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Abstract: Due to growing worldwide energy demand, the search for diversification of the energy
matrix stands out as an important research topic. Bioethanol represents a notable alternative
of renewable and environmental-friendly energy sources extracted from biomass, the bioenergy.
Thus, the assurance of optimal growth conditions in the fermenter through operational variables
manipulation is cardinal for the maximization of the ethanol production process yield. The current
work focuses in the determination of optimal control scheme for the fermenter feed rate and batch
end-time, evaluating different parametrization profiles, and comparing evolutionary computation
techniques, the genetic algorithm (GA) and differential evolution (DE), using a dynamic real-time
optimization (DRTO) approach for the in silico ethanol production optimization. The DRTO was
able to optimize the reactor feed rate considering disturbances in the process input. Open-loop
tests results obtained for the algorithms were superior to several works presented in the literature.
The results indicate that the interaction between the intervals of DRTO cycles and parametrization
profile is more significant for the GA, both in terms of ethanol productivity and batch time. In general
lines, the present work presents a methodology for control and optimization studies applicable to
other bioenergy generation systems.
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1. Introduction

The increasing demand for energy sources has been leading the modern society in a continuous
search for more efficient processes, as well as an appreciable research over production alternatives.
The current energy matrix, mainly based on fossil fuels has been gradually replaced for a new paradigm,
which relies on many sustainable sources, such as the use of solar, wind, hydrothermal and biomass
energy, among many alternatives. Those emergent sources have an eco-friendly characteristic, and
may help to mitigate the environmental problems arising from the utilization of the current energy
matrix, such as the release of the massive amounts of carbon dioxide and other pollutants to the
atmosphere, enhancing the green-house effect problem, as well as the air pollution and acid rain.
Accordingly to Panwar et al. [1], it is expected that the utilization of renewable energies will represent
approximately 47.7% of the global energy scenario by 2040.
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In a broader aspect, we are experiencing a gradual transition from a fossil fuel-based economy to a
so called bio-based one, which has in his core the concept of biorrefinery, the transformation of diverse
feedstock in a myriad of products (such as biofuels, bioplastics, chemical supply, among others) [2].
In terms of the biofuel production processes specifically, the benefits of this bioproducts when compared
to traditional fuels include greater energy security, reduced environmental impact , and socioeconomic
issues related to the rural sector [3], and it is also important to notice that the large-scale production
of biofuels offers an opportunity for certain developing countries to reduce their dependence on
oil imports [4]. The energy generation through biomass utilization has a remarkable potential,
and represent a notable option for meeting the demand and insurance of future energy/fuel supply
in a sustainable manner [5]. As aforementioned, there are several other options of renewable and
sustainable energy sources, as example of photo-voltaic, wind, geothermal, however this discussion is
beyond the scope of the present work.

Among many biofuels, bioethanol represents an important alternative for the fossil fuel
replacement, figuring as the most widely used biofuel for transportation worldwide [6]. The United
States and Brazil represent the largest ethanol producers worldwide, accounting for approximately
85% of the global production of the product [7]. However, is important to highlight the implementation
of a governmental program of alternative energy sources encouragement trough the utilization of
bioethanol, called National Alcohol Program (PROALCOOL), in 1975 [8], leading the country to a
scenario of cutting-edge ethanol production technology nowadays. This fuel source, obtained trough
fermentation process of several micro-organism, of which undoubtedly the Saccharomyces cerevisiae
yeast appears as the most common biotechnological production platform, also has the multitude
of feedstocks for its obtention as a notable advantage. The bioethanol can be obtained from
sucrose-containing feedstocks, such as sugar cane, sugar beet, sweet sorghum, among others;
starch materials, as example of corn, milo, wheat, rice, potatoes, cassava, sweet potatoes and
barley; lignocellulosic materials, such as wood, straw and grasses and agro-industrial residues in
general [6,9,10]; alternative material, such as algae biomass are also employed [11].

As the bioprocesses employs biological entities (whether micro-organisms as a whole or only
specialized structures, such as antigens or nucleic acids) as the catalysts of production processes,
and the biotechnological products are ultimately results of their activity, the control of this class of
processes presents specific characteristics. The frequent non-linear behavior of microbial metabolism,
and the strong relation between this process and the bioreactor environmental and operational
characteristics, make the development of descriptive mathematical models for bioprocesses and
the process control itself a laborious task [12,13]. Despite the inherent difficulties, the model-based
optimization of biotechnological process has been the subject of several researches [14,15]. In this sense,
the fed-batch fermentation bioreactors represent an important topic, given the widespread utilization of
this class of reactors in the biochemical industrial field, what can be explained by the avoidance of substrate
inhibition due to overfeeding (when compared to batch-mode operated reactors), and the preservation of a
sterile environment inside the fermenter (when compared to continuous equipments) [16].

In a general aspect, the ultimate goal of a fed-batch culture is to maximize the bioprocess
productivity through the manipulation of the feed rate profile, despite the possible presence of
inhibitory products [17]. The already described complex behavior of the bioprocesses in the process
control scope constitutes a non-trivial dynamic optimization problem, necessitating the use of robust
techniques capable of find a viable solution that lead to an optimal productivity and a non-local
optima entrapment, as well as subject to a reasonable computational effort demand. In this sense,
the evolutionary computation techniques represent important alternatives, as those methods usually
obtain good solutions with modest computation times, although the global optimum can not be
guaranteed [18].

