to form a multi-layered crown, while early-successional, shade-
intolerant species form a mono-layered crown ([20,21,30], Figure S5). Hagemeier and
Leuschner [31] found that the late-successional species of European temperate forests have
a larger crown LAI than early-successional species due to high leaf area density in the
upper layer. Furthermore, the late-successional species form extended leaf layers with
nearly horizontal leaf orientation in the lower layer. Therefore, changes in not only the
outside crown structure, but also the interior structure, (e.g., leaf distribution and orienta-
tion), may contribute to the large discrepancies between CLCUAV and CLCground noted for
late-successional species.

CLCUAV was also larger than CLCground for most of the studied species during the
autumn leaf falling period (Figure 4). However, for the late-successional species, such as
A. shirasawanum, F. crenata, and T. japonica, the degree of variation between CLCUAV and
CLCground was markedly smaller than what was observed for springtime measurements.
Consequently, crown structure did not significantly contribute to the variation between
CLCUAV and CLCground during the fall (Table 2). In late-successional species, leaf falling
starts from the upper parts of the crown [32]. Since most of the leaves in the crown
are concentrated in the upper part, such unequal leaf falling should generate large gaps
within the crown that can be detectable in UAV images. In contrast, springtime leaf
emergence occurs consistently throughout the crown in late-successional species [32].
Since leaf emergence finished 1–2 weeks earlier than leaf expansion for most of the studied
species, mean crown-level leaf size was a predominant factor for the springtime CLCground
trajectory ([18], Figure S3). The even distribution of small leaves throughout the crown
will mean that few gaps remain in the UAV images of large and thick crowns due to high
leaf overlapping and, subsequently, result in the large discrepancy between CLCUAV and
CLCground (Figure S3). Therefore, spatial variations in leaf emergence and falling may
partially explain why the error in CLCUAV varied by season, and was especially noticeable
in late-successional species. Research including tower-mounted phenocams has reported
that the normalized difference vegetation index (NDVI) is more sensitive to changes in
canopy LAI than the greenness derived from digital camera images. This is because NDVI
incorporates bands at near-infrared (NIR) wavelengths, at which the reflectance of leaves
is strongly governed by structural characteristics rather than pigmentation [33]. Therefore,
the use of an UAV equipped with a NIR camera may solve the problem of early saturation
of phenological metrics during the spring. Although Berra et al. [17] showed that UAV-
derived NDVI was less successful in predicting phenological transition date than GCC
in mixed deciduous and conifer woodland, the result was based on erroneous estimates
of NDVI that integrated RGB and NIR images that had been captured individually by
two different UAVs. Since UAVs equipped with a multispectral sensor are commercially
available, it would be valuable to monitor NDVI with a single UAV in future research.

Since visual assessments are always prone to human error, it could be expected that the
observed discrepancy between CLCUAV and CLCground can be attributed to human error in
the interpretation of UAV images and/or in situ crown leaf cover. For species with an earlier
SOE, such as Carpinus tschonoskii, Cornus controversa, and F. crenata, the influence of below-
crown vegetation on the visual interpretation of UAV images was marginal. This is because
the timing of leaf emergence in these species is almost simultaneous with, or even earlier
than, the below-crown vegetation. This is evident from the fact that SOE derived from
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GCCcrown was similar to the result derived from CLCUAV (Figure 2C,E). In such species,
the springtime GCCcrown—which is more objective than visual interpretation—showed a
similar trend with CLCUAV, and sometimes showed a more rapid increase than CLCUAV
(Figure S4). This suggests that errors stemming from the visual interpretation of UAV
images are likely small, and using GCCcrown in estimations would lead to larger variations
in crown leaf phenology than using CLCUAV. Park et al. [3] showed that the human
interpretation of UAV images could yield largely repeatable CLCUAV values for a lowland
moist tropical forest. This research included different observers who had not received
specific training to standardize their interpretations, a characteristic which supports our
conclusion. With respect to ground-based visual observations in a dense and multi-layered
forest, human error will be high as the observers cannot see the whole crown of the target
tree. To minimize this error, we carefully selected trees for which both the upper and lower
parts of the crown were visible from the ground through gaps around the target trees.
Additionally, mean crown-level leaf size, which is a major component of the springtime
CLCground, was validated with a semi-objective approach; more specifically, the scores
determined in the field were checked using foliage photographs that had been taken from
the ground by a digital camera (Figure S3 inset photographs). Therefore, we concluded
that the observed variations between CLCUAV and CLCground are not solely due to human
error during the visual assessment.

However, it should be noted that the accuracy of the UAV-based approach depends
on the temporal frequency of UAV data acquisition dates, which is similar to ground-
based observations. Schwartz et al. [34] showed that the accuracy of ground observa-
tions decreased when the observation interval was greater than four days, for deciduous
tree species in the sub-boreal forest. Therefore, the relatively long interval of this study
(5–10 days) may cause uncertainty for the prediction of phenological metrics and subse-
quent calculation of the transition dates and analyses with Bayesian modeling. In addition,
leaf phenology and crown structure show large inter-annual variations due to various
events, such as late spring frost, heavy fruiting, and the outbreak of defoliating insects
(e.g., [35–37]). Therefore, only one year of observation of this study may be too short
to cover the inter- and intra-species variations in leaf phenology and crown structure.
To enhance the generic applicability of this study’s result, further data accumulation by
more frequent observation and long-term monitoring is necessary.

5. Conclusions

We showed that UAV-based observation is a powerful approach for quantifying the
start and end of the growing season at an individual tree scale in a forest containing various
species when the influence of subcanopy trees and understory vegetation is small, or can
be readily eliminated with data processing. However, the UAV-based approach provided
a markedly earlier EOE date in comparison to ground observations. Results from the
Bayesian modeling suggest that EOE error increases as crown size (crown length and
volume) increases, and is most probably explained by high leaf overlapping within the
crown. Since crown structure varies with various factors such as species, light environment,
ontogeny and competition, the effect of crown structure on the UAV-derived phenological
metrics needs to be considered to ensure accurate estimates of individual tree phenol-
ogy. This type of insight will be important for bridging the performance of UAV-based
approaches and traditional ground-based observation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12040425/s1. Figure S1: Example of a time-series of UAV images used for the visual
interpretation; Figure S2: Images demonstrating the influence of below-crown vegetation; Figure S3:
Comparison of spring trajectories for mean crown leaf size, frequency of unfolding leaves, ground-
based crown leaf cover and UAV-derived crown leaf cover; Figure S4: Time series of crown leaf cover
based on ground observation, crown leaf cover determined by visual interpretation of UAV images,
and mean crown green chromatic coordinate; Figure S5: Principal component analysis (PCA) for the
crown structural parameters.
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Abbreviations

CA Crown area
CA/CL Ratio of CA to crown length
CH Crown height
CL Crown length
CV Crown volume
CLCground Crown leaf cover determined from ground observation
CLCUAV Crown leaf cover determined from visual interpretation of UAV images
EOE End date of leaf expansion
EOF End date of leaf falling
GCCcrown Mean crown-level green chromatic coordinate derived from UAV image
LAI Leaf area index
SOE Start date of leaf expansion
SOF Start date of leaf falling
UAV Unmanned aerial vehicle
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