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Abstract: Based on the background of a mine, this study aimed to improve underground wireless
communication. The study selected Zigbee technology from many wireless technologies as the basis,
expounded the technical advantages and disadvantages, and addressed its disadvantages. First,
the modulation technology of Zigbee was improved. This article selects and describes O-QPSK
technology from three modulation technologies, thereby addressing the synchronization difficulties
caused by inherent technical reasons, and proposes a modulation method based on feedforward
timing. Moreover, excellent performance was achieved in the follow-up simulation experiment. For
networking problems, a series of mechanisms are proposed to address several problems in large-scale
networking: node offline, energy waste, signal delay, etc. This article proposes five main mechanisms
and an improved protocol from two significant perspectives. The problem of node disconnection is
divided into two parts. Considering the different status of edge nodes and important nodes in the
network, three mechanisms are proposed for edge nodes for disconnection detection and self-repair,
and two mechanisms are proposed for essential nodes. This can compensate for the loss caused by the
disconnection of essential nodes at a specific time. For network energy waste, an Improved-LEACH
protocol is proposed to alleviate the signal delay problem. The performance of the five mechanisms
and one protocol was verified in a simulation test, and the performance was reasonable and in line
with expectations.

Keywords: Zigbee; Zigbee networking; O-QPSK demodulation based on feedforward timing;
Improved-LEACH protocol; Nakagami fading channel

1. Introduction

Hidden dangers and risks accompany coal mining. There are more than 20,000 coal
mines in China, 95% of which are underground coal mines [1]. Underground coal mines are
complex. Due to underground coal seams and hydrological conditions, underground prob-
lems are difficult to predict. Many sources of instability factors exist, such as underground
gas changes, floods, fires due to high geothermal temperature, and gas explosions, or coal
mining machinery faults caused by faults. Appropriate measures to avoid or provide early
warning of disasters and faults have become the top priority of coal mine safety research.
Initially, coal communication systems generally used a special coaxial cable. The radio
wave was dispersed into the mine tunnel by the central station and then spread through
the tunnel’s radio stations. Wired transmission is safe and reliable, and the transmission
capacity is large. The signal is stable, which helps obtain underground news in time.
However, wired transmission requires the use of complicated cables, and additional cables
can cause other effects in narrow tunnels. Real-time information in underground coal
mines is essential for monitoring the underground conditions of coal mines. Compared
with aboveground, underground communication is affected by various conditions, such as
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underground rocks and, potentially, metals. Because underground conditions are highly
complex, underground passages are crowded and narrow. Large-scale wired communica-
tion has an impact on mining projects. Due to the general rise of wireless communication,
early scientific researchers abandoned wired communication and instead pursued wireless
communication for mining applications [2].

Compared with wired transmission, wireless transmission is flexible, robust, portable,
and uneven in layout. However, it does not affect narrow mine tunnels due to its difference,
or open-wire or optical cable transmission. However, wireless transmission is easily
affected by the environment. Mine communication is a specialized area of communication
research, and differs from general ground and indoor communication. The walls of mine
tunnels are rough, the interior is hot and humid, and there are numerous branch tunnels.
Numerous coal mining machines are also present, in addition to a large number of coal
mining machines. Due to the metal shell of the mine, the propagation environment and
characteristics of radio waves in mines are significantly different from those of general
ground communication [3]. Furthermore, numerous signal multipath effects occur in
mines, such as are non-line-of-sight transmission, difficulty of the signal directly reaching
the target receiver, and propensity to fading effects. Underground mines can be regarded
as an implementation of non-line-of-sight transmission in a limited space. Compared
with the free transmission channel [4] of general wireless communication, underground
wireless communication must consider more influences, and, at present, underground
communication continues to face a number of challenges.

Due to its advantages of low cost, low power consumption, and strong anti-interference,
Zigbee is widely used in smart homes, industry, short-range monitoring, etc. It is also an
option for wireless transmission in mine communication. In 1978, Murphy, J.N. [5] and his
team placed a detector with a Zigbee communication module inside a mine and obtained a
relatively stable signal; Zhang Changsen [6] and others proposed mine personnel position-
ing based on ZigBee technology. The system’s design scheme, the specific implementation
process, and the implementation diagram of the software and hardware structure were
outlined. Jiao Shangbin [7] and others used the Zigbee technology component wireless
sensor network to collect data, such as gas concentration, carbon dioxide, temperature, and
humidity in the mine, and adopted the Karl Mann filtering method to remove random
errors. Experiments proved that the system was better able to collect and communicate the
required data.

In the study of mine communication to reduce open-wire communication, Zigbee
technology has unique advantages. Zigbee is established based on the IEEE802.15.4 proto-
col, uses spread spectrum methods to enhance anti-interference [8], and uses modulation
methods such as BPSK (Binary Phase Shift Keying), ASK (Amplitude Shift Keying), and
O-QPSK (Offset-Quadrature Phase Shift Keying) to enhance noise interference and reduce
signal distortion. In mine communication, it is necessary to combat the energy loss caused
by noise interference and multipath effects, and the influence on the network’s network
capacity and stability. This study simulated the mine communication environment, ab-
stracted it into a similar channel environment, and monitored the Zigbee modulation
signal’s stability. Based on the research of the Zigbee modulation method, the study made
in-depth improvements and the current article discussed the problem of network connec-
tion. Parallel measures were applied to the inner and outer layers of the technology to
make improvements. Zigbee’s modulation method was studied from the inner layer, and
O-QPSK was selected as the improvement target. Starting from the demodulation synchro-
nization of O-QPSK, the aim was to address the issue of demodulation synchronization to
reduce the signal delay problem. The implementation of Zigbee networking was studied
from the outer layer, and the network strength was selected for the network life endurance
of the Internet of Things, with the aim to address the edge node off-network belt caused by
excessive network capacity. The problems of signal loss and the inability of upper-layer
nodes to perceive, the primary information loss caused by the failure of virtual nodes, and
the life of the network are also considered. An addition aim was to address the issue of
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energy waste caused by the transmission power adjustment problem of the Zigbee device
itself; that is, energy is lost, and the resulting energy waste of the entire network leads to
reduced network life. Finally, this study addressed the problems caused by signal delay,
the impact of single node problems on the entire network, and the network’s energy-saving
requirements.