The bioprocess mathematical modeling represents another important research topic, as it
provides the understanding and evaluation of the several intrinsic phenomenons that takes place in a
biotechnological process, allowing the study of operational scenarios trough a “what-if” perspective.
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In this sense, the dynamic optimization of a given biotechnological process, in terms of its descriptive
model, can be viewed as a parameter estimation problem of the dynamic profiles of the manipulated
variables (e.g., substrate feed, aeration, agitation, and heating rates), using the process productivity
of specific product yield as objective function. The optimal control of the predicted process output
trajectory in terms of a descriptive mathematical model constitutes the kernel of the model based control
approaches, from which we can mention the dynamic real-time optimization (DRTO), also referred
as an economically oriented non-linear model predictive control (NLMPC), which is referred as an
efficient strategy for controlling complex systems with intrinsic non-linear dynamic nature, such as the
biotechnological processes [19,20].

The present paper aims to study the dynamic optimization problem, in silico (or computationally
developed), of a fed-batch bioethanol production process, through the utilization of non-linear model
predictive control concept. The dynamic optimization will employ two evolutionary computation
techniques, the genetic algorithm (GA) and the differential evolution (DE), and compare their
performances on the manipulation of the feed rate profile in terms of the obtained bioprocess
productivity trough the utilization of the DRTO approach, using a free terminal time concept. As the
dynamic profile of operational parameters exhibits direct correlation with the bioprocess yield,
different feeding profiles are evaluated in terms of ethanol productivity [21,22].

Although the present work employed a (relatively) simple benchmark model for the ethanol
production, the methodology developed is adequate for more robust problems, in which complex
variables and phenomenons (such as inhibitory shocks, overflow mechanisms, occurrence of random
errors in the process measurements, etc.) could be explored, as well as the control and optimization
studies could be employed for other bioenergy generation system. Thus, in agreement to what was
published by other authors, the DRTO technique stands out as a powerful technique for ethanol in silico
production optimization, and the utilization of more complex control schemes for biotechnological
processes figures out as a prominent research trend. Overall, the present work presents a methodology
for optimization of a biotechnological process that could be extended to other bioenergy generation systems.

In this sense, this work is structured as follows: the materials and methods employed in the
development of this study are presented in the second section, regarding the dynamic optimization
problem and the fermentation model employed in the present work, in addition to the methodology
utilized in this work development in detail. In the third section the results are presented, and in the
fourth section the conclusions are outlined.

2. Matherials and Methods

In the present section, the theoretical background employed in the development of the present
work is outlined in the following subsections. In addition, the methodology employed in the present
work is presented, in terms of the DRTO of the fermentative process, and the incidental optimization
routines which are utilized for the consequent dynamic optimization problem. The procedures
employed for the simulation of the ethanol production through the microbial culture are also described,
as well as the methodology used for the comparison between the different optimization routines in the
study of the aforementioned dynamic optimization problem.

2.1. Fermentation Modeling

Due to the aforementioned relevance of bioenergy generation topic for the modern society,
the appropriate description of a bioenergy generation process in terms of a mathematical modeling
represent an important study subject. In this sense, several works presented models for
bioenergy production processes through microbial activity, including biohydrogen generation [23–25],
biogas (used directly, or refined as biomethane) production through anaerobic digestion [26–28],
bioethanol production (through the biological conversion of sugar-containing crops, amilaceous raw
inputs or lignocellulosic materials) [6,18,29], this latter subject appearing as the focal point of the
present work.
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Several approaches are available for the mathematical description of biological processes,
which can be classified in terms of the description of individual properties of cells or microbial
subpopulations—segregated, for which individual properties are accounted, and non-segregated,
for which an average behavior is considered for the whole population—and regarding the detail level
for the biomass composition—structured, for which the biological material is scrutinized between
several components and unstructured, for which the biomass is combined in a single macroscopic
term [30,31].

In the present work, a non-segregated and unstructured model was utilized for the description
of bioethanol in silico production process in a fed-batch bioreactor by the Saccharomyces cerevisiae
microorganism, as presented in the work of Hong [32], described in Equations (1)–(6). This model has
been used as a benchmark tool for in silico ethanol production optimization, as presented in the works
of several authors such as Banga et al. Ochoa, Rocha et al. [14,15,18], among others.

dx1

dt
= u(t) (1)

dx2

dt
= µx2 −

ux2

x1
(2)

dx3

dt
=
−µx2

y
+

u (x2in − x3)

x1
(3)

dx4

dt
= qx4 −

ux4

x1
(4)

µ =

(
µ0

1 + x4/kp

)(
x3

ks + x3

)
(5)

q =

(
q0

1 + x4/kp I

)(
x3

ks I + x3

)
(6)

In Equations (1)–(6), the terms t, x1, u, x2, x3, x4, µ and q represent respectively the process time
(h), the reactor volume (L), reactor feed rate (L·h −1), biomass concentration inside the reactor (g·L−1),
substrate concentration in the reactor (g·L−1), ethanol concentration inside the reactor (g·L−1), biomass
growth rate (h−1) and ethanol production rate (h−1). The values of the parameters utilized in the
model are presented in Table 1.

Table 1. Parameters of the aforementioned model for fed-batch ethanol production [32].

Parameter Unit Definition Value

µ0 h−1 Maximum biomass grow rate 0.408
q0 h−1 Maximum ethanol production rate 1
ks g·L−1 Monod constant 0.22
ks I g·L−1 Monod constant 0.44
kp g·L−1 Substrate inhibition constant 16
kp I g·L−1 Product inhibition constant 71.5
y g·g−1 Biomass/Substrate yield factor 0.1

x2in g·L−1 Substrate input concentration 150

The model used in the present work was developed based in important biological considerations
that implies in its mathematical formulation, such as the occurrence of Monod kinetics for substrate
and product inhibition; all the cellular biomass is considered viable (and therefore, constituted of
microorganisms able to convert substrate into ethanol product), no death kinetics is considered for
the microbial culture during the batch time, and the biomass concentration during the fermentation is
directly proportional to the biomass growth rate (µ); the fermentation medium is considered perfectly
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homogeneous during the batch time, thus no spatial variation is observed for the cellular biomass,
substrate and ethanol concentration inside the fermenter; the ethanol represent the most significant
microbial product during the fermentation.

Under a process engineering aspect, the optimization of biotechnological processes aims in its
productivity enhancement to exploit the maximum capabilities of an already selected microorganism
and by manipulating environmental and operational variables [18], as in order to ensure the
improvement of a fed-batch culture yield of a desired product, the concentration of the substrate
must be controlled to a proper level. This control is fundamental to avoid the occurrence of overflow
metabolism and increasing the cell productivity [33–35].

2.2. DRTO Approach

Although continuous biotechnological processes represent a notorious interest for both academia
and industry, especially for scenarios in which the cellular biomass represent the product of interest,
bioreactors operating under this configuration sometimes present several deleterious implications
for the bioprocess, such as heterogeneity in the reactor vessel, challenges regarding long-term
operability and sterility maintenance, among others. Another notorious question is that many times
the costs for upgrade the production structure to continuous production are prohibitive [36,37]. Thus,
several large-scale reactors still operated under a fed-batch configuration, and it is important to ensure
an adequate control methodology for the feed rate [23,35], as aforementioned.

However, despite the rapid technological development observed in the biotechnological process
field, optimizations of operational parameters are still realized trough trial-and error procedures,
or relying severely on practical knowledge. In a general aspect, these studies are highly based in
experimental investigations, often presenting prohibitive high costs [38]. The in silico optimization
experiments represent an important alternative, as multiple operational scenarios can be studied
in the pursue for desired product yield maximization and/or the minimization of by-products
obtention [39,40]. Several studies emphasize the importance of the dynamic conditions of the
operational variables for bioprocess, as its transient characteristics may impact profoundly the desired
product yield or its purity [21,22,33,41]. In this sense, the dynamical optimization of bioprocess is
cardinal for ensuring its economic competitiveness, encouraging the utilization of advanced control
techniques such as the dynamic real-time optimization (DRTO), which is briefly described below.

The dynamic real-time optimization (DRTO) is a member of a broad array of advanced
process control tools, that accounts for transient intrinsecal characteristics (volatile market prices,
input disturbances, etc.) in the maximization (or minimization) of a generally performance-oriented
objective function. The DRTO is based in the utilization of a predictive model for the future prediction
of process state x, and based in this predicted output a control action over the manipulated variables u
is planned using an optimization procedure for the objective function J(x, u, t) for a process dynamics
f (x, u), in terms of the constraints established for the values of the u and x. When a finite-horizon
formulation for the DRTO is adopted, the problem formulation is essentially similar to non-linear model
predictive control (NMPC) with an economically oriented objective function [42–44]. A general optimization
problem in finite-horizon formulation DRTO is described mathematically in Equations (7)–(11) [43].

min J(x, u, t) ∀ t, x(t), u(t) ∈ [tk, tk+1] (7)

subjected to:
.x = f (x(t), u(t)) (8)

umin ≤ u ≤ umax (9)

xmin ≤ x ≤ xmax (10)

k ∈ [0, 1, ..., n] (11)
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The mathematical nature of the DRTO relies on the utilization of a dynamic model for the
prediction of the process output, maximizing an objective function (or minimizing, as frequently it is
defined as a negative term) that is related to the process profit. A general mathematical definition for
the objective function is presented in Equation (12).

J(x, u, t) = −
∫ T

0
Φ(x, u, t)dt (12)

In Equation (12), the term Φ(x, u, t) represent a function for the process dynamics which is desired
to maximize (thus, minimizing J). Usually, this function is defined trough the summation of the costs
of the process input and output streams of interest, pondered by their cost expressed in an intensive
form (e.g., kg−1 or L−1). Although the utilization of a steady-state consideration for the process would
expressively simplify the optimization task, the consideration of the transient response is crucial for
the achievement of good optimization performance [15,33,44]. This aspect is even more relevant for
biotechnological processes, as they exhibit frequently a complex non-linear behavior, especially when
subjected to disturbances in the operational parameters. In this sense, we opted for a non-linearized
model for this intent in the present work (as presented in Equations (1)–(6)).

2.3. Dynamic Optimization Problems

In general, the dynamic optimization problems can be classified in three broad categories: iterative
dynamic programming, indirect and direct methods. The direct methods are refered to as attractive
alternatives due to the relatively lower computation effort demand [45]. These methods transform
the original problem into non-linear programming problem (NLP) following different strategies,
among which the control vector parametrization (CVP) presents several advantages regarding the
dimensionality of the subsequent optimization problems [45,46]. Following the CVP approach, the feed
profile for each prediction horizon can be expressed into a functional form as presented in Equation (13),
for which the relevant parameters Ak are determined in order to minimize the objective function for
each prediction horizon.

uk(t) = f (Ak, t) (13)

The choice of the adequate feeding profile is cardinal for the optimization of the bioprocess
productivity. Several methodologies are studied in the literature for the feeding profile parametrization,
such as sinusoidal [15], linear piecewise [14] and pure analytical (no parametrization) [32]. In the
work of Ochoa [15], the advantages of the sinusoidal feeding profile are discussed, in terms of the
continuous form of its mathematical expression, ensuring for the minimization of inhibitory shocks
occurrence due to substrate overfeeding. Thus, studies in respect to the functional form for the feed
rate employed in the present work are appropriately discussed in the Section 2.4 below.