2. Technical Selection and Discussion of Technical Defects

Coal is an important energy source in China and plays a pivotal role in the industrial
field. However, due to the complexity of the underground environment and the incredibly
complex mine structure, coupled with the low level of miners’ education and poor pro-
duction safety awareness, coal mine accidents have occurred frequently in recent years,
causing heavy casualties and economic losses, and affecting economic development and
social stability. The importance of mine communication is self-evident. The efficiency of
mine communication is related to the efficiency of production and the safety of workers.
Most existing mine communication systems are wired communication, via communication
cables laid in the tunnel, and then through 485 or CAN buses. There is a delay before the
data to be transmitted to the ground monitoring center and, as the coal mine deepens,
a large number of cables are laid in the tunnel. After mining is completed, the original
cables are discarded, representing wasted investment.

Moreover, in an accident, cables may be damaged, causing the interruption of un-
derground communication, thus making it impossible to locate personnel, which is not
conducive to timely rescue. Wireless communication is a new technical research direc-
tion. At present, RFID technology is most commonly used. KJ90 and KJ95 are the more
mature communication systems using RFID currently available. However, RFID also has
high prices, high maintenance costs, poor compatibility, and suffers from the issue of anti-
interference. Therefore, the research and development of a wireless mine communication
system with a low price, easy maintenance, high reliability, and strong compatibility, and
that can be easily expanded and upgraded is currently required. This chapter analyzes
this issue. As the focus of analysis, an appropriate technology is selected from the range
of technologies currently available. This technology and its drawbacks are analyzed, and
improvements are suggested.

2.1. Technology Selection

Based on the above analysis, considering the conditions of the experimental environ-
ment, the following issues need to be considered when selecting a wireless network:

• Node problem: The number of nodes that need to be deployed should be within the
control range, and the size of the nodes needs to be small. In a mine environment,
little space exists in which to arrange a large number of nodes with large volumes.

• Data volume problem: The amount of data that needs to be transmitted is small, but
the data packet loss rate is low, and the security, authenticity, and real-time delivery of
the data need to be guaranteed.

• Power supply problem: Because follow-up maintenance is troublesome, the battery
life must be long.

• Cost issue: Considering the actual demand, the cost should be reduced. As the area of
the mine increases, the number of nodes increases accordingly. If the individual cost
is high, the overall cost will be higher, so it is necessary to reduce the individual cost
to reduce overall costs.

• Selection problem: The selected technology must be mature and meet the first four
requirements.

According to a collation of relevant data, several currently available mature wireless
technologies were selected for comparison. The comparison is shown in Table 1:
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Table 1. Comparison of several wireless technologies.

Wireless Technology Pros and Cons

GPS Global all-weather positioning, positioning accuracy is easily affected
by weather, electromagnetic waves, obstacles, etc.

Zigbee Low cost, long transmission distance, extensive data collection
workload, and low accuracy.

RFID High accuracy, low cost, not suitable for long-distance positioning.
UWB High precision and high cost.
BDS Wide application, mature technology, reduced indoor accuracy

The selection of technology must refer to multiple aspects. According to the five
requirements, Zigbee technology was selected for the current research. Zigbee technology
has a low cost, mature technology, long transmission distance, and low power consumption.
Currently, it has mature applications in various fields. Zigbee technology uses ASK, BPSK,
and O-QPSK [9], which are modulation technologies for encoding and despreading [10].
These modulation technologies enhance the anti-interference of Zigbee technology, which
has low operating difficulty and is portable. The advantages of strong performance and
good signal penetration are consistent with the requirements of this article.

2.2. Problems in the Selection of Technology

Zigbee technology is one of the more mature wireless communication technologies
currently available, and its applications are extensive, particularly in smart homes. The
mine communication environment has particular characteristics. Wireless communication
equipment in a mine with suffer varying degrees of interference, and wireless technology
also has a number of shortcomings. In the mine communication environment, these
technical shortcomings can cause serious communication problems. The article begins with
the aspects of modulation technology, networking, and the aspect of the environment to
discuss technical defects.

2.2.1. Problems Caused by Modulation Technology

Zigbee technology at 2.4 GHz uses O-QPSK modulation. O-QPSK modulation technol-
ogy overcomes the problems of signal 180◦ mutation and phase ambiguity caused by BPSK
modulation. In addition, the use of DSSS (Direct Sequence Spread Spectrum) overcomes the
problem of weakened anti-interference under ASK modulation. Typical O-QPSK demod-
ulation is based on the same principle as QPSK demodulation. A demodulation method
based on feedback timing is often used, but this demodulation scheme has significant
problems. In this scheme, the synchronization system’s role is to synchronize the locally
generated PN code with the PN code in the received signal, that is, the same frequency and
the same phase. The signal received through the wideband filter is correlated with the local
PN code in the multiplier, and the device and mobile equipment are calibrated to adjust the
voltage-controlled clock source. The PN code generator and the received signal generated
by the adjusted local clock are consistent. Once the useful signal is captured, the tracking
device is activated to adjust the voltage-controlled clock source. If the synchronization fails
due to the random number seed, a new round of sampling and tracking process begins.
Therefore, the entire synchronization process includes two steps. The first step is to search
for the synchronization head, and the second step is the closed-loop automatic control and
adjustment process. This demodulation scheme’s significant disadvantage is that symbol
synchronization is complicated when the carrier is not synchronized. Furthermore, carrier
synchronization requires symbol synchronization to provide correct clock information. The
timing loop delay is considerable, and the signal-to-noise ratio is low.

2.2.2. Problems Caused by Networking Technology

According to the 2.4 GHz Zigbee device parameter display of Texas Instruments
(Table 2), there is an upper limit on a Zigbee network’s capacity. Furthermore, the area
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covered by the wireless communication network is also limited. According to mobile
communication theory [11], as the distance to the signal source increases, the signal is
weakened; when the maximum distance is reached, the signal is effectively non-existent.
When the environment is poor, the signal penetration ability is blocked, the coverage area
is reduced compared with a line-of-sight environment; in extreme cases, the decline is
significantly weakened. Under the same network capacity, the signal coverage area under a
non-line-of-sight environment will be weaker than that under a line-of-sight environment,
and the network capacity may not reach its maximum in actual situations. The increase in
network capacity is not conducive to the ability of edge nodes. Among the three topologies
of Zigbee, the mesh structure that can cover the largest capacity also suffers from the
problem that edge nodes are easily broken.

Table 2. Partial data of Zigbee equipment.