As previously described, the determination of the functional parameters for the feed rate
parametrization represents a cardinal aspect of the resolution of the dynamic optimization problem.
In this sense, a myriad of algorithms are available for the search for the optimal profile of the
controlled variables, which are broadly categorized into two categories: deterministic methods,
and stochastic methods, the later including the heuristic methods. For the first type, the obtained
solution generally approaches the global optimum, although the computation effort to ensure the
referred global optimally might make the problem intractable. Stochastic and heuristic methods do
not guarantee the convergence of the solution to the global optimum, although provide near-global
solutions [47]. Despite the relative higher computational effort demand, the stochastic methods are very
robust and well suited to optimization of non-linear problems such as those arising from bioprocesses,
due to the aforementioned complex relation between microbial growth and the production of desired
product [26,48].
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Among the stochastic optimization methods, the evolutionary computation routines figures out
as good alternatives for the optimization of biotechnological process problems, due to its robustness,
good convergence rate in the search space and modest computation times, although the convergence
to the global optima cannot be guaranteed [26,49]. In a general aspect, those algorithms represent the
solution space for the variables under a specific codification (e.g., binary, integer values, real values),
for which a fitness function is evaluated, and several solution space are proposed. For each iteration,
each one in the collective of solution spaces has its information interchanged between them towards a
new one, with greater fitness value. The referred solution space for the variables to be optimized is
often named genome, each iteration of the algorithm as generation and the collective of solution spaces
is a population, mimetizing the general structure natural selection process in the nature, in which the
organisms are being constantly selected in terms of its adaption to the environmental conditions.

Several evolutionary algorithms are presented in the literature, and the discussion about the
particularities about each one is beyond the scope of the present work. The GA and the DE represent
two important members of the evolutionary computation techniques, which are referred to for their
good performance on optimization problems applied to biotechnology [18,50]. The generic form of the
GA and DE methods algorithms are schematically outlined in Figures 1 and 2, respectively.

Figure 1. Schematic representation of the GA algorithm.
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Figure 2. Schematic representation of the DE algorithm.

2.4. DRTO of the Fermentative Process

For the DRTO of the ethanol production process, the optimization routine is triggered several
times during the batch, with the feed rate as the manipulated variable trough the parametrization of
the substrate input volumetric flow using the final ethanol productivity (g·h−1), as described in the
following Section 2.5. The procedure for the DRTO execution is schematically presented in Figure 3,
in which uopt represent the optimal manipulated variable (substrate feed rate) input, d the disturbance
in the stream fed in the fermenter, x̂ the output from process after the disturbance and u the value for
the input variable. For the implementation of the DRTO routine, an in-house code developed using
the Python computational language was utilized.

Several activation frequencies (or interval between optimization cycles) for the DRTO routine
were evaluated, and an artificial disturbance in the form of a gaussian noise was introduced in the
feed rate substrate concentration, as presented by several authors, such as Ochoa et al. Johansen,
Tenny et al. [29,51,52], with a deviation of 10% from the nominal value. It is important to emphasize
that a productivity based objective function is appropriately for the control or optimization of a
processes in which there is disturbance occurrence, instead of a defined operation point, as it can
induce an unsatisfactory performance [29].
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Figure 3. Schematic representation of the procedure employed for the DRTO execution during the
batch. Adapted from Ochoa et al. (2010) [29].

The parametrization of the feed rate was performed using a periodic function based in a
non-linear mathematical expression based in cosinoidal terms, as presented in the work of Ochoa [15],
an exponential and linear functions. The referred mathematical expressions are outlined in the
following equations.

u(t) = a0 + a1cos

[
w1

(
t− t0

t f − t0

)
+ φ1

]

+a2cos

[
w2

(
t− t0

t f − t0

)
+ φ2

] (14)

u(t) = a0 + a1exp

[
w1

(
t− t0

t f − t0

)]
(15)

u(t) = a0 + a1

(
t− t0

t f − t0

)
(16)

The mathematical expressions for the parametrization of the feed rate described in the
Equations (14) and (15) exhibits important characteristics. Both functions represent smooth feed-rate
profiles, avoiding the occurrence of inhibitory shocks due to substrate overfeeding, although this
characteristic was not directly explored in the benchmark model employed in the present work,
however the cosinoidal function is superior in this sense to the exponential one. However, it is
important to mention that the exponential function has a smaller value for the degrees of freedom
than the cosinoidal (4, instead of 7, respectively), what implies in a more compact set of variables to be
determined by the optimization algorithm for each DRTO activation. In the other hand, the linear feed
rate expression described in Equation (16) exhibit a non-smooth profile, although the expression has
only 2 degrees of freedom.
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2.5. Incidental Dynamic Optimization Problem

As previously described, in the DRTO a dynamic optimization problem (DOP) is triggered for
each prediction horizon, as the CVP approach is employed for the parametrization of the manipulated
variable (fermenter feed rate u(t)) The DOP consists in the optimization of an objective function
using the optimization algorithms, represented by Equation (17). The choice of the objective function
represents a cardinal aspect of the DOP, and there is no consensus in the literature about which
mathematical relation is more adequate for optimization studies, although the volumetric productivity
is refereed to be more suited for batch culture processes in which the biocatalyst is not recovered after
the process [53,54]. In this sense, this measure was utilized as the objective function in the present work,
and it is mathematically outlined in Equation (17) , in terms of Equation (7) described earlier.

J(x, u, t) =
1

Tf

∫ Tf

0
(x1x4) dt (17)

The objective function utilized represent the specific ethanol productivity g·h−1, in which the
term t f represent the end time for the current prediction horizon, Tf the final batch time, x4(t = t f )

and x1(t = t f ) represent the final ethanol concentration and fermenter volume in the end of the
prediction horizon. Its important to mention that Tf represent and additional degree of freedom for
the DOP, as the optimization problem studied in the present work uses an open end-time concept.
The constraints for the DRTO are presented in Table 2.

Despite the fact that in the present work an in silico approach for ethanol production was
employed, it is important to emphasize that the ethanol yield optimization has direct biological
implications, as the manipulation of the substrate feed rate for the fed-batch process in study aims
to maximize the excretion of ethanol concomitantly to the minimization of the inhibitory effect due
to substrate and product accumulation. The conversion of the substrate in the biofuel is limited to
the stoichiometric yield, theoretically limited to 0.511 g Ethanol/g sugars [55]. Several works was
conducted in the determination of ethanol conversion from variate substrates, such as dried corn,
with the approximate value of 90% [56] and switchgrass, with the value of approximately 80% [57].
Although the formulation of a mathematical model for the description of the microbial growth is limited
in terms of the considerations made in its development, the applicability of in silico optimization is
discussed in the works of Semple et al. Kumar and Maranas, Parambil and Sakar [58–60], among others.

Table 2. Constraints utilized for the resolution of the dynamic optimization problems.

Parameter Unit Minimum Value Maximum Value

u(t) L·h−1 0 12
x1 L 0 200
x2 g·L−1 0 -
x3 g·L−1 0 -
x4 g·L−1 0 -

For the parameter estimation for the feed rate function for each prediction horizon the stochastic
optimization algorithms GA and DE were utilized. Both routines constitute in-house code developed
using the Python computational language. The configurations employed for each algorithm are
presented in Tables 3 and 4, respectively.
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Table 3. Configuration employed in the genetic algorithm for the DOP of the DRTO.

Parameter Value

Crossover probability 60%
Mutation probability 4%

Crossover genetic operator Arithmetic
Mutation genetic operator Gaussian

Number of individuals 100
Stop criterion Number of function evaluations (100,000)

Table 4. Configuration employed in the differential evolution for the DOP of the DRTO.

Parameter Value

Crossover probability 60%
Scale factor 0.5

DE Variation DE/best/2/bin
Number of individuals 120

Stop criterion Number of function evaluations (100,000)

2.6. Ethanol Production Simulation

The simulation of the ethanol production process was performed trough the integration of the
ordinary differential system presented in Equations (1)–(6), with the initial values presented in Table 5.
For this purpose, the odeint function was employed, provided by the odespy numeric library for the
Python language [61], which act as a wrapper for the LSODA routine. This code switches between
explicit and implicit integrators, depending of the differential system numeric stiffness, a mathematical
property that is frequent for microbial growth simulation problems.

Table 5. Initial values employed for the in silico ethanol production process variables.

Variables Significance Value

x1 Volume 10 L
x2 Cellular concentration 1 g·L−1

x3 Substrate concentration 150 g·L−1

x4 Ethanol concentration 0 g·L−1

3. Results and Discussions

In the following sections, the results obtained in the present work are presented. The effect of the
interval for DRTO process triggering are evaluated. The dynamic profiles for each run of the simulated
bioprocess are also depicted, and lastly, the comparison on the performance of each optimization
algorithm for the incidental DOP is presented.

3.1. Effect of the Interval between Optimization Cycles and Parametrization Profile

The duration of the interval between the DRTO cycles represents an important aspect for the
problem discussed in the present work, as it has implications in terms of the process sampling rate and
the complexity of the underlying dynamical optimization problem. In Table 6, the effect of interval
(INT, between 1, 2 and 4 h), optimization algorithm (ALG, GA or DE) and canonical profile for the
feed rate parametrization (PROF, linear-lin-exponential-exp-or cosinoidal-cos) is presented. For the
sake of clarification, the resultant profile is presented as INT/PROF/ALG. To minimize the inherent
variability arousing from the stochasticity of the meta-heuristic algorithms, the result of every assay
was obtained through the mean from 3 independent tests.



Energies 2017, 10, 1763 12 of 23

Table 6. Results obtained for the DRTO in terms of the time interval between the optimization
cycles (INT), optimization algorithm employed (ALG) and canonical profile for the feed rate
parametrization (PROF).

Assay Number INT ALG PROF Productivity (g·h−1) Batch Time (h)

1 2 h GA lin 530.31± 41.63 27.6± 2.65
2 4 h GA lin 467.81± 40.34 28.8± 2.99
3 6 h GA lin 417.86± 4.55 27.50± 1.5
4 2 h GA exp 476.91± 78.91 30.67± 5.73
5 4 h GA exp 513.83± 0.04 28± 0.01
6 6 h GA exp 296.76± 100.45 26.4± 2.94
7 2 h GA cos 469.74± 14.24 30.67± 0.94
8 4 h GA cos 513.98± 0.03 28± 0.01
9 6 h GA cos 574.29± 8.88 28.47± 1.11

10 2 h DE lin 484.36± 48.94 30.0± 2.83
11 4 h DE lin 455.81± 45.19 28.0± 3.26
12 6 h DE lin 414.14± 11.03 32.0± 2.83
13 2 h DE exp 489.12± 65.12 30.0± 4.32
14 4 h DE exp 391.03± 105.5 24.0± 3.26
15 6 h DE exp 348.91± 64.63 30.0± 0.01
16 2 h DE cos 509.34± 31.60 26.0± 3.26
17 4 h DE cos 408.25± 6.03 28.0± 5.66
18 6 h DE cos 332.38± 98.09 28.8± 4.49