Frequency Range 2.41–2.48 GHz

Receiving sensitivity −94 dBm
Network capacity Maximum 255

Coverage 10–75 m, some maximum150 m
Operating temperature −20–65 ◦C

Number of connectable devices 254
Transmission rate 250 Kb/s, peak information speed is 720 Kb/s

In Zigbee networks, when the network capacity increases, each transmission node’s
load also increases. The load of the central node and the transmission node will increase
more, but the node’s ability to handle the load is limited, leading to delays in message
delivery and signal instability. In severe cases, the collapse of a central node with excessive
load will cause the network to collapse. The expansion of network capacity also increases
the number of nodes. Nodes at the edge of the coverage area are edge nodes, maybe due
to the central source’s distance. Nodes too distance from the network center may lose
contact unexpectedly. However, the network may not be able to respond in time or even
be unaware of the problem, which is a more significant issue in practice. Furthermore, a
larger number of nodes requires route searching and maintenance, causing higher routing
expense and produce significant energy loss.

2.2.3. Problems Caused by the Environment

For several reasons, the environment of mine communication is a unique in the context
of channel research [12]:

• The transmission environment is complex: Mine tunnels have narrow spaces with a
large number of coal seams, rock walls, soil, etc. There also numerous types of coal
mining machinery, which is concentrated due to the narrow tunnels.

• Significant electromagnetic interference: Coal mining equipment is mostly metallic
and is used in large numbers. The unique composition of the roadway wall absorbs
part of the electromagnetic wave or forms a multipath fading effect.

• Other factors: Mine tunnels are not a fixed working environment, and the movement
of personnel and machinery also affects the transmission of signals. The excavation of
tunnels and subsequent mining directions are carried out randomly, and the direction
of extensions is also different. This increases the requirements for the re-coverage of
wireless systems.

Based on this discussion, an approximate mine tunnel channel is abstracted, and
corresponding measures are taken. Developing this abstract requires further assumptions.

2.2.4. Summary

Based on the above discussion, this study aimed to improve the existing technology
from several perspectives:
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• Inherent problems caused by modulation technology;
• Inherent problems caused by networking technology.

3. Several Measures to Improve Existing Technology

Zigbee technology has a number of shortcomings, which relate mainly to two aspects.
In this section, technical improvements are suggested to address these two areas. To better
demonstrate the technical route of this section, its content is organized according to the
workflow shown in Figure 1:

Figure 1. The main work of the article.

As shown in the figure above, Section 3.1 explains the construction of a mine-like
communication environment, generally using the Rayleigh and Nakagami channels. In this
study, the Nakagami channel was chose as the experimental channel. Section 3.2 will
briefly explain the theoretical part of the improvement measures against the drawbacks of
modulation technology, and the specific implementation will be carried out in Section 4.1;
Section 3.3 is the theoretical discussion part for the drawbacks of networking technology,
and the specific implementation will be done in Sections 4.2 and 4.3

3.1. Simulate Mine Tunnel Environment

Mine channels are generally abstracted into the Rayleigh and Nakagami channels.
The Rayleigh channel has no direct-sight path component but is accompanied by irregular
fading effects. It is generally used as a model of an ideal mine tunnel environment. Previous
research [13] notes that the Rayleigh channel is not capable over long distances. In the
long-distance mine channel environment, the three-dimensional shape of the roadway
is approximately cubic in the open channel environment. If the transmission distance
is within 100 m, the electromagnetic wave transmission characteristics of 900, 1800 and
2.45 MHz are approximately in line with the Rician distribution. When obstacles are
added and line-of-sight propagation is blocked, as the transmission distance increases, the
electromagnetic wave distribution fits the Rayleigh distribution. However, the Rayleigh
distribution also has the disadvantage of not being sufficiently flexible. The Nakagami
channel was established based on the Rayleigh channel, but can be flexibly changed by
changing the value of m, allowing description of the different fading characteristics of
multipath signals. The Nakagami-m fading expression is as follows:

pZ(z) =
2mmz2m−1

Γ(m)Pm
r

exp
[
−−mz2

Pr

]
(1)

where Pr is the average power, Γ(m) is the gamma function, and m is the fading parameter.

When m = 1, the above equation degenerates into Rayleigh fading; when m = (K+1)2

(2K+1) ,
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the above equation approximates Rayleigh fading with fading parameter K; and m = ∞
represents no fading. By changing the value of m, the Nakagami model can be transformed
into a variety of fading models.

3.2. Discussion on Improvement of the Drawbacks of Modulation Technology

As shown in Figure 2, the classic O-QPSK demodulation scheme uses the principle
of two-channel signal modulation. The digital baseband signal is divided into I and
Q channels, which are then multiplied by the carrier and added together to obtain the
modulated signal. However, realizing the polarity conversion of the signal and the serial-
to-parallel conversion to separate the odd and even bits are challenges. Figure 2 shows an
O-QPSK demodulation scheme based on feedback timing.

Figure 2. O-QPSK modulation diagram.

O-QPSK suffers from synchronization problems in the process of carrier recovery and
symbol timing during demodulation. To solve this problem, in the traditional feedback
timing demodulation scheme [14], a new demodulation scheme is used. The new method
separates carrier recovery and symbol timing recovery, prioritizes them, and performs
them separately. Carrier recovery and symbol timing recovery are performed separately.
Timing recovery is based on the frequency domain nonlinear estimation algorithm to
extract timing error information, and symbol positioning adjustment uses error control
data interpolation. Figure 3 shows the recovery principle.

Figure 3. Schematic diagram.

3.3. Discussion on Measures against the Disadvantages of Networking Technology

In a large-scale network, edge nodes can be disconnected due to the long distances
involved, and disconnection cannot be detected in time by the central node. In this case,
most of the network will not be significantly affected, but the disconnection will have
an impact in actual situations. The network disconnection mechanism, power control
mechanism, and error control protocol are proposed measures to address this phenomenon;
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however, when there are many nodes, the routing overhead increases significantly and
causing unnecessary wastage of energy. In practice, the Zigbee network is used to reduce
costs and simultaneously allow long distance use. The improvement of the LEACH
protocol was proposed to address this issue, such that edge node breakage does not affect
the overall network. However, the fracture of important nodes will cause the collapse of
the comprehensive system centered on those nodes. The artificial redundant node and
alternative link mechanisms have been proposed to address this problem. These measures
are described in detail below, and related implementations are carried out in Section 4.