The results presented in Table 6 show that the assays of number 5, 8, 9 and 16 (5/exp/GA,
4/cos/GA, 6/cos/GA and 2/cos/DE, respectively) exhibited the superior result in terms of
productivity and batch time. The results also indicate that the reduced interval between the
optimization cycles implies in a superior productivity. This could be explained for the simplicity of the
microbial growth model, which does not account for deleterious effects such as overflow metabolism or
inhibitory shocks for substrate feeding. It is worthwhile to mention that the obtained results, in terms
of GA and DE comparison, corroborates with the empirically observed in the literature, as the genetic
algorithm exhibits in general more result variability than the differential evolution [50,62]. Also, it is
important to notice that for both algorithms the exponential parametrization of the feed rate exhibited
larger variaton among the results (expressed in terms of its standard deviation), especially for the
assays with higher time interval between the optimization studies. However, its is important to notice
that the cosinoidal feed rate profile, as an inherently smooth function, possess the notable property of
avoiding inhibitory shocks due to substrate feeding, although this characteristic was not explored in
the present study, as mentioned before.

Is important to mention that the results obtained for the batch duration time (presented in Table 6),
which represent an additional degree of freedom for the underlying sequential DOPs, exhibit notable
results, being in totality equal of inferior to 30 h, approximately. The occurrence of shorter batches with
appreciable productivity indexes (such as the assays 5, 8, 9 and 16), represent a relevant result for the
present study, as it implies in either in a superior net profit for the process. Those results demonstrate
the capacity of the DRTO algorithm to optimize the process output, despite the disturbance in one of
the inputs, the concentration of the substrate feed rate.

The variability in the results for the different parametrization for the GA has shown suggestive
statistical evidences that the corresponding results are in fact different. In Figure 4, the confidence
intervals for each assay are presented, representing imagetically the difference in the order of
magnitude of the specific ethanol productivity (g·h−1) variability for both algorithms.
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Figure 4. Confidence interval comparison between the assays for the specific ethanol productivity,
presenting the variability respective to each optimization algorithm and feed rate parametrization.

In terms of the the batch durations presented in Table 6, their results showed lower dispersion
when compared with the specific ethanol productivity, as aforementioned. The comparison between
confidence intervals obtained for the fermentation time is presented in Figure 5.

Figure 5. Confidence interval comparison between the assays for the batch duration time, presenting the
variability respective to each optimization algorithm and feed rate parametrization.

In Figure 5, is possible to observe that the GA algorithm exhibited less variability than the
DE, as similarly noted for the specific ethanol production results. This fact corroborates with the
characteristics observed empirically for the differential evolution, as aforementioned.
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In order to evaluate the significance of the parameters employed in bioethanol production
optimization using the DRTO, two ANOVA tests were performed for the GA and DE, with the interval
between optimization cycles (or DRTO frequency) (INT) and fermenter feed rate parametrization
profile (PROF) as the analyzed factors. In Tables 7 and 8, the results are presented.

Table 7. Analysis of variance (ANOVA) table for the ethanol productivity, using the GA as the
optimization algorithm. The terms SS, df, MS represent the summation of the squared variations,
number of degrees of freedom and mean squared variation, respectively.

Source of Variation SS df MS F p-Value Fcrit

INT 8723.0754 2 4361.5377 0.5789 0.6015 6.9443
PROF 12,192.8488 2 6096.4244 0.8091 0.5069 6.9443
Error 30,138.3136 4 7534.5784
Total 51,054.2378 8

Table 8. Analysis of variance (ANOVA) table for the ethanol productivity, using the DE as the
optimization algorithm. The terms SS, df, MS represent the summation of the squared variations,
number of degrees of freedom and mean squared variation, respectively.

Source of Variation SS df MS F p-Value Fcrit

INT 25,281.4123 2 12,640.7061 15.1181 0.0137 6.9443
PROF 3003.1488 2 1501.5740 1.7959 0.2776 6.9443
Error 3344.5207 4 836.1302
Total 31,629.0810 8

The results presented in Tables 7 and 8 suggests that for a confidence level of 95%, it is not possible
to reject the hypothesis that both time intervals between optimization cycles and parametrization
profile for the fermenter feed rate are significant for the results employing GA as the optimization
algorithm. However, for the results regarding the utilization of DE as the optimization algorithm,
only the parametrization profile has shown to be significant for the productivity results. The interaction
between the analyzed factors, in terms of bioethanol production process productivity and batch time
duration results in terms of the DRTO frequency, for each parametrization profile, is presented in
Figures 6 and 7.

The results presented in Figures 6 and 7 suggests that for bioethanol productivity, there is an
substantial interaction between the DRTO frequency and parametrization profile for the results using
the GA as the optimization algorithm, whilst the interaction between the analyzed factor for the
results using DE as the optimization algorithm is significantly inferior. In terms of the batch duration
time, the results are similar, although the interactions regarding the GA as the optimization algorithm
indicate that the interaction are notably more pronounced for the exponential parametrization profile.