3.3.1. Network Disconnection Reconnection Mechanism, Power Control Mechanism, and
Error Control Protocol

In a large-scale network, edge nodes are at risk of detachment. After edge nodes
detach, they become isolated nodes. In actual situations, edge nodes generally serve as end
nodes to transmit critical information. The detachment of edge nodes may cause significant
information loss. Because isolated nodes must be rejoined to the network, a network
disconnection reconnection mechanism is proposed. The process is divided into two main
steps: node offline determination and the node access mechanism. In the judgment of
offline nodes, if the node sends information to neighboring nodes but does not receive
feedback, it is determined that it is offline. The network access mechanism is needed if the
node is not in the network (i.e., become an isolated node), and if it is determined that it
is an isolated node, network access is started. After the node determines that it is offline,
the node’s network layer starts the network access mechanism, that is, sends a network
access request to the neighboring node. If the neighboring node sends back the permission
request to enter the network, the node sends its related data to the neighboring node.
Then, the neighboring node sends the connection information, and the two nodes establish
a connection.

The transmission power required for wireless network signal transmission is pro-
portional to the transmission distance [15]. When there are many nodes, a large amount
of energy loss occurs in route discovery and route searching. To save the energy of the
overall network, a power control mechanism is proposed. The power control mechanism
(The schematic diagram is shown in Figure 4) is mainly aimed at remedial measures after
the link is interrupted due to the breaking of a node during the networking stage. The
transmitting power range of node A is the blue circle range. When node B, the neighbor
of A, is damaged, node A’s transmitting power increases to cover the nearest node C in
addition to node B.

Figure 4. Power control mechanism.

The impact of the mine environment must be considered. The error control protocol
is controlled by the Z-TACK protocol stack, which can reduce the environment’s impact.
The error control protocol is divided into a response mechanism and a retransmission
mechanism. In the response mechanism, if the response frame is received after the data is
sent, it is determined that the data is successfully sent; if the response frame is not received
after the data is sent, the retransmission mechanism is started. If the confirmation frame is
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not returned within the specified Response WaitTime, it will be retransmitted. The number
of transmissions of the retransmission mechanism is limited, and generally considered to
be three times. If the confirmation frame is still not returned, the node is considered offline,
the link is broken, and the link repair mechanism is started.

3.3.2. Improve-LEACH Agreement

Information exchange and transmission between nodes are required. The LEACH
algorithm divides several nodes into a cluster group. Each cluster group has a cluster head
node. The cluster head node collects the data of all group members and transmits it to the
upper level. Then, if the cluster head node fails, the next cluster member is rotated to be
the cluster head node. The LEACH protocol amortizes the high energy consumption cost
of data transmission to the cluster members and ensures the cluster members’ average life
span [16].

The LEACH protocol results in energy loss of the overall network, and causes a
significant amount of energy wastage in actual use. An Improved-LEACH protocol is
proposed to address this energy waste. The Improved-LEACH protocol changes the
automatic cluster head election mode to a manual cluster head election mode. Manual
cluster head election is based on the environment and node address, the actual environment,
and other factors [17]. The selected cluster head node prolongs its service life accordingly
(for example, by using better Zigbee equipment and better quality power). Other cluster
nodes in the cluster are ordinary nodes. The ordinary nodes in the cluster are mainly
responsible for communicating with each other and passing information to the cluster
head node, and the cluster head node is mainly responsible for gathering and sending
information and external communication. Ordinary nodes have a lighter task and only
need to communicate within the cluster, and do not need to maintain routing information
outside the cluster [18]. Cluster head nodes have a heavier task, and need to cache and
retain information within the cluster, and cache information for other cluster head nodes.
The Improved-LEACH protocol can reduce the network overhead caused by the automatic
selection of cluster head nodes and reduce the network energy consumption.

3.3.3. Manual Redundant Node Mechanism and Alternative Link Mechanism

Breaking important nodes will cause significant losses. To address this problem, two
measures are proposed: the artificial redundant node and alternative link mechanisms.
The artificial redundant node measure places a redundant node beside the full link; the
node joins the network only when the link has problems. The schematic diagram is shown
in Figure 5.

Figure 5. Artificial redundant node mechanism.

The arrangement of redundant nodes in the artificial redundant node approach must
be based on field detection and actual needs. If there costs are significant, another mecha-
nism can be used, i.e., the alternative link mechanism. The schematic diagram is shown in
Figure 6.
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Figure 6. The alternative link mechanism.

A link is placed near virtual nodes, and information in a particular area is routed
through specific links. As shown in Figure 6, nodes a and b are routed through letter links,
and nodes c and d are routed through digital links. During routing, when information is
routed through node A to node B, the information of node A and B is packaged together.
When vital link information is routed, the information of the passed node will be packaged
together. Nodes c and d are treated similarly. When node B is damaged, node A and node
B are broken, and node A temporarily forwards the information to node 1. The central
controller can obtain node damage information via the information when parsing the file
package for future maintenance.

4. Concrete Realization of Improvement Measures

This section presents the specific implementation of the measures proposed in Section 3.
The main components of the implementation, for the improvement of modulation technol-
ogy, are the realization of the reconnection mechanism of the network, the power control
mechanism, and the LEACH improvement protocol.

4.1. The Realization of O-QPSK Modulation Based on Feedforward Timing

To overcome the difficulty of synchronization caused by typical O-QPSK demodula-
tion, the O-QPSK demodulation method based on feedforward timing uses separate carrier
recovery and symbol timing recovery. According to the schematic diagram in Section 3, the
following specific implementation is carried out.

4.1.1. Symbol Timing Recovery

Figure 7 shows the new demodulation method proposed in this article. The new
method also uses 2-channel A/D sampled data but, unlike the traditional method, it feeds
the timing error back to the A/D data sample, which then passes through the digital down-
conversion matched filter. After carrier recovery, the new method feeds the error back to
the digital down-conversion, and then performs data interpolation and data demodulation
through matched filtering. The specific implementation flow chart is shown in Figure 8
below.

Timing recovery adopts interpolation timing based on a frequency domain nonlinear
estimation algorithm. After two A/D channels sample the baseband signal, it is digitally
down-converted, then matched filtered, and subjected to two data amplification sampling
processes [19]. The amplified sampled data after matched filtering uses a square loop
algorithm for timing error estimation processing, and the processed timing error is used as
the error estimation of data interpolation for the different filters for timing completion.
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Figure 7. Schematic diagram.

Figure 8. Flow chart.

The signal S(t) after the baseband signal is sampled by two A/D channels is:

S(t) = (I + Q)ej2πfct (2)

where Q and I are two input signals, fc is the carrier frequency offset, and t is the time.
S(t) takes the real part as:

S(t) = Icos(2πfct)−Qsin(2πfct) (3)

After raising cosine rolling, the signal s(t) after the filter is:

s(t) =
√

I(t)2 + Q(t)2 cos[2πfct + ϕ(t)] (4)

At this time, the signal Q, I is a function of time, fc is the carrier frequency deviation,
and ϕ(t) is the signal phase.

The s(t) signal is matched and filtered after digital down-conversion, the signal at this
time is given by:

r(t) = As(t− τ)ej(∆ωt+θ) + n(t) (5)

where n(t) is the noise signal, ω is the carrier frequency, θ is a uniformly distributed
random variable in (0, 2π).
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After the signal r(t) is amplified and sampled two times by the data, the signal rk is:

rk = r
(

kT
N

)
= Ask + nk (6)

In Formula (6), N = 2.
In the process of modulating the signal, to save the power of the transmission signal,

the square loop algorithm is used to directly extract the carrier [20]. The received signal
after the square loop contains the carrier frequency component of twice the frequency, and
the phase locked loop is used. After extraction, the corresponding signal can be obtained
via two frequency divisions. The sampling data amplified two times is extracted through
the square loop for the timing error. Figure 9 shows the principle diagram of symbol timing
recovery.

Figure 9. Schematic diagram of symbol timing recovery.

rk is squared and transformed into:

rk
2 = r

(
kT
N

)2
= Ask

2 + nk (7)

where sk
2 is:

sk
2 =

[
s(t− τ)ej(∆ωt+θ)

]2

=
[
s(t)ej(∆ωt+θ)

]2
+ s(t− τ)ej[∆ω(t−τ)+θ]

(8)

After passing through the band-pass filter,
[
s(t)ej(∆ωt+θ)

]2
is:

[
s(t)ej(∆ωt+θ)

]2
=

[√
I(t)2 + Q(t)2 cos[2πfct + ϕ(t)]

]2(
ej(∆ωt+θ)

)2

= cos[4πfct + 2ϕ(t)]ej2[∆ωt+θ] = s(T)
(9)

where T = 2t.
Therefore sk

2:

sk
2 = s(T) +

√
s(T− τ) (10)

The feedback signal is multiplied by the input signal, and the error signal is ob-
tained as:

Km(rkirko)
2 (11)

where Km is the system error coefficient, rki and rko are the error signals of the two input
signals. After simplifying Formula (11), the error signal is obtained through a low-pass
filter and a two-frequency divider:

Kmrkirkosin θc(t) (12)
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The error signal y(t) is:

y(t) = Kmsin θc(t)
{

A
[

s(T) +
√

s(T− τ)
]
+ nk

}
(13)

In addition, y(t) is multiplied by its complex form and Fourier transform is used to
obtain an error signal estimate. The obtained error signal estimate is used as the timing
error. This value is used as the data interpolation timing error and used for symbol timing
through the difference filter. The error estimate Xm is:

Xm = ∑(m+1)LN−1
k = mLN y(t)y∗k(t)e

− j2πk
N (14)

where m is the number of samplings, N is the sampling value, L is the sampling step size,
y∗k is the conjugate function of the error signal, and k is an integer.

4.1.2. Carrier Recovery (Carrier Frequency Estimation)

Carrier recovery uses FFT (Fast Fourier Transformation) [21]. FFT quantizes the carrier
frequency with limited precision, and performs nonlinear transformation on the signal to
eliminate the influence of modulation. The signal s(t) is:

s(t) =
√

I(t)2 + Q(t)2 cos[2πfct + ϕ(t)] (15)

I(t) = sin(2πfct + ϕm(t)) + nI (16a)

Q(t) = cos(2πfct + ϕm(t))+ nQ (16b)

Frequency domain analysis of I(t) and Q(t) is:

I(k) = sin(2πfck + φm + ∆φ) + nI (17a)

Q(k) = cos(2πfck + φm + ∆φ) + nQ (17b)

The FFT carrier frequency difference estimation principle is shown in Figure 10.

Figure 10. FFT carrier frequency error estimation principle diagram.

For O-QPSK, the output signal after nonlinear transformation is:

I′(k) + jQ′(k) = F(ρk)e
−jmθk (18a)

I′(k) = F(ρk) sin(mθk) (18b)

Q′(k) = F(ρk) cos(mθk) (18c)
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The twice-sampled data after matched filtering extracts the error in the symbol timing
recovery. In the carrier recovery, the carrier frequency offset must be extracted for the
lower-level signal modulation and applied to the carrier and timing synchronization; in

(18b,c), let F(ρk) = abs(rk), ρk =
√

I(t)2 + Q(t)2, θk = tan−1
(

I(t)
Q(t)

)
, for O-QPSK, m = 4,

so the Fourier change of (18a) can obtain the carrier frequency shift amount as:

∆̂f =
KmaxRd

4NS
(19)

Rd is the symbol rate, Kmax the location of the maximum peak point, and N is the
number of FFT points.

4.1.3. Carrier Recovery (Carrier Phase Estimation)

The carrier phase estimation uses the Costas loop [22] composed of a phase detector
and a loop filter. The schematic diagram of the carrier phase estimation recovery part is
shown in Figure 11:

Figure 11. Carrier phase estimation principle diagram.

From Figure 11:

Zc(k) = 1
2 [I(k) cos(∆φ)−Q(k) sin(∆φ)]

ZS(k) = − 1
2 [I(k) sin(∆φ) + Q(k) cos(∆φ)]

(20)

The phase detection output is:

ZO = sgn(Zc(k)ZS(k))− sgn
(

Zc

(
k +

1
2

)
ZS

(
k +

1
2

))
(21)

4.2. Realization of Reconnection Mechanism and Power Control Mechanism after
Network Disconnection
4.2.1. Realization of Network Disconnection and Reconnection Mechanism

Figure 12 shows a schematic diagram of the principle of the disconnected network
reconnection mechanism. In the figure, nodes A, B, C, and D are child nodes, nodes, parent
nodes, and ancestor nodes, respectively. Node B sends information to node C and then
obtains the confirmation information from node C. Assuming that node B goes offline
unexpectedly, then node B cannot obtain the confirmation information from node C at this
time. Let node B send messages to node C and node A three times. If no confirmation
frame is returned on both sides, it is determined that node B is offline; if the confirmation
frame from node A is obtained, and the confirmation frame from node C is not obtained,
the parent node is offline. The node B increases the power and sends information to the
ancestor node D to ensure the smooth transmission of the information. Figure 13 shows a
detailed flowchart of this mechanism.
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Figure 12. Schematic diagram of nodes.