In order to compare the bioethanol productivity results obtained in the DRTO assays (presented
in Table 6) in terms of the parametrization profiles for the fermenter feed rate for each optimization
algorithm, a pairwise t-test comparison with the Bonferonni correction procedure was employed, using
a confidence level of 95%. The p-values obtained in the tests are presented in Table 9. In the referred
table, the terms INT1, INT2 and INT3 were used to represent the interval between the DRTO cycles
(2, 4 and 6 h, respectively), with the aim to improve the readability of the results.
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(a) (b)

Figure 6. Interactions graph for the ethanol productivity (a) and batch duration time (b) with the
parametrization profile (LIN—linear, EXP—exponential and COS—cosinoidal) and DRTO interval
(2, 4 or 6 h) as the analyzed factors, using GA as the optimization algorithm.

(a) (b)

Figure 7. Interactions graph for the ethanol productivity (a) and batch duration time (b) with the
parametrization profile (LIN—linear, EXP—exponential and COS—cosinoidal) and DRTO interval
(2, 4 or 6 h) as the analyzed factors, using DE as the optimization algorithm.
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Table 9. Results of p-values for the pairwise t-test with Bonferonni correction, in terms of the different
parametrization profiles, using GA as the optimization algorithm (a) and DE (b).

Lin Exp Cos

lin
INT1 - 8.743 × 10−3 5.781 × 10−3

INT2 - 9.318 × 10−3 9.319 × 10−3

INT3 - 2.341 × 10−3 1.754 × 10−6

exp
INT1 8.746 × 10−3 - 5.901 × 10−2

INT2 9.318 × 10−3 - 2.244 × 10−1

INT3 2.341 × 10−3 - 2.77 × 10−6

cos
INT1 5.781 × 10−3 5.901 × 10−2 -
INT2 9.319 × 10−3 2.244 × 10−1 -
INT3 1.754 × 10−6 2.770 × 10−6 -

lin
INT1 - 8.858 × 10−2 3.509 × 10−2

INT2 - 8.576 × 10−2 1.585 × 10−2

INT3 - 1.321 × 10−3 1.426 × 10−2

exp
INT1 8.858 × 10−2 - 1.705 × 10−1

INT2 8.8576 × 10−2 - 1.485 × 10−2

INT3 1.321 × 10−3 - 8.515 × 10−2

cos
INT1 3.509 × 10−2 1.705 × 10−1 -
INT2 1.585 × 10−2 1.485 × 10−2 -
INT3 1.426 × 10−2 8.515 × 10−2 -

The results presented in Table 9 indicate that, for a confidence level of 95%, for several assays
there is no evidence that the different parametrization profiles implies in a increment in bioethanol
productivity. In order to facilitate the readability of the results obtained, in Table 10 the positive
results (indicating that the parametrization profiles differ in terms of the final bioethanol productivity)
are highlighted.

Table 10. Interpretation for the results of the pairwise t-test with Bonferonni correction, in terms of the
different parametrization profiles, using GA as the optimization algorithm (a) and DE (b). The positive
results are marked as an asterisk (*), and the negative with a dot (•).

Lin Exp Cos

lin
INT1 • •
INT2 • •
INT3 * *

exp
INT1 • •
INT2 • •
INT3 * *

cos
INT1 • •
INT2 • •
INT3 * *

lin
INT1 • •
INT2 • •
INT3 * •

exp
INT1 • •
INT2 • •
INT3 * •

cos
INT1 • •
INT2 • •
INT3 • •

The obtained results presented in Table 10 indicate that for a confidence level of 95%, for the
assays with the interval between optimization cycles of 6 h using the GA as the optimization algorithm
exhibited significant differences between the parametrization profiles. In terms of the results using the
DE for the optimization, only the exponential profile exhibited significant difference. It is important
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to emphasize that, considering the evidence suggested by the comparison of confidence intervals in
Figure 4, the aforementioned numerical results of the pairwise t-tests can be justified by the variability
in the results, which is expressive for some assays, causing the variation between parametrization
profiles to be treated as random errors.

3.2. Dynamic Profiles for the Specific Productivity of In-Silico Ethanol Production Process

The dynamic growth profiles for the ethanol production process (g·h−1) are presented in
Figures 8–11, comparing the profiles obtained with the assays that exhibited superior results in
terms of ethanol specific productivity, respectively 5 (4 h/GA/exp), 8 (4 h/GA/cos), 9 (6 h/GA/cos)
and 16 (2 h/DE/cos). In the profiles, the growth is represented in terms of the concentration of
substrate, ethanol and cellular biomass during the batch. The total batch time employed for each assay
correspond to the mean value determined in the optimization studies, presented in Table 6.

Figure 8. Growth profile for the assay of number 5 (4 h/GA/exp—4 h interval between DRTO
cycles, GA as the optimization algorithm and exponential feed rate parametrization), in terms of
the concentration of cellular biomass (x2), substrate (x3) and ethanol (x4) during the batch.

Figure 9. Growth profile for the assay of number 8 (4 h/GA/cos—4 h interval between DRTO
cycles, GA as the optimization algorithm and cosinoidal feed rate parametrization), in terms of the
concentration of cellular biomass (x2), substrate (x3) and ethanol (x4) during the batch.
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Figure 10. Growth profile for the assay of number 9 (6 h/GA/cos—6 h interval between DRTO
cycles, GA as the optimization algorithm and coisinoidal feed rate parametrization), in terms of the
concentration of cellular biomass (x2), substrate (x3) and ethanol (x4) during the batch.

Figure 11. Growth profile for the assay of number 16 (2 h/DE/cos—2 h interval between DRTO
cycles, DE as the optimization algorithm and cosinoidal feed rate parametrization), in terms of the
concentration of cellular biomass (x2), substrate (x3) and ethanol (x4) during the batch.