Figure 13. Schematic diagram of the disconnected network reconnection mechanism.

4.2.2. Realization of Power Control Mechanism

The power control mechanism’s realization requires the TXPower register [23] in the
Zigbee protocol stack. The specific algorithm realization is shown in Figure 14:

Figure 14. Implementation diagram of power control protocol.
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The specific description is as follows:

• After initialization, considering that the subsequent battery supplement or replace-
ment is not frequent during actual use, the power setting depends on the specific
situation. Set the initial power P, and all nodes will send a beacon request frame
Associate.request [24].

• After the node receives the request frame, it will return an Associate.indication confir-
mation frame, which will contain the node ID and network address.

• The node sending the request frame checks the returned confirmation frame, and
calculates the number of neighboring nodes “NodeNum”.

• When NodeNum <2, increase the transmission power and continue to send the request
Associate.request; when NodeNum >2, reduce the transmission power and continue
to send the request Associate.request; when NodeNum = 2, there is only one upstream
“neighbor” in the communication range node and a downstream “neighbor” node,
and the process ends. When NodeNum = 3, there are 3 “neighbor” nodes in the
communication range, node IDs are compared, the two nearest neighbor nodes are
selected, and the process ends

4.3. Implementation of LEACH Improved Protocol

In the LEACH protocol application phase, the data of a single node is often associated
with the end-user of the sensor network, and the events that occur in the environment
require high-level functional data to be described [25]. The Improved-LEACH protocol
is changed to select the cluster head manually, and the primary purpose is to reduce the
transmission energy of the nodes in the cluster. In the Improved-LEACH protocol, data
must be transmitted for all nodes, and the final data will be uploaded to the base station.
If the node is elected as a cluster head, the cluster head node must have enough energy to
transmit, and each node can use different transmission energy and support different MAC
(Media Access Control) protocols; each node forms a local cluster, and through the FCM
clustering algorithm, a node is identified as the cluster head [26]. Other non-cluster head
nodes transmit their data to the cluster head, and the cluster head receives data from all
cluster members and processes the data sent to the base station. If the cluster head selection
is sufficient, then cluster head nodes consume more energy than non-cluster head nodes,
so cluster head nodes will quickly consume their limited energy. Once the cluster head’s
energy is lower than the communication capability threshold, it no longer operates, and all
cluster nodes lose communication capability. Therefore, in the Improved-LEACH protocol,
a random selection of high-energy sensor nodes is introduced as the cluster head of the
cluster to avoid the rapid loss of any sensor node’s capacity in the wireless network. In the
Improved-LEACH protocol algorithm, the selection of cluster head nodes is divided into
different rounds. At the beginning of each round, a new cluster is formed, and then data is
transmitted from the node to the cluster head, and the cluster enters a stable state.

The basic principle of the Improved-LEACH protocol is as follows: For the data to
be analyzed, the user determines a–c and then divides the data into c categories, and the
center position of each category is marked by the cluster center. Such an initial division
requires repeated correction of the cluster center to the optimal position through the FCM
algorithm [27]. A function represents the distance from any data point to the corresponding
cluster center. This function is minimized based on this iteration until the weighted sum of
the distances from each type of data point to its corresponding cluster center reaches the
minimum. The iteration ends when the data is successfully divided into category c by the
FCM algorithm [28].

The Improved-LEACH protocol selects the cluster head and the formation process of
the cluster as follows:

(1) Initialization: Set the number of clusters c, 2 ≤ c ≤ n; set the iteration stop threshold
to ε, initialize the cluster center P(0), and the iteration counter b = 0.
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(2) The new classification matrix U is obtained by the following formula:

µik =
1

∑c
j=1

(
dik
djk

) 1
m−1

(22)

(3) The classified cluster center pi is obtained by the following formula:

pi =
∑n

k=1(µik)
mxk

∑n
k=1(µik)

m (23)

If ‖P(b + 1) − P‖ < ε, the algorithm ends, and the cluster center P is selected and
becomes the cluster head node. At this point, each cluster in the network has a different
node, and each cluster has a unique identifier; otherwise, let b = b + 1 and jump to step (2).

In the first round of the algorithm, the system pre-specifies the optimal number of
cluster heads c and uses the FCM algorithm to divide the entire wireless network into c
cluster areas. Each node is divided into one of the cluster areas. The weighted sum of
the distances from the class node to its corresponding cluster head is the smallest. In the
wireless network’s life cycle, the cluster class structure is fixed; once the cluster class
identifier of each node is given, it will not change until the node fails. In the next round, the
algorithm starts, with the exception of the cluster head of the previous round. In addition
to nodes, other ordinary nodes in the cluster need to report their own energy value, Ecur.
In the previous round, the cluster head node selects the node with the highest Ecur value
and uses this node as a new cluster head node, and other nodes become ordinary nodes.
If several nodes in the cluster class have the same Ecur value and are all the largest, then
the cluster head node is selected according to the ID size of these nodes. After the cluster
head node is selected, the node will allocate communication time slots for each common
node according to the number of nodes in the cluster class and then broadcast the message
to other nodes using the CSMA (Carrier Sense Multiple Access)/MAC protocol. Ordinary
nodes must keep their receivers listening to the cluster head node’s broadcast at this stage.

In the Improved-LEACH protocol algorithm, the single-hop communication mode
is used. The advantage of adopting the single-hop communication mode is that ordinary
nodes do not need to monitor at all times and only need to send data to the cluster head
in the TDMA (Time Division Multiple Access) time slot allocated to them, and then enter
the sleep state, thus saving energy. When communicating between clusters, the single-hop
communication mode is used, which reduces the number of long-distance communications
with base station nodes and can save energy.

Wn−2 = span
{

V1,1
n (x), V1,2

n (x), . . . . . . V1,2n−2

n (x)
}

(24)

5. Simulation and Performance Comparison of Improvement Measures

The article uses the Nakagami analog channel to describe the channel environment of
the mine tunnel. The article’s background is based on installing suitable wireless equip-
ment on the hydraulic supports in the mine environment. In the simulated environment
schematic diagram, the equipment is placed on hydraulic supports for receiving and
transmitting. The general schematic diagram is shown in Figure 15.

The simulation experiment adopted a similar arrangement, and the idea of simulating
the channel is as follows [29]:

The modulated random signal passes through the ln 1 port, passes the Rayleigh
fadingchannel, and then passes the Rayleigh sampling sequence to convert the complex
signal into amplitude and phase angle. The amplitude of the sequence is passed through
the unbuffer module. The unbuffer module parameter to overlap = 0 [30]. Finally, a
uniformly distributed random sequence and a Nakagami random sequence are sequentially
generated through function transformation, and finally the output signal is normalized
and the Nakagami distribution is regularized to the required power value through the gain



Electronics 2021, 10, 171 18 of 28

module [31]. Then, the amplitude and phase angle input are converted into Nakagami’s
complex signal output, and then output by the Out1 output port.

Figure 15. Schematic.

The Zigbee device chip adopts CC2530, which meets the IEEE802.15.4 standard, and
has the characteristics of high integration, low power consumption, low cost, and low
rated voltage. The chip has a powerful integrated development environment, and the
development difficulty is low [32]. The protocol stack is configured inside the chip, which
results in low energy consumption generated during the work process.

5.1. O-QPSK Performance Test Based on Feedforward Timing

According to the previous section, three device boards and one Zigbee device form a
small network. This small network is called a cluster. The coverage area of the cluster is
about 10 m or less. A cluster group is tentatively set for 10 m. In each cluster, the group is
connected to a ZigBee device, which acts as a coordinator and is connected to the upper
computer. The schematic diagram is shown in Figure 16, with the experimental device
placed in the experimental environment.

Figure 16. Schematic diagram of simulation equipment test.

The number and type of equipment used is fixed. When the number is large, it may
have an individual impact on the single experimental equipment. Therefore, a small
amount of equipment was used temporarily for observation. To simulate the environment,
a noise signal was superimposed on the input signal to simulate a mine environment. Then,
MATLAB was used to detect the fluctuation of the data and intensity test, and observe the
signal waveform. The input signal was stable, and the noise channel was superimposed
to show a messy signal performance, as shown in Figure 17. After the channel conditions
were stabilized, the waveform continued to show a messy signal performance, as shown in
Figure 17. Thus, the other characteristics of the signal must be observed.
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Figure 17. Signal performance diagram.

As shown in Figure 18a–c, the baseband signal sent by the information source is a
stable signal with energy concentrated around 0 Hz. The signal and power performance of
the upper and lower branches are similar to those of the baseband signal. The baseband
signal is modulated and sent; whether the modulation changes the performance and or
affects the subsequently received signal requires further observation.

Figure 18. Cont.
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Figure 18. Signal performance diagram. (a) Time domain surface plot and power spectrum plot of baseband signal and
carrier signal; (b) The time-domain waveform and power spectrum of the baseband signal of the upper and lower branches;
(c) Time-domain waveform and power spectrum of the frequency band signal of the upper and lower branches.

As shown in Figure 19a–c, the demodulated signal is consistent with the baseband
signal, and the power is concentrated at 0 Hz, which is the same as that of the original
baseband signal. It can be considered that the signal is undamaged and not affected by
channel interference. Although this method involves some complication, it ensures that
the demodulated signal’s properties remain unchanged. Furthermore, the performance is
not compromised, which proves that the method is relatively successful.

According to the verification of simulation experiments, the signal’s demodulation
process is relatively smooth, and the demodulated signal is the same as the original signal,
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indicating that the demodulation method based on feedforward timing is more successful
in the application of O-QPSK. However, it can be seen from the eye diagram (As shown
in Figure 20) that noise interferes with Zigbee devices; the symbols are overlapped, and
although the “eye” type is open and closed, it is small. This indicates crosstalk between the
symbols, although its impact is weak and mainly affected by noise. Thus, attention should
be paid to the influence of noise when making adjustments.

Figure 19. Cont.
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Figure 19. Signal performance diagram. (a) The time—domain performance diagram of the upper branch signal and the
time domain performance diagram after the multiplier, low—pass filter and sampling decision; (b) The time—domain
performance diagram of the lower branch signal and the time—domain performance diagram after the multiplier, low—pass
filter and sampling decision; (c) Time domain waveform and power spectrum of baseband signal and demodulation signal.

Figure 20. Eye diagram.

5.2. Verification of Improvement Measures in the Case of Multiple Devices

The simulation experiment under multiple devices requires the support of the conclu-
sion of the O-QPSK simulation experiment based on feedforward timing, and the device
initialization is first required. The device is chaotic during initialization but tends to
stabilize over time, as shown in Figure 21.

After the network nodes are stable, several measures proposed in the article are used
for comparison. The regional parameters were first set, as shown in Table 3.

First, a network health test must be conducted. A previous article proposed the
disconnection mechanism, the power control mechanism, and the error control protocol to
address the problem of node disconnection. The artificial redundant node and alternative
link mechanisms were proposed for crucial and essential nodes. However, during the test,
it is necessary to observe the changes in the total number of network nodes for evaluation.
According to the settings, the broken node sends a message to the adjacent node to confirm
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that it is offline. However, if the node is not off the network due to damage, it can initiate a
reconnection request, and the transmission chain of the node that is offline due to damage
will temporarily route the message to another transmission link. The console can obtain
information about whether the node is on the network through the node ID and node
network address. Table 4 shows the data table of changes in the number of nodes.

Figure 21. Schematic diagram of nodes tending to stabilize. (a) Initialization; (b) after time has elapsed; (c) stable state.

Table 3. Parameter setting.

Key Parameters Value

Area size 100 m2

Number of nodes 100
Free space model ε fs = 10 pJ/bit·m2

Node initial energy 0.5 J
Transmitting and receiving circuit loss Eelec = 50 nJ/bit

Data fusion processing loss 50 nJ/bit

Table 4. Number of nodes.

Observation Time Number of Nodes

0 0
20 min 54
40 min 100
60 min 100
80 min 100

100 min 95
120 min 100
140 min 100
160 min 100
180 min 100
200 min 100

According to the experimental data, all of the nodes spent about 35 min on the network.
Initially, due to equipment initialization and other reasons, the network construction was
slow. After the test started, the network comprised only five nodes for approximately
100 min. According to the investigation, this was due to external reasons on site (accidental
disconnection caused by the drop). The device was relatively stable and there was no
disconnection.

Table 5 shows the signal delay detection. Detecting the degree of network signal
delay can also provide a measure of the health of the network. In the experiment, any
10 nodes were selected for testing. To minimize the error, the average delay was calculated
through multiple tests. The aim was to reduce the impact of large errors for each detection.
According to the data in the table, the signal delay was not obvious during the time period
of the simulation experiment and was relatively stable.
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Table 5. Signal delay detection.