3.3. Comparison between the Optimization Algorithms

Despite the aforementioned relatively small divergence in the results obtained, it is possible to
observe that the standard deviation of DE is superior to the GA, in terms of both productivity and batch
time. This indicates that despite the fact that both algorithms are essentially evolutionary methods,
the GA exhibited a better convergence rate than the DE for the problem in discussion.

In order to evaluate the performance of both algorithms in terms of its intrinsic properties, a trial
run was performed for each one using an open-loop feed rate optimization concept, as presented by
several authors, such as Banga et al. Ochoa, Rocha et al. [14,15,18,50], for the initial configurations
presented in Table 5, and a fixed batch time of 50, 54, 59.05 and 62.9 h, using the cosinoidal
parametrization for the feed rate (14). The results are presented in Table 11, from the information
presented in the work of Ochoa [15].
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Table 11. Results obtained for the open-loop optimization, comparing between GA and DE
optimization algorithms.

Author Batch Duration (h) Ethanol Produced (kg) Optimization Method

[15] 50 20.107 Metropolis Monte-Carlo
[63] 50 19.996 Gradient-based

This work 50 20.092 Genetic Algorithm
This work 50 19.841 Differential Evolution

[15] 54 20.419 Metropolis Monte-Carlo
[64] 54 20.357 Ant Algorithm
[65] 54 20.423 Integrated controlled random search

This work 54 20.38 Genetic Algorithm
This work 54 19.818 Differential Evolution

[15] 59.05 20.432 Metropolis Monte-Carlo
This work 59.05 20.708 Genetic Algorithm
This work 59.05 20.693 Differential Evolution

[65] 62.9 20.715 Integrated controlled random search
This work 62.9 20.815 Genetic Algorithm
This work 62.9 20.423 Differential Evolution

The results presented in Table 11 indicate that the GA exhibited a superior performance than the
DE, although the difference between both was diminished significantly for the longer batches (e.g.,
when comparing 50 h and 62.9 h fermentations). Also, it is important to mention that both algorithms
(GA and DE) employed in the present work has exhibited better performance, in terms of the final
value of the objective function (mass of ethanol in the fermenter after the fermentation time) than some
results presented in the literature, except for the assay with 54 h of batch duration.

In order to compare the optimization algorithm, a pairwise t-test comparison with the Bonferonni
correction procedure was employed, using a confidence level of 95%. The p-values obtained in the
tests are presented in Table 12. In the referred table, the terms INT1, INT2 and INT3 were used to
represent the interval between the DRTO cycles (2, 4 and 6 h, respectively), with the aim to improve the
readability of the results. In this sense, the positive results (indicating that the optimization algorithms
differ in terms of the final bioethanol productivity) were highlighted.

Table 12. Pairwise t-test with Bonferonni correction, in terms of the optimization algorithms employed
in the DRTO study, GA and DE. The positive results are marked as an asterisk (*), and the negative
with a dot (•).

Parametrization Interval p-Value Result

LIN
INT1 1.424 × 10−1 •
INT2 3.745 × 10−1 •
INT3 3.155 × 10−1 •

EXP
INT1 4.233 × 10−1 •
INT2 9.05 × 10−2 •
INT3 2.492 × 10−1 •

COS
INT1 7.471 × 10−2 •
INT2 5.411 × 10−4 *
INT3 2.479 × 10−2 •

The results presented in Table 12 indicate that for a confidence level of 95%, there is statistical
evidence that the results obtained using the GA algorithm were superior to those obtained with the DE,
only for the assay with 4 h as the interval between the DRTO cycles and the cosinoidal parametrization
profile, corresponding to the assays 11 and 17 in Table 6. However, it is important to emphasize that
similarly to the results for the pairwise t-test for the parametrization profiles, presented in Table 9,
the expressive variability of some assays allied to the conservative nature of the Bonferonni correction
could lead to the consideration of the variation between the productivity results using different
optimization algorithms as a result of inherent data discrepancy. This high variability can be justified
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by the number of replicates performed for each DRTO assay (in the present work, a number of three
was employed), and the increment of the number of runs could reduce the data dispersion.

4. Conclusions

In this work, a study concerning the utilization of a DRTO approach for a benchmark ethanol
in silico production process was conducted, using the substrate feed rate as the controlled variable
and employing an artificial noise in the process input of substrate concentration in this stream,
with the open batch end time, using the GA and DE for the resolution of the underlying optimization
problems. The GA has exhibited superior convergence rates than the DE, and less variability in terms
of the resultant specific ethanol productivity and batch time duration. High specific productivity
results were obtained (superior to 574 g·h−1 ), with relatively short batch times (inferior to 29 h).
The open-loop optimization study results, used to evaluate the isolated performance of the developed
GA and DE algorithm shows that the algorithms developed in this work have notable performance,
obtaining values very close or superior to what was obtained by several authors.

The comparison of confidence intervals for the results using the different optimization algorithms
and parametrization profiles in terms of the productivity results suggests that the GA exhibited
superior performance than DE, as well as the cosinoidal parametrization when compared to the
exponential and linear profiles. However, the results of the statistical analysis of the influence of
different parametrization in the productivity results pointed out that for the GA, the only the cosinoidal
exhibited significant difference to the other profiles, using 6 h as the DRTO frequency; for the DE,
the exponential profile exhibited significant superior results to the linear. Similarly, the results for
the analysis for comparison of the optimization algorithms indicates that that the results for both
are statistically equivalent, except for the result using the GA and an interval of 4 h for the DRTO
cycles. This discrepancy between the qualitative and numerical analysis can be justified due to the
expressive variability observed in the assay results, allied to the conservative nature of the statistical
test employed for the comparison.
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