Number of Nodes Testing Frequency (Times) Average Delay (ms)

10 (0 min) 30 0
10 (20 min) 30 3.222
10 (40 min) 30 3.545
10 (60 min) 30 4.023
10 (80 min) 30 3.654

Figure 22 shows the signal strength coverage detection. It can be seen from the figure
that the signal was relatively strong within 100 m, significantly weakened within 100–150 m
(although a weak signal was present), and almost no signal was present beyond 150 m.

Figure 22. Signal strength vs. distance graph.

The Improved-LEACH protocol was mainly aimed at network energy saving, thus re-
ducing unnecessary waste in the process of route discovery and route searching. However,
it also improves the delay problem in the signal transmission process, that is, the reduction
of signal transmission time, as shown in Figure 23. To improve the performance of the
nodes under the LEACH protocol, the number of nodes in the experiment was 100, and the
area was selected to be 100 m2 to manually set obstacle areas. The nodes were randomly
arranged, and the life of the network was reflected by the death of the first node and half
of the nodes in the network. The experiment was cycled by counting the number of rounds
of network cluster establishment when the first node died, when half of the nodes died,
and when all of the nodes died. According to the initial settings, the initial energy of the
node was 0.05 J. The network life cycle comparison when the number of cluster heads in
the algorithm was 2, 3, 4, 5 and 6 is shown in Table 6:

Figure 23. Improved nodes under the LEACH protocol.
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Table 6. Network life cycle comparison.

Number of Cluster Heads 1 50% 100%

2 25 70 265
3 55 126 320
4 50 157 367
5 90 212 388
6 65 172 320

It can be seen from Table 6 that the life cycle of the wireless network is longest when
the number of cluster heads is 5. Table 7 shows the number of rounds experienced using
different algorithms when the number of nodes die:

Table 7. The number of rounds experienced when the number of nodes die.

0 20 40 60 80 100

LEACH 110 201 285 402 632 1115
LEACH-C 110 246 300 400 580 905

SEP 110 180 270 420 420 870
Improve-LEACH 100 300 610 610 1095 1170

The first column contains the name of each protocol, and the first row contains the
number of node deaths. Table 7 shows that the Improved-LEACH protocol performs well
when the number of nodes in each stage dies. Observing the delay test under the LEACH
improved protocol, it can be seen that the Improved-LEACH protocol reduces the signal
delay problem. In addition, when the transmit power is increased, the packet loss rate is
significantly reduced, and it is possible to communicate information over a longer distance.
Compared with the LEACH protocol, the Improved-LEACH protocol provides limited
alleviation of the delay and packet loss problems. Specific data are shown in Tables 8–11
below.

Table 8. Average signal delay under the LEACH protocol.

Number of Nodes Testing Frequency (Times) Average Delay (ms)

1 50 4.656
50 50 76.226

100 50 267.535

Table 9. Improved average signal delay under the LEACH protocol.

Number of Nodes Testing Frequency (Times) Average Delay (ms)

1 50 3.124
50 50 56.442

100 50 167.486

Table 10. Packet loss rate test (LEACH protocol).

Transmit
Power

Distance (m)

10 30 50 75 85 90 100 120

1 dBm 0 0 0.3 3.2 4.5 33.4 56.4 65.5
−1.5 dBm 0 0 1.33 5.5 13.4 45.2 67.4 78.8
−3 dBm 0 0 4.33 8.7 19.3 59.5 78.4 88.8
−6 dBm 0 0 5.42 10.4 34.3 71.3 89.9 99.1
−10 dBm 0 0.44 8.64 18.7 45.6 83.2 97.8 100
−14 dBm 0 2.45 14.3 45.3 88.9 94.3 100 100
−25 dBm 0 5.44 24.5 65.4 93.1 100 100 100
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Table 11. Packet loss rate test (Improved-LEACH protocol).

Transmit
Power

Distance (m)

10 30 50 75 85 90 100 120

1 dBm 0 0 0 1.2 3.5 23.5 45.6 54.4
−1.5 dBm 0 0 1.3 4.3 10.4 34.5 54.5 76.4
−3 dBm 0 0 2.1 5.6 18.5 45.3 59.8 86.4
−6 dBm 0 0 3.4 7.5 21.3 57.6 69.3 95.5
−10 dBm 0 0.34 5.4 10.4 32.3 76.7 95.5 100
−14 dBm 0 1.44 10.4 30.4 78.5 90.4 100 100
−25 dBm 0.4 1.54 18.4 45.4 87.5 100 100 100

6. Conclusions

This study was undertaken in the context of underground mines. The current article
introduces the communication conditions of underground mines and notes that the mine
environment is complicated, thus, the mine communication environment is severe. Zigbee
technology was selected from the currently available mature communication technologies.
Although Zigbee technology is more mature, it has a number of disadvantages. The article
focuses on addressing the disadvantages arising from the technical modulation technology
itself and those due to the networking technology. Aiming at the drawbacks of modulation
technology, an improvement measure was proposed. According to the simulation verifi-
cation in Section 5, the improved O-QPSK modulation method performs well, addresses
the difficulty of synchronization caused by the original modulation technology, and pro-
vides a more accurate solution. Excluding the original data, the shape and performance
are not changed. Although the process is more cumbersome, it has higher security and
significantly improved adaptability. It is suitable for the communication environment
outlined in this article, and can be particularly used for signal transmission under non-
line-of-sight conditions. Five mechanisms and an improved protocol were proposed to
address the disadvantages of networking technology. In large-scale networking, which
is often carried out in practice, the network is affected by the layout. For example, this
article noted that Zigbee large-scale networks are affected by multipath and fading effects
in mines. These have a significant impact on the network. Thus, four mechanisms were
proposed, in addition to one protocol and an improved protocol. Among these, for node
disconnection, a network reconnection mechanism was proposed. The power control
mechanism and error control protocol provide response and temporary remedial measures
after the edge node goes offline, whereas the artificial redundant node and alternative link
mechanisms provide important remedial measures for node collapse or disconnection. The
Improved-LEACH protocol addresses the problem of reducing the energy expenditure of
the overall network. After analyzing the mine communication environment, the approxi-
mate Nakagami channel was proposed as a simulation experiment environment. In the
simulation experiment, the number of nodes, signal delay, signal strength, and packet loss
rate were tested. The experimental results prove that the proposed measures can achieve
the expected effect, effectively enhancing the health of the network and better adapting to
the harsh communication environment of underground mines.
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